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Abstract

Dynamic prediction incorporates time-dependent marker information accrued during follow-up to 

improve personalized survival prediction probabilities. At any follow-up, or “landmark”, time, the 

residual time distribution for an individual, conditional on their updated marker values, can be 

used to produce a dynamic prediction. To satisfy a consistency condition that links dynamic 

predictions at different time points, the residual time distribution must follow from a prediction 

function that models the joint distribution of the marker process and time to failure, such as a joint 

model. To circumvent the assumptions and computational burden associated with a joint model, 

approximate methods for dynamic prediction have been proposed. One such method is 

landmarking, which fits a Cox model at a sequence of landmark times, and thus is not a 

comprehensive probability model of the marker process and the event time. Considering an illness-

death model, we derive the residual time distribution and demonstrate that the structure of the Cox 

model baseline hazard and covariate effects under the landmarking approach do not have simple 

form. We suggest some extensions of the landmark Cox model that should provide a better 

approximation. We compare the performance of the landmark models with joint models using 

simulation studies and cognitive aging data from the PAQUID study. We examine the predicted 

probabilities produced under both methods using data from a prostate cancer study, where 

metastatic clinical failure is a time-dependent covariate for predicting death following radiation 

therapy.
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1 Introduction

As survival outcomes for patients improve, there is additional follow-up information 

available and increased interest in predicting conditional survival for patients at a time 
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beyond diagnosis or treatment. To achieve the most accuracy, prediction models should 

incorporate patient information that evolves over time and was collected during follow-up. 

The statistical task is to develop a technique that can quantify survival probability 

predictions at baseline, and produce updated risk predictions at future time points for 

patients who are still alive by including their new marker information.

Recent literature has explored obtaining dynamic predictions with the use of joint models for 

longitudinally measured markers and time-to-event outcomes (Taylor et al., 2005; 

Rizopoulos, 2011; Taylor et al., 2013; Rizopoulos et al., 2013). Joint modeling requires the 

specification of a model for the marker process, a model for the survival outcome, and a 

method by which to link the two models (Henderson et al., 2000). This is sufficient to obtain 

the joint distribution of the marker process and failure time, from which the residual time 

distribution can be easily derived at any landmark time of interest. Computing conditional 

survival probabilities from this distribution may involve numerical integration and require 

substantial computation. Joint models require correct specification of the joint distribution of 

the marker process and the event time and can require computationally intensive techniques 

for estimation. To avoid making distributional assumptions about the marker process and to 

reduce the computational burden, approximate approaches for dynamic prediction have been 

developed that specify a model for only a component of the joint distribution of the marker 

and failure time processes.

One such approach to dynamic prediction is called “landmarking”. This approach was first 

introduced in the context of clinical oncology by Anderson et al. (1983) as an alternative to a 

Cox model with a time-dependent covariate. In van Houwelingen (2007), the landmarking 

approach applies a simple Cox proportional hazards model to the data of individuals still 

alive at τ, and the resulting estimates are used to predict the probability of surviving up to a 

fixed horizon, τ + s. To link the landmark models, the estimated effects are allowed to 

change with landmark time in a smooth way. Since this method can be implemented using 

the Cox model, and since time is always measured from the original time origin, estimation 

can be conducted based on a partial log-likelihood method. Zheng and Heagerty (2005) 

proposed a similar approach called “partly conditional survival modeling”, which describes 

landmarking in the context of resetting the clock at the landmark time.

The appeal of landmarking is that it avoids specifying the distribution of the stochastic 

marker process in time. However, as demonstrated by Jewell and Nielsen (1993), 

approximate approaches fail to produce predictions that are consistent (i.e. have a defined 

relationship) with predictions at other landmark times. Valid prediction functions require the 

definition of a model for the stochastic marker process and the functional relationship 

between the marker and the hazard at any given time. The residual time distribution, upon 

which predictions are based, is determined by the hazard at w = τ + s, s > 0 conditional on 

event time T > τ and marker process Z(τ). The consistency condition proposed by Jewell 

and Nielsen (1993) states that if the hazard function is determined by Z(t) and denoted h(t, 
Z(t)), the hazard at all times w > τ cannot be arbitrarily chosen but must be computed from 

h(w|τ, Z(τ)) = E[h(w, Z(w))|T > τ, Z(τ)], where the expectation is with respect to the 

distribution of Z between τ and w. Thus, specification of the marker process distribution is 

necessary to link the hazards over time to produce consistent predictions. Under the 
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landmarking approach, the model for h(w|τ, Z(τ)) is chosen to have the form of a Cox 

regression, which can be easily fit using standard software. Thus, landmarking produces a 

sequence of best-fitting Cox models at each landmark time and there is no restriction on the 

predictions from each Cox model being consistent with those at earlier time points. Based on 

this violation of the consistency rule, an approach for prediction models that is based on 

modeling only the residual time may result in theoretically incorrect models.

It is well known that the residual time distribution based on a time-varying marker will 

depend on the stochastic process of the marker (Kalbfleisch and Prentice, 2011). Jewell and 

Kalbfleisch (1996) provided some specific examples of residual time distributions for 

additive models. Shi et al. (1996) showed that if the marker is following a Brownian motion 

then a reasonable approximation to the residual time distribution is based on the linear 

transformation model (T − τ)1/3 = g(Z(τ)) + ε, where g is a monotonic function and ε has a 

constant variance distribution. In discussing differences between a time-dependent Cox 

model and a landmarking approach, Putter and van Houwelingen (2016) showed that a 

proportional hazards assumption will not in general be valid for the landmarking model. 

Whether the lack of theoretical justification for the landmarking approach is a practical 

concern may depend on what landmarking models are used. Extensions in the landmark 

framework that increase flexibility may provide a sufficiently good approximation to the true 

residual time distribution.

The comparison of predictive performance between joint models and landmarking 

approaches has been recently explored in the statistical literature. Cortese et al. (2013) 

compared predictions of cumulative incidence between amultistate model and landmark 

approaches under competing risks, and found that the two modeling strategies had nearly 

identical predictive accuracy. Rizopoulos et al. (2013) demonstrated the superiority of the 

survival prediction accuracy of a joint model over landmarking under various functional 

forms of the association structure between a continuous longitudinal marker and failure time 

processes. Maziarz et al. (2016) proposed two models in the partly conditional modeling 

framework and compared them to a joint model by simulating data from a shared random-

effects model. They showed that predictions obtained from partly conditional survival 

models are comparable to those from a joint model, but that partly conditional models have 

better computational efficiency.

We aim to contribute to this literature by contrasting landmark and joint models for dynamic 

prediction in the context of a binary longitudinal marker, represented by an illness-death 

model. In Section 2, we introduce notation for landmark and joint models and derive their 

predicted probabilities in the context of the illness-death model. Section 3 demonstrates that 

the landmark approach with a standard Cox model does not satisfy the consistency condition 

of Jewell and Nielsen (1993), and suggests extensions to provide a better approximation. 

Section 4 compares the performance of landmark and joint models using a simulation study. 

In Section 5, we apply these methods to cognitive aging data from the PAQUID study and 

metastatic clinical failure data from a prostate cancer study, and conclude with a discussion 

in Section 6.

Suresh et al. Page 3

Biom J. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 Approaches for dynamic individualized predictions

Let 𝒟n = {T i
∗, δi, Xi, Zi; i = 1, …, n} denote the observed data, where Ti is the true event time, 

Ci is the censoring time, T i
∗ = min(T i, Ci) is the observed event time, δi = 1(Ti ≤ Ci) is the 

censoring indicator, Xi is the baseline covariate vector, and Zi is the longitudinal marker 

vector, with zil = Zi(til) denoting the marker value at time til, l = 1,…, ni, for subject i.

