
Retinal ischemia is an important pathomechanism within 
various retinal degenerative diseases, such as glaucoma, 
diabetic retinopathy, and retinal artery occlusion [1]. Glau-
coma, characterized by retinal ganglion cell (RGC) death, 
is a global disease and can lead to irreversible blindness 
[2]. Although elevated intraocular pressure (IOP) is a major 
causative factor in glaucoma, additional factors are involved 
in its pathogenesis [3]. Other than lowering IOP, novel strate-
gies aiming to inhibit glaucomatous neurodegeneration are 
important [4]. Therapies that delay or halt the loss of RGCs 
have been proved to be effective in preserving the vision of 
patients with glaucoma [5]. During the progressive loss of 
RGCs, structural and functional changes in the retina have 
been identified in previous studies [6,7]. The ocular hyperten-
sion-induced retinal ischemic-reperfusion injury model has 
been frequently used to investigate the pathogenesis of RGC 
death and explore new neuroprotective therapies to inhibit the 
ischemic damage of glaucoma [8,9].

Minocycline (MC) has been found to have neuroprotec-
tive effects in diseases of the central nervous system (CNS) 

[10,11], such as middle cerebral artery occlusion [12,13], 
Alzheimer disease [14], Parkinson disease [15], oxygen–
glucose deprivation [16], and Huntington’s disease [17]. 
Growing evidence also showed that minocycline likely has a 
neurologic effect in many retinal diseases [18,19]. A study of 
retinal ischemia-reperfusion injury reported that minocycline 
exerted a neuroprotective effect through preventing retinal 
inflammation and vascular permeability [20]. Minocycline 
has also been used as an antioxidant agent to prevent retinal 
disease [21,22]; another important function of minocycline 
is suppression of microglial activation in neurologic diseases 
[23-25]. These studies support the idea that minocycline has 
a neuroprotective role. However, it was reported that minocy-
cline could exacerbate visual dysfunction in a mouse model 
of retinopathy of prematurity (ROP) [26]. In short, the role of 
minocycline in the treatment of neurologic retinal diseases is 
contradictory with the mechanism still unknown. Microglial 
cells are a major type of immune cells in the CNS and have 
been thought to be involved in the pathogenesis of glaucoma 
[27,28]. Activated microglia are inflammatory cells and 
are detrimental to the function of the CNS [29]. It has been 
reported that microglial cells have diverse phenotypes and 
can rapidly transform into the reactive state in response to 
various insults [30]. A recent study showed that MC could 
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reduce photoreceptor damage by suppressing the activation of 
microglia in retinitis pigmentosa [23]. Moreover, it has been 
reported that there is a loss of photoreceptors in glaucoma 
[31,32]. However, no study has investigated the functional 
change in RGCs under the treatment of MC in the ischemic 
retina. In the present study, we used molecular biology and 
visual function tests to determine whether MC could prevent 
the degeneration of RGCs in retinal ischemic insult and 
confirmed that MC is a promising therapeutic agent in models 
of neurologic ischemic damage.

METHODS

Animals: C57BL/6 male mice (8–12 weeks, weight approxi-
mately 20–25 g; purchased from Guangdong Medical Labo-
ratory Animal Center) were used in the study. They were 
housed in a 12 h:12 h light-dark cycle and allowed free access 
to food and water. All experimental designs and protocols 
were conducted according to the recommendations of the 
National Institutes of Health Guide for the Care and Use of 
Laboratory Animals and were approved by the Jinan Univer-
sity Institutional Animal Care and Use Committee.

Retinal ischemia-reperfusion injury model: Mice were anes-
thetized with an intraperitoneal injection of 2.5% tribromo-
ethanol. Before the eye surgery, the pupil was dilated with 
one drop of 0.5% tropicamide for 5 min, and then the cornea 
was desensitized with one drop of 0.4% oxybuprocaine 
hydrochloride eye drops. The ischemia-reperfusion (I/R) 
injury model was induced by inserting a 33 G needle into the 
anterior chamber of the left eye. A reservoir of normal saline 
(of 0.9%) was linked to the needle and hung up to maintain 
the IOP at 90 mmHg for 60 min (monitored with TonoLab, 
U.S. Pat. 6,093,147). After the surgery, 0.3% tobramycin was 
administered in the conjunctival sac to prevent inflammation.

