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Abstract

Reliability of sub ject-level resting-state functional connectivity (FC) is determined in part by the 

statistical techniques employed in its estimation. Methods that pool information across subjects to 

inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance 

reliability of subject-level FC. However, fully Bayesian approaches are computationally 

demanding, while empirical Bayesian approaches typically rely on using repeated measures to 

estimate the variance components in the model. Here, we avoid the need for repeated measures by 

proposing a novel measurement error model for FC describing the different sources of variance 

and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the 

group average. In addition, since the traditional intra-class correlation coefficient (ICC) is 

inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared 

error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting 

(biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 

subjects from the Human Connectome Project to estimate connectivity between 100 regions 

identified through independent components analysis (ICA). We consider both correlation and 

partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as 

well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit 

substantially greater reliability than traditional estimates across various scan durations, even for 

the most reliable connections and regardless of connectivity measure. Additionally, we find partial 
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correlation reliability to be highly sensitive to the choice of penalty term, and to be generally 

worse than that of full correlations except for certain connections and a narrow range of penalty 

values. This suggests that the penalty needs to be chosen carefully when using partial correlations.
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functional connectivity; connectome; partial correlation; reliability; Bayesian statistics; shrinkage; 
measurement error; resting-state fMRI

1 Introduction

Measurement reliability is a persistent concern in psychological science (Button et al., 2013; 

Munafò et al., 2014; Collaboration, 2015). Functional connectivity (FC) of the brain, as 

measured using resting-state functional magnetic resonance imaging (rs-fMRI), is no 

exception (Shehzad et al., 2009). Driven by the growing role of subject-level FC estimates in 

fingerprinting (Finn et al., 2015; Airan et al., 2016), precision functional connectomics 

(Gordon et al., 2017), brain-behavior studies (Smith et al., 2015), and surgical planning (Tie 

et al., 2014), determining the best practices for reliable estimation of FC is an important and 

ongoing topic of research (e.g., Anderson et al., 2011; Birn et al., 2013; Laumann et al., 

2015; Noble et al., 2017b). An analysis technique that has been shown to improve reliability 

of subject-level FC and related measures is shrinkage, a statistical estimation method in 

which individual observations “borrow strength” from a larger group of observations (Su et 

al., 2008; Varoquaux et al., 2010; Shou et al., 2014; Mejia et al., 2015; Dai et al., 2016; 

Chong et al., 2017; Rahim et al., 2017).

Shrinkage belongs to the more general family of Bayesian approaches. Fully Bayesian 

approaches, such as that proposed by Warnick et al. (2017), use a latent variable model in 

which the unknown connectivity for each subject gives rise to the unobserved “true” time 

series plus random noise, and subjects are drawn from some population distribution. In this 

framework, prior distributions are assumed on the parameters controlling the population 

distribution and the random noise, including the variance within and across subjects. 

Bayesian computation techniques like Markov chain Monte Carlo (MCMC) or variational 

Bayes (VB) are used to estimate or sample from the posterior distribution of each parameter 

and latent variable in the model. The posterior distribution of the connectivity for each 

subject can then be used to obtain estimates through the posterior mode as well as inference 

through the posterior quantiles.

Since fully Bayesian approaches tend to be computationally intensive, empirical Bayesian 

approaches are often employed as an efficient and convenient alternative. In the empirical 

Bayesian framework, certain parameters are estimated a-priori using the data or prior 

knowledge obtained from existing studies. Given these parameter estimates, the desired 

posterior quantities often have a closed-form solution, greatly facilitating computation. 

Empirical Bayes shrinkage estimators are an example of this approach and result from 

assuming a measurement error model on a set of estimates. For example, in our case of a 

Gaussian population prior with independent Gaussian errors, the empirical Bayes shrinkage 

estimates are weighted combinations of the subject-level observation and the group average, 
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where the degree of shrinkage towards the group average that gives rise to the posterior 

mean and minimizes mean squared error (MSE) relative to the truth is equal to the ratio of 

within-subject variance to total (within-subject plus between-subject) variance (James and 

Stein, 1961; Efron and Morris, 1975). Therefore, lower within-subject variance combined 

with higher between-subject variance leads to less shrinkage of subject-level estimates 

toward the group, while higher within-subject variance and lower between-subject variance 

leads to greater shrinkage.