The aim is to obtain a prediction probability for a new subject, j, from the same population, 

who has current marker and baseline covariate data available. Specifically, we are interested 

in obtaining a prediction probability of surviving up to time τ + s, s > 0, given that subject j 
has survived up to time τ, that is

p j(τ + s |τ) = Pr(T j ≥ τ + s |T j > τ, 𝒟n, X j, Z j(τ)) (1)

where Zj(τ) denotes the subject’s marker value at time τ. In this probability statement, τ is 

called the landmark time and s is the prediction window. The dynamic nature of this 

prediction probability lies in its ability to be updated as new information for patient j 
becomes available at time τ* > τ, to produce the new prediction pj (τ* + s|τ*). Implicit in Eq. 

(1) is that the value of Z is known for subject j at time τ. In practice this may not be the case. 

An alternative target of interest is to change Eq. (1) to condition on the known history of Z 
up to time τ for subject j.

2.1 Joint modeling

Joint modeling requires the full specification of the joint distribution of the longitudinal 

marker process and the survival data. The joint density is often factored into a product of the 

densities of Z and T|Z, which requires specifying the model for the longitudinal marker 

process and a model for the event times with dependence on the defined marker process. As 

shown in Jewell and Kalbfleisch (1992) and Shi et al. (1996), once these distributions are 

specified the residual time distribution can be derived.

If Z is a discrete random variable, joint modeling consists of formulating a process for the 

transitions between the states of Z and defining the relationship between the covariate 

process and survival using a hazard function for T. This is sufficient to derive the joint 

distribution of Z and T, from which the residual time distribution is then determined.

The irreversible illness-death model is the simplest example of discrete Z. In this model, Z is 

binary with only two states {0,1}, all subjects start in state 0, and transitions from state 1 to 

state 0 are not allowed. Let T be the time to death, which is a terminal state. Then the joint 

distribution of Z and T can be described as a simple three-state illness-death model (0: 

Healthy, 1: Illness, 2: Dead), as shown in Fig. 1. We then define the time-varying covariate 

process Z(t) ∈ {0, 1} as an indicator of whether an individual has progressed from the 

“healthy” state to the “illness” state by time t. In this model, λjk(t|X) describes the hazard of 

transitioning from state j to state k at time t conditional on the baseline covariate vector X, 

which can have a different effect on each transition. We assume that the clock does not reset 
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once an individual has transitioned into the illness state, and thus t is time since baseline. As 

well, we can model the rate of transition to be dependent on the duration in the current state 

for those in the ill state. Under the illness-death model, the residual time distribution 

conditional on Z(τ) is:

Pr(T ≥ τ + s |T > τ, X, Z(τ) = 0) = exp −
τ

τ + s
[λ02(u |X) + λ01(u |X)]du

+
τ

τ + s
exp −

τ

ν
[λ02(u |X) + λ01(u |X)]du λ01(ν |X) exp

ν

τ + s
λ12(u |X)du dν

(2)

Pr(T ≥ τ + s |T > τ, X, Z(τ) = 1) = exp −
τ

τ + s
λ12(u |X)du (3)

In Eq. (2) the first term represents the probability that the individual remained in state 0 from 

time τ to τ + s, and the second term is the probability the individual transitioned from state 0 

to 1 at time ν ∈ (τ, τ + s) and then remained in state 1 from time ν to τ + s.

The observed data is given as 𝒟n = {T i
∗, δi, Xi, Zi, V i; i = 1, …, n}, where in addition to the 

previously described notation, Vi is the known, exact transition time from state 0 to state 1 

for the ith individual if they have transitioned. Thus, using a joint model approach, the full 

likelihood can be written as

L = ∏
i

exp [ − {1 − Zi(Ti
∗)}{Λ01(Ti

∗ |Xi) + Λ02(Ti
∗ |Xi)}]λ02(Ti

∗ |Xi)
δi(1 − Zi(Ti

∗))
×

exp [ − Zi(Ti
∗){Λ01(Vi |Xi) + Λ02(Vi |Xi)}]λ01(Vi |Xi)

Zi(Ti
∗)

× exp [ − Zi(Ti
∗){Λ12(Ti

∗ |Xi) − Λ12(Vi |Xi)}]λ12(Ti
∗ |Xi)

δiZi(Ti
∗)

where Λij(t |X) = ∫ 0
t λij(u |X)du is the cumulative hazard. Using the likelihood, parameter 

estimates of the joint model can be obtained, from which the desired residual time 

distribution in Eqs. (2) and (3) are computed. Since it is unlikely that the exact transition 

times are observed in practice, this likelihood can be adjusted to accommodate interval-

censored observation times (Commenges, 2002). Alternatively, a semi-Markov model, for 

which the transition to death from the illness state depends on the duration in the illness 

state, can be fit (Foucher et al., 2010).

2.2 Landmarking

Landmarking describes the approach in which models are proposed and estimation is 

conducted at a set of prediction times of interest, defined as landmark times. There are 

several models and estimation methods that exist within the landmarking framework. After a 
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model is selected and fit, the required residual time distribution given by Eq. (1) can be 

calculated.

The idea behind landmarking is to preselect a landmark time, τ, at which there is interest in 

making a prediction. Given access to a database of patient information, if we were interested 

in predicting survival up to time τ + s for patients still alive at τ, we could select all the 

patients in the database alive at τ and estimate the probability of survival at τ + s using a 

survival model (e.g. Cox proportional hazards model). We may also be interested in 

considering many landmark times, τ1, τ2, …, τL, and developing a prediction model for 

each. To do this, we construct a prediction dataset for each landmark time, τl, which consists 

of individuals still alive at τl
−, with administrative censoring at a prespecified horizon, thor = 

τl + s. These landmark data sets are then stacked to create a “super prediction data set” to 

which the landmark models are applied. We note that with the selection of multiple 

landmark times, the same patient contributes to the estimation of many of the predicted 

residual time distributions. It is also necessary that every subject have a value of Z at every 

landmark time. In practice this may not be the case, and Z must be imputed from a model for 

Z, or more commonly by using the last-observation-carried-forward (LOCF) approximation, 

which will be the method used in this paper.

In the most basic application of landmarking, we fit a separate model to each landmark 

dataset and estimate a landmark-specific effect of the marker for predicting survival between 

τ and a fixed horizon thor = τ + s. The basic landmark model is given as

h(t |τ, Z(τ), X) = h0(t |τ) exp{βτZ(τ) + ζ′X}    for τ ≤ t ≤ thor

where, the dependence of the baseline hazard on τ can be modeled by estimating a different 

baseline hazard for each τ, that is h0(t|τ) = h0τ (t).

As an alternative, we can apply a “super prediction model” to the stacked super dataset and 

allow the regression coefficients to depend on landmark time in a smooth, parametric way, 

such as with a linear or a quadratic function. This super model is defined as

h(t |τ, Z(τ), X) = h0(t |τ) exp{β(τ)Z(τ) + ζ′X}    for τ ≤ t ≤ thor (4)

where β(τ) = Σj γjfj(τ), with basis functions fj(τ) and parameters γj. This model can be fit to 

the stacked super dataset using a Cox model with stratification on τ and interaction terms 

Z(τ)fj(τ). For estimation we maximize a pseudo-partial log-likelihood, which is the sum 

over the partial loglikelihoods corresponding to the Cox models fit to each of the landmark 

datasets.