Drug administration: The mice were randomly divided into 
four experimental groups: the control group, the I/R injury 
+ normal saline (NS) group, the I/R injury + low-dose MC 
group, and the I/R injury + high-dose MC group. First, to test 
the effective low dosage, five animals in each group received 
10, 20, or 30 mg/kg MC, respectively, via intravenous injec-
tion. The RGCs were counted to estimate the effect of MC. 
Further, two groups of five animals received either 80 or 
100 mg/kg MC intravenously to obtain the effectiveness of 
high-dose MC. Finally, based on the results, the low dose 
of 20 mg/kg MC was confirmed and administered via the 
caudal vein 5 min after the operation and once per day until 
the animals were euthanized with intraperitoneal injection 
of 2.5% tribromoethanol anesthesia. while 100 mg/kg MC 
was used for the high-dose group as previously reported [33]. 
The mice received a volume of 0.1 ml solution of MC per 10 g 

bodyweight. Mice in the I/R injury + NS group were treated 
with an equal volume of NS.

Histology: Mice were anaesthetized using 2.5% tribromo-
ethanol. Perfusion–fixation was performed with 0.9% NS 
until bleed out, followed by 4% paraformaldehyde in PBS 
(0.1 M; 8.6 g Nacl, 2.68 g NaH2PO4, 11.51 g Na2HPO4, pH 
7.4) until the tissues stiffened. The enucleated eyeball cup 
was trimmed and immediately fixed in 4% paraformaldehyde 
for 1 day at 4 °C, followed by dehydration with 30% sucrose 
solution overnight, and embedded in a compound Tissue 
Freezing Medium (SAKURA4583, Tissue-Tek OCT, 
American; Torrance, CA) at –20 °C. The eye tissues were 
cut horizontally at 10 µm thick using a microtome (RM2235, 
Leica, Wetzlar, Germany). Four nonconsecutive sections 
through the optic nerve were used from each mouse under 
the same conditions. Hematoxylin and eosin (H&E) staining 
was used on the retinal sections to evaluate the inner retinal 
layer (IRL), which was measured from the inner limiting 
membrane to the inner nuclear layer. Images were taken 
using a Leica light microscope. For statistical analysis, retinal 
thickness was measured at the middle retina at 1.1 mm on 
both sides from the optic nerve head [11].

Immunofluorescence: First, flat-mounted retinas were fixed 
in 4% paraformaldehyde overnight. The orientation of each 
eye was carefully marked with a nick on the nasal side during 
dissection. Tissues for immunofluorescence were then rinsed 
with PBS, followed by blocking in PBS with 0.3% Triton 
X-100 and 10% goat serum for 1 h at room temperature. 
They were then incubated with primary antibody diluted in 
blocking solution overnight at 4 °C. The primary antibodies 
used in this study included goat anti-Brn3a (1:400; Santa Cruz 
Biotechnology, Santa Cruz, CA) and rabbit anti-Iba1 (1:600; 
Wako, Osaka, Japan) [34,35]. After rinsing in PBS, the retinas 
were incubated with secondary antibodies at room tempera-
ture for 3 h, followed by rinsing again with PBS. After that, 
the retinal flat-mounts were mounted on the slide and sealed 
with an antiquenching reagent and the coverslip. Finally, the 
retinas were observed, and photographs were taken using a 
fluorescence microscope (DM6000B, Leica).

Optokinetic test: The optokinetic test (OKT) was performed 
to assess the visual acuity of the animals [36]. Briefly, each 
animal was placed freely on a platform in the center of a 
chamber. The observer operated the software on a desktop 
computer, which automatically changed the gratings until a 
reliable threshold was reached. The whole experiment was 
conducted in a quiet and dark room maintained at a suitable 
temperature and low noise level to achieve the best responses. 
In this study, the OKT was conducted at day 4 after the I/R 
insult. The spatial frequencies tested in the study were 0.05, 
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0.06, 0.07, 0.1, 0.15, 0.2, 0.25, 0.30, and 0.35 cycles per degree 
(cpd). Clockwise drifting grates were used to determine the 
visual function of the left eye, and counterclockwise drifting 
grates were used for the right eye. The observer judged “Yes” 
or “No” depending on whether the animal’s neck moved along 
with the drifting scene. The final OKT score was obtained as 
the highest frequency of grating record which was just before 
the observer selected the first “No” [37,38].