Previous work has clearly illustrated the benefits of shrinkage, with 25–30% gain in 

reliability of subject-level connectivity (Varoquaux et al., 2010; Shou et al., 2014; Dai et al., 

2016; Rahim et al., 2017) and parcellations (Mejia et al., 2015; Chong et al., 2017). 

However, estimating the relevant variance components to determine the degree of shrinkage 

has typically relied on having access to repeated measures through test-retest fMRI data. 

This limits the applicability of shrinkage methods, since in many studies only a single rs-

fMRI session is available for most if not all subjects, and even if multiple sessions were 

available one would want to utilize the full data available for each subject to improve 

estimation.

In this work, we propose a novel method to compute empirical Bayes shrinkage estimates of 

FC, where the degree of shrinkage is determined using single-session fMRI data. Previous 

work has proposed using “pseudo test-retest” data, in which a single scanning session is split 

into two contiguous sub-sessions, as a proxy for inter-session variance (Mejia et al., 2015; 

Mueller et al., 2015). However, this will tend to overestimate the sampling variance of FC, 

since fewer time points are used in its estimation. In Mejia et al. (2015), we proposed using 

an empirically determined adjustment factor to correct for this, but the generalizability of 

such an approach is limited. Here, we instead propose a measurement error model for FC 

and describe how this model can be used to estimate within-subject variance of FC using 

single-session fMRI data. Leveraging recent developments in the study of moment-to-

moment changes in FC, this model assumes that within-subject variance of FC comes not 

only from sampling error, but from changes in true FC over time, i.e. dynamic connectivity 

(Allen et al., 2014). The measurement error model, resulting shrinkage estimator, and 

variance component estimation techniques are described in Section 2.1.

Assessing the reliability of shrinkage estimates is also a challenge, since the intra-class 

correlation coefficient (ICC), a commonly used and interpretable reliability metric, is not 

appropriate for biased estimators. Therefore, most reliability studies for shrinkage estimates 

have relied on mean squared error (MSE) using simulations or test-retest fMRI data to 

illustrate the gains in reliability due to shrinkage. However, MSE is sensitive to 

measurement scale and lacks the convenient interpretation of ICC, which ranges from 0 to 1 

and represents the proportion of variance in the observations due to true between-subject 

differences rather than within-subject error or deviation. We therefore propose combining 

ICC and MSE into a novel reliability measure for biased or unbiased estimators, ICCMSE. 

ICCMSE is equal to ICC for unbiased estimators but is also appropriate for biased estimators 

and allows for fair and intuitive comparison between shrinkage and traditional estimators. 

We motivate and describe this measure in Section 2.2.
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Finally, we explore the role of scan duration in reliability of both shrinkage and traditional 

estimates of FC, as the effect of scan duration on reliability of FC is a topic of much recent 

interest (e.g., Shehzad et al., 2009; Van Dijk et al., 2010; Anderson et al., 2011; Birn et al., 

2013; Laumann et al., 2015; Noble et al., 2017a). Several recent studies have also observed 

substantial differences in reliability across connections. For example, connections within the 

default mode network (DMN) have been found to exhibit particularly high reliability even 

for short scan duration, while connections involving the motor network tend to exhibit poor 

reliability (Shehzad et al., 2009; Van Dijk et al., 2010; Anderson et al., 2011; Laumann et 

al., 2015; Mueller et al., 2015; Finn et al., 2015). Therefore, we also explore the relationship 

between scan duration and reliability for connections within different resting-state networks. 

In addition, most of the extant literature on the relationship between scan duration and FC 

reliability uses Pearson correlation coefficients as the primary measure of the degree of 

connectivity between brain regions. The issue of sufficient scan duration deserves greater 

investigation in the context of partial correlations, which are becoming increasingly popular 

for their ability to distinguish between brain regions that are directly versus indirectly 

correlated (Smith et al., 2011; Varoquaux and Craddock, 2013; Smith et al., 2015; Wang et 

al., 2016).