Instead of assuming a different baseline hazard for each τ, we can further extend this model 

to allow the baseline hazard to change smoothly with landmark time. Thus, the extended 
super model is given by
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h(t |τ, Z(τ), X) = h0(t) exp{θ(τ) + β(τ)Z(τ) + ζ′X}    for τ ≤ t ≤ thor (5)

where θ(τ) = Σjηjgj(τ), with basis functions gj(τ) and parameters ηj. In this model, gj(τ) are 

now covariates. The pseudo partial log-likelihood for this model differs slightly from the one 

for the model in Eq. (4). Details are given in van Houwelingen (2007).

This landmark super model can be generalized further. In Eq. (5), the effect of Z depends on 

τ but it does not depend on t; thus, it still has a proportional hazards structure. For some 

applications it may be more appropriate to assume that the effect of Z depends on the time t 
− τ and to include a term Z(τ)ω(t − τ), where ω(s) is a smooth function of s. Thus, we can 

use the nonproportional hazards extended super model given by

h(t |τ, Z(τ), X) = h0(t) exp{θ(τ) + β(τ)Z(τ) + ω(t − τ)Z(τ) + ζ′X}    for τ ≤ t ≤ thor (6)

3 Landmark Cox model construction corresponding to the illness-death 

model

We now consider landmarking when Z is a binary covariate process. Under the landmark 

approach, when making a prediction for a new subject at landmark time τ, we use all 

available information at that landmark time. This method does not directly incorporate 

possible future transitions to illness. Since landmarking uses the LOCF approximation, if the 

marker process covariate, Zi, is 0 at the time of the individual’s last observation til before τ, 

then we set Z(τ) = 0. Thus, it is implicitly assumed the individual does not transition to the 

illness state between til and τ. Under the joint modeling approach, when predicting for a new 

individual we integrate over all possible paths of an individual through the illness-death 

model, including the individual possibly progressing to illness state after their last inspection 

but before τ. Thus, for individuals with Z(til) = 0, if there is interest in predicting for 

landmark times far later than til, joint modeling can be expected to provide a better 

prediction than landmarking.

We can also demonstrate that the standard landmark approach uses a model that is not 

compatible with the illness-death model. To model the residual time distribution in a 

landmarking framework with binary Z, we consider the super landmark model in Eq. (4). If 

the proportional hazards assumption in the landmark Cox model is to hold then it is 

necessary that β(·) in Eq. (4) does not depend on t. We will investigate whether it is possible 

under the illness-death model to achieve a form for β(·) that is independent of t. If not, then 

we will examine how β(τ) can be generalized to better approximate the correct residual time 

distribution.

For the purposes of our derivation, we reparameterize the hazard in Eq. (4) as follows:

h(t |τ, Z(τ), X) = h0(t |τ) exp {β(τ)(1 − Z(τ)) + ζ′X} (7)
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We can then define the residual time distribution for the Cox-type landmark model as 

surviving to time τ + s, s > 0, given the individual was alive at landmark time τ with an 

illness indicator Z(τ). From Eq. (7), this can be written as

Pr(T ≥ τ + s |T > τ, X, Z(τ)) = exp  −
τ

τ + s
h0(u |τ) exp {β(τ)(1 − Z(τ)) + ζ′X}du (8)

3.1 Equating residual time distribution

To determine the form for β(τ) and h0(t|τ) in Eq. (7) that corresponds to the illness-death 

model, we equate the appropriate residual time distributions for the two models. Starting 

with the situation where the individual transitioned to the illness state by time τ, it is 

required that Eq. (8) for Z(τ) = 1 and Eq. (3) are equal, hence

exp  −
τ

τ + s
h0(u |τ) exp(ζ′X)du = exp  −

τ

τ + s
λ12(u |X)du

h0(u |τ) exp(ζ′X) = λ12(u |X) for all τ

(9)

Thus, the hazard for the Cox-type model in the landmark approach conditional on being in 

the illness state is equivalent to the transition intensity from illness to death. Notice that it 

has the same form for all landmark times.

For the situation where the individual has not yet transitioned to illness, we require that Eq. 

(8) for Z(τ) = 0 and Eq. (2) are equal, thus

exp  −
τ

τ + s
h0(u |τ) exp(β(τ) + ζ′X)du = Eq . (2) β(τ) + ζ′X = log  − log{Eq . (2)}

τ
τ + sh0(u |τ)du

Substituting in the value for h0(u|τ) from Eq. (9):

β(τ) + ζ′X = log[ − log{Eq . (2)}] − log
τ

τ + s
λ12(u |X)du (10)

which is the form for the covariate effects from the landmark Cox regression model that 

corresponds to an illness-death model. Notice that the required form for β(τ) given on the 

right-hand side of Eq. (10) is quite complicated since it involves Eq. (2), which is composed 

of two additive terms. Also, notice that it is dependent on both s and τ, which violates the 

form of the simple Cox regression model desired for the landmark setting, that is β(·) 

dependent only on τ. Thus, a landmark approach with a proportional hazards assumption is 

not the correct method when the true data generative model is an illness-death model.
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If λ12(u |X) = λ12, 0(u) exp{α12′ X}, then ζ = α12. The form of X on the right-hand side of Eq. 

(10) is not linear in X and furthermore, it depends on three separate linear combinations, 

α01′ X, α02′ X, and α12′ X, rather than one. If there are several baseline covariates, the covariate 

vector can be different for each transition, which will also not be captured by the linear form 

of X in the Cox model. This suggests that the landmark Cox models should include more 

flexible forms for X, such as ζ(τ)′X, or an interaction, such as ϕ′XZ(τ).

We now consider special cases for the transition intensities to identify situations in which the 

derived forms for the landmark Cox baseline hazard and covariate effects provide good 

approximations of the residual time distribution under the illness-death model.

3.1.1 Constant and equal baseline transition intensities—Under the simplest 

situation of constant and equal baseline transition intensities, λ jk(t |X) = ψ  exp{α jk′ X}, we 

obtain the following form for the baseline hazard and covariate effects under the Cox 

landmark model from Eqs. (9) and (10),

h0(t |τ, X) exp(ζ′X) = ψ  exp(α12′ X)

β(τ) + ζ′X = log  − log exp  − ψs(e
α02′ X

+ e
α01′ X

)

+
exp (α01′ X − ψse

α12′ X
){1 − exp { − ψs(e

α02′ X
+ e

α01′ X
− e

α12′ X
)}}

e
α02′ X

+ e
α01′ X

− e
α12′ X − log[ψse

α12′ X
]

The form for the covariate effects does not resemble a structure that is implementable within 

a standard Cox regression in the landmark approach. Also, β(τ) is dependent on s and 

violates the form of a simple Cox regression model in the landmark setting, which assumes 

that β depends only on τ.