Electroretinography: Electroretinography (ERG) is used 
to evaluate the electrical activities and function of signals 
in different types of retinal cells. In this study, ERG was 
performed 7 days after the I/R insult using the protocols 
described previously [39-41]. The mice were prepared for 
ERG recording after overnight dark adaption. The animals 
were then anesthetized, and the pupils were dilated, followed 
by lubricating with 1% methylcellulose. Each animal was 
placed on a homeothermic device at 37 °C. Recording elec-
trodes of gold wire loop were placed on the cornea. Two refer-
ence electrodes were inserted into the subdermis between 
the ears, while another electrode inserted into the tail acted 
as a ground. The a-wave, b-wave, and photopic negative 
response (PhNR) were recorded using the Roland Consult 
(Brandenburg, Germany) electrophysiological diagnostic 
system. Light intensities were adjusted as standard luminance 
intensity units in candela seconds per meter squared (cd.s/
m2). Scotopic ERGs were recorded after dark adaptation with 
intensities of 3 cd.s/m2. After that, light adaption under the 
continuous white background of 25 cd.s/m2 was applied for 
10 min to suppress rod-cell photosensitivity, and the PhNR 
was recorded using the white flashes of 3 cd.s/m2. A-waves 
produced by photoreceptors were measured from the base-
line to the first negative peak. B-waves conducted by the ON 
bipolar cells were measured from the trough of the a-wave to 
the subsequent positive peak. The PhNR was derived from 
RGCs and is the negative peak following the b-wave [42].

Statistics: All data were analyzed using the statistical soft-
ware program GraphPad version 5.0 (GraphPad Software, San 
Diego, CA) and were presented as means ± standard error of 
the mean. One-way ANOVA followed by the Newman-Keuls 
multiple comparison test was used for quantitative analysis, 
and the Kruskal–Wallis test followed by Dunn’s multiple 
comparison tests were used for qualitative analysis. A p value 
of less than 0.05 was considered statistically significant. The 
ERG waves were analyzed using RETI-port software (Roland 
Consult) after 50 Hz low-pass filtering was applied.

RESULTS

Low-dose MC reduced RGC loss in the mouse I/R injury 
model: To detect the dose effect of MC, the number of RGCs 
was counted at day 4 post-I/R injury using Brn3a immunos-
taining among the different groups. The RGC numbers were 
averaged from four quadrants of the whole-mounted retina 
by using five grids of 160 × 160 µm2 from the optic disc 
to the border at 500-µm intervals (Figure 1A,B). There was 
no statistically significant difference in the number of RGCs 
between the group that received 10 mg/kg MC (2,332±86.39/
mm2) and the I/R injury + NS group (2,125±99.68/mm2). 
However, a higher number of RGCs was observed in the 
20 mg/kg MC group (2,511±75.17/mm2) and the 30 mg/kg 
MC group (2,569±74.32/mm2), while a lower number was 
observed in the 80 mg/kg MC group (2,069±75.09/mm2) and 
the 100 mg/kg MC group (1,825±79.08/mm2; all groups, n=5). 
Other than the 10 mg/kg MC group and the 80 mg/kg MC 
group, there was a statistically significant difference when 
compared with the I/R injury + NS group (p<0.05). Finally, 
in the experiments, the optimal low dose of MC was 20 mg/
kg, and the lowest harmful high dose of MC was 100 mg/kg 
(Figure 1C).

There was an approximately 33% reduction in the 
number of RGCs in the I/R injury + NS group (Figure 1E, 
n=7) compared with the control group (Figure 1D, n=7; 
2,023±95.24 versus 3,192±99.1/mm2, p<0.001). This detri-
mental effect of I/R injury was markedly alleviated with 
the administration of low-dose MC (2,432±74.73/mm2, 
p<0.01; Figure 1F, n=7) but was aggravated by high-dose 
MC (1,732±82.48/mm2, p<0.05; Figure 1G, n=7). Treatment 
with low-dose MC reduced the loss of RGCs (by 23±2.3%), 
whereas high-dose MC worsened the loss of RGCs (by 
45±2.5%; Figure 1H,I).

The thickness of the IRL was evaluated by using H&E 
staining (Figure 2) on day 7 after the I/R insult. Quantitative 
analysis showed there was a statistically significant differ-
ence in the thickness of the IRL between the control group 
(104±2.40 µm; Figure 2A) and the I/R injury + NS group 
(55±2.2 µm; Figure 2B). The IRL was thicker in the low-dose 
MC group (75±2.2 µm; Figure 2C) compared with the I/R 
injury + NS group, whereas there was no obvious difference 
between the high-dose MC group (54±5.1 µm; Figure 2D) 
and the I/R injury + NS group. Thus, we found that the detri-
mental effect of the I/R insult was alleviated by treatment 
with low-dose MC (20 mg/kg).