We perform a reliability analysis using data from the Human Connectome Project (HCP) to 

examine the role of scan duration, shrinkage, and connectivity measure (full and partial 

correlation) on reliability of functional connectivity. The HCP is ideal for this analysis due 

to its large sample size and relatively long duration of rs-fMRI scans. We assess reliability at 

multiple levels: omnibus reliability over all connections, reliability of within-network 

connections, reliability of all connections with a particular seed, and reliability of individual 

connections. This multi-resolution approach provides a more complete picture of reliability 

and illustrates that reliability of FC is more compex than a single measure can detect. For 

estimating partial correlations through ridge regression, we first perform a reliability study 

to assess the impact of the regularization parameter, ρ. We find that certain values of ρ lead 

to partial correlation estimates with improved reliability for particular connections but worse 

reliability overall compared with full correlations. Notably, we find that common choices of 

ρ, such as 0.01, lead to partial correlations with much worse reliability than full correlations. 

The reliability study is described in Section 3, and we conclude with a discussion in Section 

4.

2 Methods

2.1 Empirical Bayes shrinkage using single-session data

Let q = 1, …, Q index the nodes (voxels, vertices or regions) between which we wish to 

estimate pairwise connectivity, and consider a single pair of nodes q and q′. The overall 

estimate of FC obtained from an fMRI session is often referred to as static connectivity, in 

contrast to dynamic connectivity across the session. As we describe in the next section, 

considering static connectivity as an average over a dynamic connectivity time series enables 

us to use the central limit theorem to model and estimate the relevant variance components. 

Hereafter, the measure of FC is assumed to be Fisher-transformed correlation or partial 

correlation.
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2.1.1 A measurement error model for functional connectivity—Assume here that 

all subjects have the same scan duration, and let 𝒯 = 1, …, T  index the fMRI time series 

for each subject (see Appendix A for the case when subjects have differing scan duration). 

Let xi,t(q, q′) be the unobserved true connectivity between q and q′ at time t ∈ 𝒯, which we 

can write as xi,t(q, q′) = μi(q, q′) + δi,t(q, q′), where μi(q, q′) is the long-term average 

connectivity for subject i, and δi,t(q, q′) represents dynamic fluctuations in connectivity over 

time. Since fMRI data contains noise, the observed or estimated connectivity wi,t(q, q′) at 

time t can be written as the truth xi,t(q, q′) plus noise εi,t(q, q′), that is

wi, t q, q′ = xi, t q, q′ + εi, t q, q′ = μi q, q′ + δi, t q, q′ + εi, t q, q′ .

We assume that μi q, q′ N μ q, q′ , σμ
2 q, q′ , where μ(q, q′) is the average population-level 

connectivity between q and q′ and σμ
2 q, q′  is its between-subject variance, and that 

δi, t q, q′ 0, σδ
2 q, q′  and εi, t q, q′ 0, σε

2 q, q′ . Since the connectivity measures are Fisher-

transformed correlations, it is reasonable to assume that δi,t(q, q′) and εi,t(q, q′) are 

independent, although each may exhibit autocorrelation due to temporal dependence in 

fMRI data.

For analyses of static connectivity, we do not actually estimate the dynamic time series of 

connectivity, but rather its average across the fMRI session 𝒯, which can be written

wi, 𝒯 q, q′ = μi q, q′ + δi, 𝒯 q, q′ + εi, 𝒯 q, q′ , (1)

where by the central limit theorem for dependent observations, δi, 𝒯 q, q′  and εi, 𝒯 q, q′  are 

approximately distributed

δi, 𝒯 q, q′ = 1
T ∑

t = 1

T
δi, t q, q′ N 0, Tδ

−1σδ
2 q, q′ and

εi, 𝒯 q, q′ = 1
T ∑

t = 1

T
εi, t q, q′ N 0, Tε

−1σε
2 q, q′ .