3.1.2 Proportional hazards transition intensities—For the situation with 

proportional hazards transition intensities, we define the transition intensity for j → k as 

λjk(t|X) = λjk,0(t) exp{α′X}, where λjk,0(t) is the baseline transition intensity for the j → k 
transition, such that λ02,0(t) = λ(t), λ01,0(t) = γλ(t), λ12,0(t) = ηλ(t). We denote the 

cumulative hazard Λ(t) = ∫ 0
1λ(u)du. Then from Eqs. (9) and (10), we derive

h0(t |τ, X) exp(ζ′X) = ηλ(t) exp(α′X)

β(τ) + ζ′X = log  − log  1 − η
1 + γ − ηexp  − (1 + γ)eα′X[Λ(τ + s) − Λ(τ)]

+ γ
1 + γ − ηexp { − ηeα′X[Λ(τ + s) − Λ(τ)] − log  ηeα′X{Λ(τ + s) − Λ(τ)}
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In this scenario, the form of the covariate effects also does not have a Cox proportional 

hazards structure. Here, β(τ) is dependent on both τ and s, unless λ(t) is a constant. As the 

flexibility of the transition hazards in the illness-death model is increased, we find that the 

corresponding form of the covariate effects under the landmark approach is not consistent 

with a Cox regression model and depend on both τ and s. Allowing the effect of the baseline 

covariates to vary with transition, the forms of the baseline hazard and covariate effects are 

even more complicated.

3.1.3 Short prediction horizon—Since we are typically most interested in short-term 

predictions, we also consider whether the Cox model in the landmark framework 

approximately satisfies a proportional hazards assumption for small time horizons of 

interest. Thus, we explored obtaining a simpler form of the derived residual time distribution 

using the Taylor approximation. Taking the second-order Taylor expansion of log(Eq. (2)) 

and log(Eq. (3)) about s = 0, we get the following approximation of the residual time 

distribution for small s

Pr(T ≥ τ + s |T > τ, X, Z(τ) = 0) ≈ exp  − λ02(τ |X)s − 1
2[λ02′ (τ |X) − λ02(τ |X)λ01(τ |X) + λ01(τ |X)λ12(τ |X)]s2

Pr(T ≥ τ + s |T > τ, X, Z(τ) = 1) ≈ exp  − λ12(τ |X)s − 1
2λ12′ (τ |X)s2

Taking the derivative of the negative log of these equations, and denoting t = τ + s, gives us 

the hazard functions

h(t |T ≥ τ, X, Z(τ) = 0) = λ02(τ |X) − [λ01′ (τ) − λ02(τ |X)λ01(τ |X) + λ01(τ |X)λ12(τ |X)](t − τ)

h(t |T ≥ τ, X, Z(τ) = 1) = λ12(τ |X) + λ12′ (τ |X)(t − τ)

These hazards do not have the form of proportional hazards. Thus, to achieve consistency 

between the illness-death model and the landmark approach we need a broader class of 

landmark models that accommodates the derived form of the hazards and contains the Cox 

proportional hazards model as a special case.

Based on the derivations in this section, we conclude that Cox proportional hazards within 

the landmark framework is not an appropriate model for the residual time distribution arising 

from an illness-death model. We have shown that in plausible scenarios the covariate effects 

are a function of both τ and s = t − τ and that the effect of baseline covariates is unlikely to 

be well described by a simple, single linear combination. For the more likely, but 

complicated, scenario of an illness-death model with transition-specific baseline intensities 

and covariate effects, the associated h0(t|τ, X) and β(τ) are nonstandard and the super 

landmark model does not provide a good theoretical approximation of the residual time 

distribution. Thus, we use a simulation study to explore the performance of extensions 
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within the landmark framework that accommodate nonproportional hazards, coefficient 

effects of Z as a function of τ and s, more complex forms for the baseline covariate effects 

X, and interactions between Z and X.

4 Simulation study

The aims of our simulation study were to compare the predictive performance of joint and 

landmarking models in the context of illness-death data, and to evaluate whether increased 

landmark model flexibility provides a better approximation to the true model.

4.1 Data generation and structuring

Five hundred simulations of n = 500 subjects were run for each scenario. Defining the states 

as {0: Healthy, 1: Ill, 2: Dead}, the ages at illness onset and death without illness were 

generated from

λ jk(ti |Xi) =
ρ jk
κ jk

ti
κ jk

ρ jk − 1

 exp  α jk′ Xi     for  j = 0, k = 1, 2 (11)

For the transition intensity from illness to death (1 → 2), we generate data under two 

different models: (1) Markov, where the transition intensity depends only on current time 

and (2) semi-Markov (“clockreset”), where the transition depends on duration in the illness 

state. Under the Markov model, λ12(t|X) is given as in Eq. (11). Under the semi-Markov 

model, given the known transition time V, the transition intensity from illness to death is 

specified as λ12
SM(t |X, V) = λ12(t − V |X).

We choose the transition intensity shape and scale parameters such that λ12(t) > λ02(t) > 

λ01(t) [ρjk = 1.15 for all j → k; κ01 = 20; κ02 = 12.5; κ12 = 10]. We simulate a binary 

baseline covariate, X, that has a stronger effect on death in ill subjects, with α01 = 0.5, α02 = 

0.5, α12 = 2. We explored simulating the exposure prevalence of X from 5% to 50%, but 

present only the results for 40% due to the similarity of results under other percentages. We 

simulate right-censoring from an exponential distribution with mean 80 and apply 

administrative censoring at time 20 to achieve a 15% censoring rate. We simulate marker 

measurement under two patterns of observation: (1) the marker process is continuously 

observed (then the exact transition time from “healthy” to “ill” is observed) and (2) the value 

of the marker is observed at random inspection times. Under the scenarios where the marker, 

Z, is measured at inspection times, inter-inspection times are exponentially distributed with 

rate 0.5.

We assume that there is interest in dynamic prediction for the first five years following 

baseline. Thus, we use an equally spaced grid of landmark times from time 0 to time 5, 

every 0.2 years. The endpoint of interest is death within a prediction window of s = 1, 3, 5 

years from the prediction time. To structure the data as a super dataset, we create a landmark 

dataset for each τ, with administrative censoring at τ + s, and stack the landmark data sets. 

We also structure the data as a longitudinal dataset for the setting with simulated inspection 
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times. In this dataset, each patient contributes a row for each of their inspection times (til, l = 

1,…, ni), with administrative censoring of their event times at til + s.

4.2 Joint models

Under the joint modeling approach, we fit both Markov and semi-Markov models. Defining 

λij, 0
W (t) and λ jk, 0

Cox (t) as the baseline hazards of a Weibull model and Cox proportional hazards 

model, respectively, we fit the parametric and semi-parametric joint models (MM), 

(MMCox), (MSM), (MSMCox), and (SMM) shown in Table 1.

For (MM) we fit a Markov illness-death model with Weibull hazard transition intensities. 

(MMCox) fits the model with semi-parametric transition intensities using a Cox proportional 

hazards model. These models are extended to (MSM) and (MSMCox) to account for the 

effect of the observed transition time, V*, by including it as a covariate. For (SMM) we fit a 

semi-Markov illness-death model.

Estimation is conducted using methods described in Section 2.1 with the R packages 

SmoothHazard for (MM) (Touraine et al., 2014), mstate for (MMCox) and (MSMCox) 

(de Wreede et al., 2011), and the function optim for the optimization of the likelihood for 

(MSM) and (SMM) using the quasi-Newtonian algorithm, the code for which is available in 

the Supporting Information materials. We plug in the resulting estimates (λ̂
jk) into 1–Eq. (2) 

and 1–Eq. (3) to produce dynamic predictions of death within s years for landmark time τl. 

Note that for the models that are conditional on V*, we replace λ12(u|X) with λ12(u|X, ν) in 

Eq. (2) and λ12(u|X) with λ12(u|X,V) in Eq. (3).

4.3 Landmark models

Motivated by the derivations in Section 3 and based on the equations in Section 2.2, we fit 

the landmark models (LM1), (LM2), (LM3), and (LM4) given in Table 2 to the simulated 

data, where β(τ) = β0 + β1τ + β2τ2, θ(τ) = θ1τ + θ2τ2, ω(s) = ω1s + ω2s2.