Low-dose MC reduced the activation of microglial cells in 
the I/R injury model: The number of microglia was quanti-
fied based on the standard that resting microglial cells have 
small cell bodies and few, thin processes, while activated 
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microglial cells are characterized by enlarged cell bodies with 
numerous hypertrophied processes or amoeboid cell bodies 
[43]. Microglial cells were counted by scanning the z-axis 
across the retinal surface in the ganglion cell layer using a 
20X objective lens. Four to five grids of 160 × 160 µm2 were 
averaged in each quadrant. One observer, who was blinded to 
the experimental group, calculated the number of microglial 
cells under the fluorescence microscope.

After 4 days of I/R insult, microglia were identified 
using anti-Iba1 immunostaining (Figure 3). The numbers of 
activated Iba1-positive cells were statistically significantly 
increased in the retinas from the I/R injury + NS group 
(88.0±4.50/mm2, n=7; Figure 3B) compared with the control 
group (11±2.5/mm2, n=7; Figure 3A). Low-dose MC allevi-
ated microglial activation (53±3.3/mm2, n=7; Figure 3C) 

compared with the I/R injury + NS group. Compared with the 
I/R group, the high-dose MC group statistically significantly 
aggravated microglial activation (106±4.40/mm2, n=7; Figure 
3D). The results revealed a statistically significant reduction 
in microglial activation in the low-dose MC-treated retinas 
compared with the I/R injury + NS group and the high-dose 
MC-treated group.

Low-dose MC improved optokinetic responses: The OKT is 
currently a commonly used tool to assess the visual function 
of animals [44]. Visual stimuli are projected on computer 
monitors so that a virtual cylinder with vertical sine wave 
gratings is drawn by the monitors (Figure 4A,B). The cylinder 
is rotated at 12 degrees per second to elicit each mouse to 
stop moving its body and track the grating (Figure 4C). The 
grating frequency is increased when an observer selects 

Figure 1. Minocycline treatment reduced RGC loss in the I/R injury retina. A: Graphic showing the systemic sampling method used to count 
the retinal ganglion cells (RGCs). B: Whole-mounted retina immunostained with Brn3a antibody. Scale bar = 200 µm. C: The effects of test 
doses of minocycline (MC) on RGCs at day 4 post-ischemic reperfusion (I/R) insult, comparing each dose of MC with the normal saline 
(NS) vehicle group on the number of RGCs using Brn3a immunostaining (n=5). D–G: Photomicrographs showing the mid-peripheral area 
of the retina labeled by Brn3a in the non-I/R injury control group (D), the I/R injury + NS vehicle group (E), the low-dose MC treatment 
group (F), and the high-dose MC treatment group (G). Scale bar = 50 µm. H, I: Histograms showing the percentage of surviving RGCs and 
the loss ratio of the RGCs (n=7). *p<0.05, #p<0.01, **p<0.005.
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“Yes,” and the system uses a simple staircase method until 
the mouse shows no visible reaction to the moving gratings 
(Figure 4D) [45].

Before the I/R insult, there was no difference between 
the eyes, and both exhibited normal acuity (left: 0.350 cpd; 
right: 0.350 cpd) in the OKT performed at noon. The OKT 
responses decreased in the eyes of the I/R injury + NS group 
(0.156±0.014 cpd, n=8) compared with the control group 
(0.350 cpd, n=5) on day 4 following the I/R procedure, while 
the low-dose MC-treated mice (0.218±0.013 cpd, n=8) main-
tained higher responses than the I/R injury + NS mice (Figure 
4E). Meanwhile, the high-dose MC group (0.150±0.013 cpd, 
n=8) showed no discernible difference compared with the I/R 
injury + NS group. The data demonstrated that low-dose MC 
treatment preserved the function of RGCs in the retinas.