Here, Tδ = T/τδ is the effective sample size (ESS) of the timeseries δi, t q, q′
t ∈ 𝒯, and Tε 

= T/τε is the ESS of εi, t q, q′
t ∈ 𝒯, where τδ and τε are the unknown autocorrelation times 

of δi, t q, q′
t ∈ 𝒯 and εi, t q, q′

t ∈ 𝒯, respectively (Kass et al., 1998; Thompson, 2011; 

Gong and Flegal, 2016). Various techniques exist for estimating autocorrelation time, and in 

the case of an autoregressive (AR) process, there is a closed-form solution involving only the 

partial autocorrelation function of the process (Thompson, 2011); however, the proposed 

shrinkage methods described below do not require estimation of τδ or τε.
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Equation (1) describes a measurement error model for static connectivity estimated from an 

fMRI time series of length T. The variance components are Tδ
−1σδ

2 q, q′ , the within-subject, 

across-session variance of true connectivity; Tε
−1σε

2 q, q′ , the within-subject sampling 

variance; and σμ
2 q, q′ = :σbetween

2 q, q′ , the between-subject variance. The total within-

subject variance is therefore σwithin
2 q, q′ : = Tδ

−1σδ
2 q, q′ + Tε

−1σε
2 q, q′ . The empirical Bayes 

shrinkage estimator of μi(q, q′) is given as in Morris (1983) by

w∼i, 𝒯 q, q′ =λ q, q′ w𝒯 q, q′ + 1 − λ q, q′ wi, 𝒯 q, q′ ,

where w𝒯 q, q′ = 1
n ∑i = 1

n wi, 𝒯 q, q′  is the estimated population average connectivity, and 

the degree of shrinkage λ(q, q′) is equal to the ratio of within-subject variance to total 

(within-subject plus between-subject) variance of wi, 𝒯 q, q′ , given by

λ q, q′ =
σwithin

2 q, q′
σwithin

2 q, q′ + σbetween
2 q, q′

=
Tδ

−1σδ
2 q, q′ + Tε

−1σε
2 q, q′

Tδ
−1σδ

2 q, q′ + Tε
−1σε

2 q, q′ + σμ
2 q, q′

, (2)

We now describe how to estimate the relevant variance components to achieve the optimal 

degree of shrinkage, which minimizes MSE of the resulting estimates relative to the truth.

2.1.2 Variance component estimation—The total variance on the denominator of λ(q, 

q′) is easily estimated as Vari wi, 𝒯 q, q′ . If a second fMRI session 𝒯′ the same length as 

𝒯 were available for each subject, the within-subject variance could also be estimated by 

taking the differences for each pair of subject-level measurements, wi, 𝒯′ q, q′ − wi, 𝒯 q, q′ , 

since

Vari wi, 𝒯′ q, q′ − wi, 𝒯 q, q′ = Vari δi, 𝒯′ q, q′ + εi, 𝒯′ q, q′ − δi, 𝒯 q, q′ − εi, 𝒯 q, q′

= 2Var δi, 𝒯 q, q′ + 2Var εi, 𝒯 q, q′

= 2Tδ
−1σδ

2 q, q′ + 2Tε
−1σε

2 q, q′

= 2σwithin
2 q, q′ .

We call this the “oracle” estimate of within-subject variance. However, since such repeated 

measurements are often not available in practice, we propose the following estimation 

procedure for within-subject variance using single-session fMRI data.

Assume without loss of generality that T is even, and define the two sub-time series 

𝒯1 = 1, …, T
2  and 𝒯2 = T

2 + 1, T .1 Consider wi, 𝒯1
q, q′  and wi, 𝒯2

q, q′ , the estimates of 

1If T is odd, simply let h = ⌊T/2⌋ and let 𝒯1 = 1, …, h  and 𝒯2 = T − h + 1, …, T .
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static connectivity within each sub-time series. Applying the measurement error model in 

equation (1) we can write

wi, 𝒯1
q, q′ = μi q, q′ + δi, 𝒯1

q, q′ + εi, 𝒯1
q, q′ and

wi, 𝒯2
q, q′ = μi q, q′ + δi, 𝒯2

q, q′ + εi, 𝒯2
q, q′ .