For estimation, under the super dataset structuring, the τ’s in (LM1–LM4) correspond to the 

chosen grid of landmark (prediction) times. Under the longitudinal data structuring, only 

(LM2), (LM3), and (LM4) apply, and the τ’s represent the inspection times. The landmark 

datasets are created using the dynpred package in R (Putter, 2015). In (LM1) we fit a simple 

Cox model with a different baseline hazard for each τ. Thus, this approach can only be 

applied when we prespecify the landmark times and construct the super dataset based on 

these landmark times. In (LM2), we still fit a simple Cox model, but parameterize the 

baseline hazard to depend smoothly on τ, resulting in decreased model flexibility but 

allowing us to fit the model to our longitudinal dataset. In (LM3), we propose a model that 

allows for non-proportional hazards by including the covariates ω(s)Z(τ) that are a function 

of s = t − τ, to accommodate time-varying effects of our covariate process. In (LM4), we 

extend the Cox model to include both β(τ) and ω(t − τ), since in Section 3 we showed that 

under the illness-death model the form for the covariate effects for the Cox regression model 

in the landmark framework was a function of both s and τ.
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Under the semi-Markov model for generating data, modeling complications arise due to the 

change in time scale between the transitions. Thus, for simplicity, we can incorporate the 

dependency of transition on the observed illness time, V*, by including it as a covariate in 

the landmark models. Thus, we modify the models (LM1–LM4) to be conditional on V* 

with parameter γ, and fit the models (LSM1), (LSM2), (LSM3), and (LSM4) given in Table 

2.

After obtaining the estimates from these parameterizations (β̂, θ̂, ζ̂, ω̂, γ̂), we compute the 

dynamic predictions of death within a window of s years at the prespecified landmark times, 

τl, using the following equation

Pr(T ≤ τl + s |T > τl, Z(τl), X, V) = 1 − exp  −
τl

τl + s
h(u |Z(τl), X, V , β, θ , ω, ζ , γ )du

In addition to the basic scenario of a single baseline covariate, we also evaluated the 

performance of landmark models when the baseline covariate vector varies by transition. We 

generate data with two binary baseline covariates, X1 that has a stronger effect on death in ill 

subjects [α01,1 = α02,1 = 0.5, α12,1 = 2] and X2, which has no effect on death [α01,2 = 1, 

α02,2 = α12,2 = 0]. We fit the joint models (MM) and (MMCox) with the covariates X1 and 

X2. We modify ζX in models (LM1–LM4) to ζ′X where ζ = (ζ1, ζ2) and X = (X1,X2) are 

the parameter and baseline covariate vectors, respectively. We also fit the additional models 

(LMInt2), (LMInt3), and (LMInt4), given in Table 2, that include an interaction term with 

illness status and parameter vector ϕ = (ϕ1, ϕ2).

4.4 Performance comparison metrics

The dynamic predictions produced at the sequence of landmark times are compared to the 

true death probabilities. These are obtained by using the true shape and scale parameters to 

get the true transition intensities and then using numerical integration to compute the true 

death probability within window s from Eqs. (2) and (3), replacing λ12(u|X) with λ12(u|V*, 

X) when generating under the semi-Markov model. For each landmark time, we compute the 

bias and variance of the dynamic predictions under the landmark approaches and joint 

model.

To assess the discrimination and calibration of these dynamic predictions, we use the 

dynamic analogues of weighted area under the curve (AUC) and Brier score that account for 

censored data, denoted AUC(τ, s) and BS(τ, s), respectively, for landmark time τ and fixed 

prediction window s (Blanche et al., 2015). Since BS depends on the cumulative incidence 

of death in (τ, τ + s], we used a standardized version that results in an R2-type measure that 

compares how well the predictions perform compared to a null model that assumes that all 

subjects have the same predicted risk of death regardless of subject-specific information, 

BS0(τ, s). We denote this scaled measure R2(τ, s) = 1 − BS(τ, s)/BS0(τ, s).

To make comparisons between the different models, we compute AUC and R2 using the 

prediction probabilities from the true models, denoted AUCTrue and RTrue
2 , respectively. We 
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then report the relative measures ΔAUC = AUCTrue − AUC and ΔR2 = RTrue
2 − R2 for each of 

the models, with a higher value indicating better performance.

For cross-validation, in each simulation all of the described models were fit to a training 

dataset, created by randomly selecting 4/5 of the simulated individuals. The remaining 1/5 

individuals were treated as the validation dataset, from which predicted conditional death 

probabilities within the window (τ, τ + s] were obtained for those still alive at time τ.

4.5 Simulation results

Figure 2 compares the performance of the landmark model (LM1) and the joint model (MM) 

under a Markov assumption with a single baseline covariate for the various prediction 

windows, s = 1, 3, 5. The joint model performs better than the landmark model across all of 

the prediction windows in terms of all of the considered metrics. For Z = 0, as the prediction 

window increases, the bias and variance of the joint model increases, with the reverse effect 

for Z = 1. There is no pattern of performance for the landmark model (LM1) across s. 

However, within each prediction window, the relationship between the performance of the 

different landmark models was consistent. Thus, we present the remaining simulation results 

for a single prediction window, s = 3. As well, we will focus on Z = 1 for reporting the bias 

and variance since the absolute bias of the models is higher than for Z = 0.

We compare the landmark and joint models in Fig. 3, which depicts the performance of the 

models for Z = 1, X = 1, s = 3 for a continuously observed marker. Across all the landmark 

times, the joint models perform the best in terms of bias, variance, ΔAUC and ΔR2, and thus 

give more accurate predictions than the landmark models. Within the joint models, the semi-

parametric model (MMCox) performs almost as well as the parametric model under which 

the data was generated, (MM), and both outperform the landmark models, which can have 

high absolute bias. In comparing the landmark models, model (LM3), which includes time-

varying effects, has the lowest variance, but has the highest bias for early landmark times. 

The bias for model (LM3) decreases with increasing landmark time, while it increases for 

the other landmark models. Model (LM4), which incorporates both landmark and residual 

time, performed similarly to the simpler landmark models (LM1) and (LM2). All the 

landmark models had similar ΔAUC and ΔR2. Thus, incorporating additional flexibility into 

the landmark models did not translate into less deviation from the true predicted 

probabilities or substantially better predictive performance. Due to their similar performance 

to (LM4), for the remaining figures we omit the results of (LM1) and (LM2).

In Fig. 4, we compare the different methods of data structuring. When the marker is 

continuously observed there is more information available than when the process is observed 

at inspection times, and thus performance is better across all the metrics. Within the 

inspection times simulations, with the exception of the bias for the landmark model with 

nonproportional hazards, the longitudinal dataset outperformed the super dataset across all 

four performance metrics for all the landmark models. Since this relationship persisted in 

our simulation results, and it is unlikely that markers are observed continuously in practice, 

we will only present the results from the “longitudinal dataset, inspection times marker 

measurement” scenarios in the rest of our comparisons.
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Figure 5 shows the results from models that condition on observed illness time applied to 

data generated from a Markov illness-death model. Among the joint models, parametric 

Markov model (MM) and semi-parametric (MMCox) had similar performance. The joint 

models that condition on V*, (MSM) and (MSMCox), had nearly identical performance to 

their corresponding Markov models, and still have better performance metrics than the 

landmark models. The semi-Markov model (SMM) had almost identical predictive 

performance to (MM), and had similar bias to the other joint models and the lowest variance 

for early landmark times. The performance of the landmark models (LSM3) and (LSM4) did 

not significantly change by conditioning on V*. Thus, when simulating under a Markov 

assumption, conditioning on observed illness does not affect model performance.