MC treatment markedly reversed ERG changes caused by the 
I/R insult: ERG recordings were performed at scotopic 3 cd 
s/m2 and photopic 3 cd s/m2. ERG recordings for each group 
are shown in Figure 5. The a-wave, b-wave, and PhNR were 
recorded (Figure 5A,B). The PhNR amplitudes were reduced 
in the I/R injury + NS eyes (20.40±1.750 μV, n=15) compared 
with those for the control eyes (46.80±2.95 μV, n=15). In 
addition, the PhNR amplitude in the low-dose MC-treated 
eyes (27.76±1.790 μV, n=15) was markedly higher than in the 
I/R injury + NS group. The PhNR amplitude was lowest in 
the high-dose MC group (14.37±1.640 μV, n=15; Figure 5C). 
The amplitudes of the scotopic ERG a-waves (75±4.0% of 
baseline values, n=8) and b-waves (60±2.0% of the baseline 

values, n=8) showed a reduction in the I/R injury + NS mice 
compared with the eyes of the mice in the untreated normal 
control group, while the low-dose MC-treated group revealed 
less reduction in scotopic ERG a-waves (84±3.0% of the 
baseline values, n=8) and b-waves (66±2.0% of the baseline 
values, n=8) compared with those for the I/R injury + NS 
mice (Figure 5D). Under the stimulus of photopic 3 cd s/m2, 
the amplitudes of the b-waves were also better preserved in 
the low-dose MC group (67±2% of the baseline values, n=8) 
compared with the amplitudes for the I/R injury + NS group 
(59±3% of the baseline values, n=8). However, the amplitude 
of the photopic a-waves was not statistically significantly 
different among these groups (Figure 5E). The latency time of 
the scotopic ERG a- and b-waves was longer in the I/R injury 
+ NS group (21.3±0.50 and 46.3±1.50 ms, respectively) than 
in the control group (18.8±0.40 and 41.0±1.20 ms, respec-
tively). The latency time was slightly shorter in the low-dose 
MC group (a-wave: 19.1±0.40 ms, b-wave: 43.0±1.40 ms) 
compared with the I/R injury + NS group. In contrast, the 
PhNR amplitude of the I/R animals treated with high-dose 
MC (a-wave: 21.5±0.60 ms, b-wave: 48.0±1.30 ms) showed 
greater reduction than the I/R injury + NS mice, but the 
latency times were not obviously exacerbated (Figure 5F).

The scotopic ERG results suggested that low-dose MC 
protected against loss of rod-derived retinal function in I/R 
insult. However, the latency times of photopic ERG a- and 
b-waves showed no statistically significant differences among 
these groups (Figure 5G). Amplitudes of the PhNR were 

Figure 2. Change in the inner retinal layer in minocycline-treated retinas after retinal ischemic reperfusion injury. A–D: Photomicrographs 
demonstrating the hematoxylin and eosin (H&E)-stained retinal section from the middle area in the ischemic-reperfusion (I/R) injury control 
group (A), the I/R injury + normal saline (NS) vehicle group (B), the low-dose minocycline (MC) treatment group (C), and the high-dose 
MC treatment group (D). Scale bar = 50 µm. E: Histogram quantifying the inner retinal layer (IRL) thickness (n=8). **p<0.005.
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Figure 3. Low-dose minocycline alleviated the activation of microglia in the retinal I/R injury model. The resting microglial cells have small 
cell bodies and few, thin processes, while activated microglial cells are characterized by enlarged cell bodies with numerous hypertrophied 
processes or amoeboid cell bodies. A–D: Whole-mounted retinas showing Iba1-positive microglia throughout the retina in the control group 
(A), with arrows identifying resting microglia, (B) the ischemic reperfusion injury (I/R) + normal saline (NS) vehicle group with the arrows 
identifying activated microglial cells, (C) the low-dose minocycline (MC) group, and (D) the high-dose MC group. Scale bar = 100 µm. E: 
Quantitative estimate of the numbers of activated Iba1-positive microglia (n=7). #p<0.01,**p<0.005.
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Figure 4. Minocycline (MC) treatment improved optokinetic responses. A, B: Diagram illustrating the optokinetic testing apparatus. C: 
Video camera image of a mouse tracking the grating. D: Simple staircase method of measuring the visual acuity threshold in the optokinetic 
test (n=8). E: Histogram of visual acuity. #p<0.01, **p<0.005.
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Figure 5. Electroretinography of the different groups before and after the I/R insult. A, B: Graphic demonstrating the electroretinography 
(ERG) component (a-wave, b-wave, and photopic-negative response [PhNR]). C: PhNR amplitudes at photopic 3 cd s/m2 (n=15). D, E: Mean 
amplitudes of saturated ERG responses, presented as the relative change from the baseline and normalized to a control eye at scotopic 3 cd 
s/m2 (D) and photopic 3 cd s/m2 (E; n=15). F, G: Average latency times of ERG a-waves and b-waves at scotopic 3 cd s/m2 (F) and photopic 
3 cd s/m2 (G; n=15). *p<0.05, #p<0.01,**p<0.005.
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consistent with histological changes and behavioral altera-
tions. This confirms the protective effects of low-dose MC 
on RGC loss in this I/R model.