In Fig. 6, we fit these same models to data generated under a semi-Markov illness-death 

model. The predicted probabilities for determining the bias and variance were computed 

given V = 2τ/3, for landmark time τ. The results were very similar to those in Fig. 5. The 

(SMM) model performed the best, with the models that account for transition time 

performing marginally better than their counterparts, but with a greater distinction than in 

Fig. 5. Since the gains are minimal, but existent, when conditioning on the observed illness 

time in our particular situation, there is an indication that these models will outperform the 

Markov models in other simulation scenarios.

Finally, we consider the situation where we simulate two baseline covariates with different 

effects on each transition. From Fig. 7, we see that by including the interaction term XZ(τ), 

the performance of the landmark models is on par with the joint models in terms of bias. The 

landmark models with the interaction term have lower variance, better ΔR2, and similar 

ΔAUC than those without the interaction. Thus, including an interaction term in the 

landmark Cox model captures the effect of baseline covariate vectors that differ by transition 

better than a linear function of X and provides a much better approximation to a joint model.

Overall, based on the set of scenarios considered, the simulation results show that joint 

modeling gives better performance than landmarking. The difference is generally quite 

small, with the exception of bias for which the landmarking approach can have high absolute 

bias. The results suggest that more general landmark models than the simplest (LM1) can 

improve performance and that given inspection time data, using a longitudinal structure for 

the landmark dataset produces better predictions than a super dataset. The results also 

indicate that misspecification of the joint model did not affect predictive performance.

5 Applications to real data

In this section, we apply landmarking and joint models to data from two different studies 

that can be modeled with an illness-death model and have information collected beyond 

baseline on a binary time-dependent covariate. The large PAQUID study on cognitive aging 

provides interval-censored inspection time data for transition time to the illness state and 

allows us to use cross-validation to compare the predictive performance of the methods 

under longitudinal and super data structures. We also apply the models to data from a 

prostate cancer study with continuously observed time to clinical failure to compare the 

coefficient interpretations and dynamic predictions produced under the two approaches.
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5.1 PAQUID study of cognitive aging

We evaluate the predictive abilities of landmark and joint models using data collected by the 

PAQUID study. The Personnes Agées QUID (PAQUID) Study is a large, prospective cohort 

study of cognitive and physical aging (Dartigues et al., 1992). We use data from the R 

package SmoothHazard (Touraine et al., 2014) on a random subset of 1000 subjects from 

the original study, which consisted of 3777 individuals aged 65 years and older living in 

southwestern France. Subjects had 10 visits over 20 years at which they were assessed for 

dementia. The longitudinal dataset was created using interval-censored observations and the 

approximate visit times 1, 3, 5, 8, 10, 13, 15, 17, 20 years from the initial visit.

There were 186 subjects that were diagnosed with dementia. Of the 724 deaths, 597 died 

without a dementia diagnosis and 127 died after diagnosis. We model the data as an illness-

death model with the states, “alive without dementia”, “alive with dementia”, and “dead”. 

The baseline covariates are age at study entry (median 74; IQR 69–79), gender (female: 

58%, male: 42%), and primary school diploma status (with diploma: 76%, without diploma: 

24%).

This data represents the typical dataset for which there is interest in determining the 

probability of death at a given landmark time beyond baseline of study enrollment. It 

involves a high-risk group of individuals for which there is future information, that is 

dementia diagnosis, that can affect their risk of death and thus must be incorporated into 

prediction models to produce accurate and updated prediction probabilities. This study also 

involves diagnosis updates at inspection times, which allows us to evaluate the landmark 

models by structuring the data as both a super dataset and a longitudinal dataset. The large 

size of the dataset allows us to perform cross-validation to prevent overfitting when 

assessing model performance.

We fit both landmark and joint models as in the simulation study. The subject-specific 

predictions were computed at the landmark times τ = 0, 1, 3, 5, 8, 10 years for a prediction 

window of s = 3, 5, 7 years. The estimates for assessing predictive accuracy were obtained 

by performing cross-validation based on repeated random subsampling. The data were split 

into 2/3 training data, to which the models were fit, and AUC and R2 were computed for 

predictions from the remaining 1/3 validation data. This procedure was repeated 500 times. 

We present the averaged dynamic AUC and R2 values under the super and longitudinal data 

structure for s = 5, since the other prediction windows showed similar patterns.

Fitting the model (MM) to the full data, we find that the baseline covariates of diploma 

status and gender have different effects for each of the transitions. Having a diploma has a 

significant effect on reducing risk of developing illness (0 → 1), and males have increased 

risk of death (1 → 2, 0 → 2). Thus, we consider landmark models with an interaction term. 

The landmark models performed similarly so we only present the results for models (LM3) 

and (LMInt3). In Fig. 8, we evaluate the inclusion of an interaction and compare the 

different data structures. The model with the interaction has better predictive performance 

under both structures, with the longitudinal dataset having higher AUC at earlier time points. 

We investigate the performance of joint Markov and semi-Markov models under the 

longitudinal data structuring in Fig. 9 and notice that the landmarking models have higher 
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AUCat earlier landmark times, but that joint models (MM) and (MMCox) perform 

consistently better in terms of R2. The joint semi-Markov model, (SMM), performs similarly 

to the other joint models in terms of both AUC and R2.

Based on this real data analysis, the predictions had similar accuracy under the different data 

structures. Extensions to the landmark models that incorporate s and τ as covariates did not 

increase flexibility enough to produce significant improvement in model performance. 

However, the inclusion of an interaction between baseline covariates and Z(τ) produces 

more accurate predictions. The joint models had marginally better or equivalent performance 

at the landmark times than the landmark models. The models that conditioned on transition 

time as a covariate did not provide a better fit; however, the semi-Markov model (SMM) 

performed similarly to the Markov models, and may outperform these models in a situation 

where the Markov assumption does not hold.

5.2 Prostate cancer study

We present the analysis results and dynamic predictions obtained from fitting the landmark 

and joint models to data from a prostate cancer study conducted at the University of 

Michigan. The dataset is composed of 745 patients with clinically localized prostate cancer 

who were treated with radiation therapy. We measure time from start of treatment, 

considering metastatic clinical failure (CF) as a time-dependent binary covariate. The states 

of our illness-death model are “alive without clinical failure”, “alive with clinical failure”, 

and “dead”. The median follow-up time was 9 years, and 52 patients experienced clinical 

failure. Out of 188 deaths, 154 died before and 34 died after experiencing clinical failure. 

The pretreatment prognostic factors measured at baseline are age (median 69; IQR 63–74), 

log(PSA + 1) (PSA ng/ml; median 8; IQR 5–12), Gleason score treated as a continuous 

covariate with a score of 7=“3+4” and 7.5=“4+3” (median 7; IQR 6–7.5), prostate cancer 

stage (T1: 57%, T2–T3: 43%), and comorbidities (0: 55%, 1–2: 37%, ≥3: 8%).

We use landmark and joint models to obtain predicted probabilities of death within 5 years 

for landmark times τ = 0, 1,…, 8 years. We assume that the marker is continuously 

observed, and structure the data as a super data set. The coefficient estimates from fitting the 

joint models are given in Table 3. The parametric and semi-parametric Markov models 

(MM) and (MMCox), respectively, have similar estimates for the different transitions. The 

(MSM) model incorporates clinical failure time as a covariate for the 1 → 2 transition, for 

which the estimate is not significantly different than 0 and thus the Markov assumption does 

not appear to be violated. This is further demonstrated by the estimates for the 1 → 2 

transition in (SMM), which are very similar to the estimates from the (MM) model. The 

effects of the baseline covariates vary across the different transitions. Increased age 

significantly increases risk of death (0 → 1, 0 → 2), higher PSA, Gleason score, and Stage 

T2–T3 indicate increased risk of developing clinical failure (0 → 1), and among those with 

clinical failure, higher Gleason score increases risk of death and those with 1–2 

comorbidities have decreased risk of death (1 → 2).

We present the results from fitting the landmark models in Table 4. In (LM3) we 

accommodate nonproportional hazards by considering clinical failure as a time-varying 

covariate. The effect of clinical failure decreases as the landmark time at which the 
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prediction is made increases. (LM4), which (LM2) and (LM3) are nested within, has the 

highest log-likelihood of the models and the lowest AIC, indicating better fit. Since the joint 

models show that the baseline covariates have differential effects on risk of death before or 

after clinical failure, we present the results from (LMInt4), a model with interaction terms 

between clinical failure and the baseline covariates. The log-likelihood for (LMInt4) is 

higher than model (LM4) and it has a lower AIC even with the penalization for including six 

more covariates. Increased age, PSA, Gleason score, and number of comorbidities were all 

significantly associated with increased risk of death. The only significant interaction was 

with comorbidities, where those with clinical failure had a significantly decreased risk of 

death if they had 1–2 comborbidities compared to no comorbidities, as was seen in the joint 

models. The coefficients for the baseline covariates for the landmark models do not always 

properly capture the effect of the baseline covariates on risk. For example, the coefficient for 

Gleason score in (LM4) is averaged over those with and without clinical failure and thus, is 

much lower than the effect on the 1 → 2 transition but much higher than the effect for the 0 

→ 2 transition in the joint models. As well, the effect of stage, which is significant for the 0 

→ 1 transition in the joint models but has a small effect on the transitions to death, is not 

properly reflected by (LMInt4), where the effect of stage on risk of death is quite high for 

those who experience clinical failure.

In Fig. 10, we present the predicted probabilities from the landmark and joint models, some 

of which have been omitted due to similar results, for two individuals in the dataset. The 

pattern of the predictive probabilities for these specific patients is similar to that of the other 

patients in the dataset with the same final clinical failure status and who experience death. 

Individual A has increased risk of death due to his high PSA and number of comorbidities, 

thus his predicted probability of death becomes quite high as landmark time increases and he 

dies before experiencing clinical failure. We see that for this patient, the predicted 

probabilities from the landmark models and the semi-parametric Markov model (MMCox) 

track together and the predicted probabilities for all the models are similar. Individual B is 

young, but has other baseline variables that characterize him as high risk. Their effect is 

particularly seen after the patient experiences clinical failure, after which his predicted 

probability of death greatly increases and he dies within 2 years. The predictions from the 

joint models (MM) and (SMM) are very similar both before and after clinical failure. Prior 

to clinical failure, the prediction probabilities from the landmark models are lower than 

those from the joint models by an amount that is not insignificant. After clinical failure, the 

landmark model without interactions (LM4) does not perform well for predicting death. 

Thus, the landmark models require interactions between the time-dependent binary covariate 

and the baseline covariates to capture the differential effects of the covariates on the different 

transitions.

6 Discussion

Models that can incorporate updated time-dependent marker information to revise survival 

predictions are vital for identifying high-risk subjects and making timely clinical decisions. 

In this paper, we have compared the theoretical justification and predictive capabilities of 

two such dynamic prediction approaches: joint modeling and landmarking.
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We contribute to the existing literature that compares these two approaches by investigating 

them under an illness-death model. We focused on a survival model with a binary time-

dependent covariate, which is the simplest example of a joint model, to demonstrate that 

even in this basic situation a Cox model in the landmark framework is not theoretically 

valid. With more complicated forms of the marker process, we can expect that the 

discrepancies between the performance of joint models and landmarking will be even 

greater, and that the inclusion of flexible forms in landmark models, as were suggested in 

this paper, and better informed imputations of the marker value at landmark times, will be 

even more important. In our simulation study, we demonstrate that joint modeling produces 

more accurate predictions than landmarking. We simulate data under a joint model since the 

landmark model provides an approach to describe the data, but is not a data-generating 

model. Thus, to provide a fair comparison we also consider misspecified models within the 

joint modeling framework, particularly a semi-Markov model and a Markov model with a 

nonsmooth baseline hazard. In addition, we compared the performance of the approaches to 

real data from the PAQUID study and concluded that the joint models performed marginally 

better than the simple landmark models.

Joint modeling and landmarking have different approaches to predicting the future for a 

subject. Joint modeling achieves this by directly modeling the longitudinal variable and 

integrating over the possible paths the variable might take, and thus uses the possibly strong 

relationship between the longitudinal variable and the event of interest to make the 

prediction. Landmarking is an approach which, in essence, obtains the empirical distribution 

of future event times among people similar to the person of interest. Estimation of this 

empirical distribution is achieved through a descriptive model of the residual times based on 

a finite number of parameters. Since the residual time distribution is determined by the 

stochastic process for the longitudinal variable, landmarking does depend implicitly on the 

stochastic process. The data provides information about the stochastic process of the 

longitudinal variable, which is exploited in the joint modeling approach but ignored in the 

landmarking approach. Using data from the prostate cancer study, we demonstrated that the 

simple landmark models do not properly capture the effects of the baseline covariates, 

averaging their effect on predictive probability over both individuals who have experienced 

“illness” and those who have not. The joint models compute the predicted probability by 

considering all possible paths through the illness-death model, allowing the effect of the 

baseline covariates to vary depending on the state in the process. The use of more flexible 

landmark models and interactions between the baseline covariates and the time-dependent 

“illness” indicator helps to mitigate this issue.

While the landmarking approach is appealing because it does not require specification of a 

longitudinal model, the derivations in this paper suggest that simple forms for the landmark 

models are unlikely to fit well, and that landmark models may need to include 

nonproportional hazards and interactions. Thus, just as with joint models, considerable effort 

may be needed to obtain a good fitting model. One difference between joint models and 

landmarking is in setting up the data. For joint models, the likelihood is derived from the 

observed data and there are no choices to make. With landmarking there are choices to make 

that will change the predictions, which include the number and values of the landmark times, 

what time horizon to use when administratively censoring the data in the super dataset, and 
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how to impute Z(τ). To avoid using LOCF, we proposed a longitudinal data structure based 

on inspection times and demonstrated that in our situation it performed better than, or as 

well as, the super dataset proposed by van Houwelingen and Putter (2011). Alternatively, we 

can specify a longitudinal model for Z and impute a sensible value for Z(τ) for each subject, 

as was done by Maziarz et al. (2016). This approach has some similarity to the two-stage 

procedure of fitting a joint model in Bycott and Taylor (1998), which is known to have small 

bias and be more computationally convenient than a full joint model likelihood approach. 

They accomplish this by specifying the longitudinal marker process as a random effects 

model plus stochastic process and using the fit of this model to obtain less variable imputes 

of Z(τ) for each subject, which are then used as covariates in a time-varying Cox model.