DISCUSSION

In the present study, we evaluated RGC loss in I/R injury 
mice and found that low-dose MC can rescue RGCs based 
on histologic analysis, visual functional changes, and 
behavioral tests. Ischemia-associated retinal degeneration 
leads to severe visual impairment, and even blindness [46]. 
The ischemic retina injury model can be created with acute 
hypertension, where high IOP-induced injury was used in this 
model [47-49]. Because of the presence of ischemic impact in 
glaucoma and the ease of establishing a model, the I/R model 
has been more popularly used in studies of neurodegeneration 
and neuroprotection of RGCs in glaucoma studies [50]. We 
reported the loss of RGCs in the I/R model in a previous 
study [11]. In the present study, we detected less RGC loss 
and inner retinal layer thinning in the low-dose MC treat-
ment group, which suggested that the loss of RGCs is induced 
by a transient ischemic attack, while MC has potential RGC 
protective properties.

A previous study showed a close relationship between 
microglia and RGCs in glaucoma [51]. Microglial cells were 
reported to be involved in the development of many neuro-
degenerative diseases and neurologic disorders, including 
glaucoma [52]. There is increasing evidence showing the 
detrimental effects of activated microglia, while suppressing 
the activation of microglia can improve the survival of RGCs 
[53,54]. To date, in CNS degenerative diseases, the main 
mechanism for the neuroprotective effect of MC has been 
thought due to inhibiting the activation of microglial cells 
[54,55]. Consistent with this, the present data showed that 
the number of activated microglia was reduced by treatment 
with low-dose MC (20 mg/kg) when compared with the 
vehicle-treated I/R injury group. The reduction in the number 
of microglia was consistent with the increased survival of 
RGCs in the low-dose MC group, but not in the high-dose 
MC group, which suggested that microglia may promote 
repair of the injured retina. In a recent study, we reported that 
microglial activation induced RGC damage [54]. Moreover, 
the present data also showed inhibiting microglial activity 
by MC had neuroprotective effects. However, high-dose MC 
induced toxicity toward neuron and non-neuronal retinal 
cells. Thus, microglia should be a key target for neuroprotec-
tion related to ischemia. The data demonstrated that MC may 
exert a neuroprotective role in glaucoma via suppression of 
microglial activation,

The OKT has been widely applied as a visual function 
test in mice with retinal degenerative diseases [56]. Optoki-
netic tasks overcome the limitations of other visual tasks, as 
they require no reinforcement training for measurement of 
vision. In the present study, the OKT analysis showed that 
the light-adapted visual acuity of low-dose MC-treated I/R 
injury mice was statistically significantly better than that of 
I/R injury + NS-treated group, which further suggested the 
neural protective features of low-dose MC.

ERG is commonly considered a more sensitive method 
than histology in evaluating retinal insults [57]. PhNR is 
dependent on the activity of RGCs and is reduced in eyes with 
experimental glaucoma. The present ERG data indicated that 
RGC function was damaged under transient ocular hyperten-
sion and protected by low-dose MC. From the onset of the 
waves in ERG, the a-wave is generated by photoreceptors, 
while the b-wave mainly originates from bipolar cells that are 
post-synaptic to photoreceptors. Scotopic a-waves are related 
to rod function, while photopic waves are related to cone 
function. A previous study reported that photoreceptors are 
damaged in glaucoma [26]. The present data showed that the 
average amplitude and latency time for scotopic ERG a-waves 
were different between the I/R injury + NS group and the 
low-dose MC group. Conversely, there were no statistically 
significant differences in the average amplitude and latency 
time for photopic ERG a-waves. The ERG a- and b-waves 
correlated with changes in the retinal layer thickness, which 
indicated that MC could prevent RGCs and photoreceptors 
from glaucomatous damage. In conclusion, the present study 
demonstrated the protective effects of low-dose MC on I/R 
injury–induced RGC loss, making MC an appealing candi-
date for glaucoma therapy. The possible mechanism of action 
is related to the inhibition of microglial activation. An equally 
important finding is that MC had not only dose-dependent 
neuroprotective effects but also potential toxicity at a high 
dose for neurons and non-neuronal cells. The results also 
indicated that MC, at appropriate doses, may be an effective 
therapeutic intervention for ischemic damage of the retina.
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