In our opinion, joint modeling provides a more unified and principled approach that also 

satisfies the consistency criteria. It could even be enhanced by the incorporation of external 

information. If the stochastic process can be well characterized, then we might expect the 

predictions to be more accurate, including for longer prediction windows. In situations 

where the stochastic process can be well estimated from the available data, joint modeling is 

likely to perform better. In situations where it is harder to estimate, for example, sparse 

longitudinal data or many longitudinal variables, then the empirical performance of 

landmarking might provide a good enough approximation.
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Figure 1. 
An irreversible illness-death model depicting three states, 0 (Healthy), 1 (Illness), and 2 

(Dead), and the transition intensities between state j and state k (λjk(t|X)), where X is a 

vector of baseline covariates that can have transition-specific effects.
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Figure 2. 
Simulation estimates for bias (upper-left), variance (upper-right), ΔAUC (bottom-left), and 

ΔR2 (bottom-right) for predicted probability P(T ≤ τ + s|T > τ,Z(τ),X) for s = 1, 3, 5-year 

prediction windows from joint model (MM) and landmark model (LM1), under a Markov 

illness-death model with a single baseline covariate and continuously observed marker 

measurement.
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Figure 3. 
Simulation estimates for bias (upper-left) and variance (upper-right) for Z(τ) = 1, X = 1, 

ΔAUC(bottom-left), and ΔR2 (bottom-right) for predicted probability P(T ≤ τ + 3|T > 

τ,Z(τ),X) from the joint models (MM), (MMCox), and landmark models (LM1–LM4), 

under a Markov illness-death model with a single baseline covariate and continuously 

observed marker measurement.
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Figure 4. 
Simulation estimates for bias (upper-left) and variance (upper-right) for Z(τ) = 1, X = 1, 

ΔAUC(bottom-left), and ΔR2 (bottom-right) for predicted probability P(T ≤ τ + 3|T > 

τ,Z(τ),X) from the joint model (MM) and landmark models (LM3), (LM4) fit to data 

structured as a super or longitudinal dataset, under a Markov illness-death model with a 

single baseline covariate and continuously observed (CO) or inspection time (IT) marker 

measurement.
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Figure 5. 
Simulation estimates for bias (upper-left) and variance (upper-right) for Z(τ) = 1,X = 1, 

ΔAUC(bottom-left), and ΔR2 (bottom-right) for predicted probability P(T ≤ τ + 3|T > 

τ,Z(τ),X) from joint models (MM), (MMCox), (MSM), (MSMCox), (SMM), and landmark 

models (LSM3), (LSM4) fit to data structured as a longitudinal dataset, under a Markov 

illness-death model with a single baseline covariate and inspection time marker 

measurement.
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Figure 6. 
Simulation estimates for bias (upper-left) and variance (upper-right) for Z(τ) = 1,X = 1, 

ΔAUC(bottom-left), and ΔR2 (bottom-right) for predicted probability P(T ≤ τ + 3|T > 

τ,Z(τ),X) from joint models (MM), (MMCox), (MSM), (MSMCox), (SMM), and landmark 

models (LSM3), (LSM4) fit to data structured as a longitudinal dataset, under a semi-

Markov illness-death model with a single baseline covariate and inspection time marker 

measurement.
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Figure 7. 
Simulation estimates for bias (upper-left) and variance (upper-right) for Z(τ) = 1,X1 = 1,X2 

= 1, ΔAUC (bottom-left), and ΔR2 (bottom-right) for predicted probability P(T ≤ τ + 3|T > 

τ,Z(τ),X) from joint models (MM), (MMCox), and landmark models (LM3), (LM4), 

(LMInt3), (LMInt4) fit to data structured as a longitudinal dataset, under a Markov illness-

death model with two baseline covariates and inspection time marker measurement.

Suresh et al. Page 28

Biom J. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
PAQUID data estimates for the cross-validated prediction accuracy measure AUC (left) and 

R2 (right) for predicted probability P(T ≤ τ + 5|T > τ,Z(τ),X) from landmark models (LM3), 

(LMInt3), fit to inspection time (IT) marker measurement data structured as a longitudinal or 

super data set.
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Figure 9. 
PAQUID data estimates for the cross-validated prediction accuracy measure AUC(left) and 

R2 (right) for predicted probability P(T ≤ τ + 5|T > τ,Z(τ),X) for joint models (MM), 

(MMCox), (SMM), and landmark models (LM3), (LMInt3), fit to data structured as a 

longitudinal dataset.
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Figure 10. 
Predicted probability of death within 5 years, P(T ≤ τ + 5|T > τ,Z(τ),X) for two individuals 

in the prostate cancer dataset. Individual A (left) is 60 years old at baseline, with PSA 19.7 

ng/mL, Gleason score 7.5 (“4+3”), T1 Stage, 6 comorbidities, and does not experience 

clinical failure but dies 10 years from baseline. Individual B (right) is 54 years old at 

baseline, with PSA 16 ng/mL, Gleason score 9, T2 Stage, zero comorbidities, and 

experiences clinical failure at time 3 before dying at time 4.6 years from baseline. Black 

dashed line indicates time of death.
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Table 1

Joint models fit in simulation study.

Model Baseline hazard Transition intensity ∀ j → k Label

Markov λjk(t|X Parametric
λ jk, 0
W (t)exp{α jkX}

(MM)

Semi-parametric
λ jk, 0
Cox (t)exp{α jkX}

(MMCox)

Markov, V*λjk(t|X,V*) Parametric
λ jk, 0
W (t)exp{α jkX + γV∗1( j = 1, k = 2)}

(MSM)

Semi-parametric
λ jk, 0
Cox (t) exp{α jkX + γV∗1( j = 1, k = 2)}

(MSMCox)

Semi-Markov λjk(t|X,V*) Parametric
λ jk, 0
W (t)(t − V∗1( j = 1, k = 2)) exp{α jkX}

(SMM)
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Table 2

Landmark models fit in simulation study.

Model Hazard Label2

LM1 h0τ (t)exp{β(τ)Z(τ) + ζX} (LM1)

h(t|τ,Z(τ), X) h0(t) exp{θ(τ) + β(τ)Z(τ) + ζX} (LM2)

h0(t) exp{θ(τ) + β0Z(τ) + ω(t − τ)Z(τ) + ζX} (LM3)

h0(t) exp{θ(τ) + β(τ)Z(τ) + ω(t − τ)Z(τ) + ζX} (LM4)

LM, V* h0τ(t) exp{β(τ)Z(τ) + γV*Z(τ) + ζX} (LSM1)

h(t|τ, Z(τ), X,V* h0(t) exp{θ(τ) + β(τ)Z(τ) + γV*Z(τ) + ζX} (LSM2)

h0(t) exp{θ(τ) + β0Z(τ) + ω(t − τ)Z(τ) + γV*Z(τ) + ζX} (LSM3)

h0(t) exp{θ(τ) + β(τ)Z(τ) + ω(t − τ)Z(τ) + γV*Z(τ) + ζX} (LSM4)

LM, Interaction h0(t) exp{θ(τ) + β(τ)Z(τ) + ζ′X + ϕ′XZ(τ)} (LMInt2)

h(t|τ, Z(τ), X) h0(t) exp{θ(τ) + β0Z(τ) + ω(t − τ)Z(τ) + ζ′X + ϕ′XZ(τ)} (LMInt3)

h0(t) exp{θ(τ) + β(τ)Z(τ) + ω(t − τ)Z(τ) + ζ′X + ϕ′XZ(τ)} (LMInt4)

1
LM: landmark model;

2
(*1): Super model; (*2): Extended super model; (*3): Extended super model, nonproportional hazards; (*4): Extended super model, non-

proportional hazards, covariate effects are a function of landmark time
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