Note that wi, 𝒯1
q, q′  and wi, 𝒯2

q, q′  have μi(q, q′) in common, since it represents long-term 

average connectivity for subject i. We may assume that δi, 𝒯1
q, q′  and δi, 𝒯2

q, q′  (and 

εi, 𝒯1
q, q′  and εi, 𝒯2

q, q′ ) are approximately independent, as long as T/2 is large relative to 

the autocorrelation in the time series.2 Note that since 𝒯1 and 𝒯2 have the same 

autocorrelation structure as 𝒯, the autocorrelation time for δi, 𝒯 j
q, q′ , j = 1, 2, is also τδ. 

Hence, the ESS of δi, t q, q′
t ∈ 𝒯 j

 is (T/2)/τδ = Tδ/2. Similarly, the autocorrelation time for 

εi, 𝒯 j
q, q′ , j = 1, 2, is τε, and its ESS is Tε/2. Therefore, for j = 1, 2,

δi, 𝒯 j
q, q′ N 0, Tδ/2 −1σδ

2 q, q′ and

εi, 𝒯 j
q, q′ N 0, Tε/2 −1σε

2 q, q′ .

Taking the difference wi, 𝒯1
q, q′ − wi, 𝒯2

q, q′  for each subject, we can compute

Vari wi, 𝒯1
q, q′ − wi, 𝒯2

q, q′ = Vari δi, 𝒯1
q, q′ + εi, 𝒯1

q, q′ − δi, 𝒯2
q, q′ − εi, 𝒯2

q, q′

= 2Vari δi, 𝒯1
q, q′ + 2Vari εi, 𝒯1

q, q′

= 4Tδ
−1σδ

2 q, q′ + 4Tε
−1σε

2 q, q′

= 4σwithin
2 q, q′ .

Therefore, σwithin
2 q, q′ = 1

4Vari wi, 𝒯1
q, q′ − wi, 𝒯2

q, q′  serves as a single-session estimate 

of the within-subject variance of wi, 𝒯 q, q′ . Using this, along with the estimate of total 

2To essentially eliminate the small degree of dependence between the time series indexed by 𝒯1 and 𝒯2 induced by auto-correlation, 

let h = ⌊T/2⌋ − d, where d is the number of time points truncated from the end of 𝒯1 and the beginning of 𝒯2. The ESS of 

δi, t q, q′
t ∈ 𝒯 j

 is then Tδ/(T/h), and the ESS of εi, t q, q′
t ∈ 𝒯 j

 is Tε/(T/h), j = 1, 2. Therefore, 

σwithin
2 q, q′ = 2T /h −1Vari wi, 𝒯1

q, q′ − wi, 𝒯2
q, q′ .
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variance, Vari wi, 𝒯 q, q′ , we can determine the optimal degree of shrinkage given in 

equation (2) for each connection.

2.2 Assessing reliability of biased estimators with ICCMSE

To assess the benefits of shrinkage for enhancing reliability of FC estimates, we need a 

meaningful way to quantify and compare the accuracy of both traditional and shrinkage 

estimates. One measure commonly used to quantify reliability of a measure is the intra-class 

correlation coefficient (ICC). The ICC of an estimate is equal to the ratio of between-subject 

variance to total (between- plus within-subject) variance. Therefore, the optimal degree of 

shrinkage of an estimate is equal 1 – ICC of that estimate. This illustrates how the degree of 

shrinkage is related to the reliability, with very reliable estimates (ICC close to 1) receiving 

very little shrinkage towards the group mean, and very unreliable estimates (ICC close to 0) 

receiving almost complete shrinkage to the group mean.

While ICC is a popular measure of reliability due to its interpretability, it is not a meaningful 

measure of reliability for shrinkage estimates. This is because shrinkage trades bias for a 

reduction in variance to achieve an overall reduction in mean squared error (MSE), equal to 

variance plus squared bias. Therefore, only considering the variance of a shrinkage estimate 

provides an incomplete and overly optimistic picture of its accuracy. We propose a new 

measure of reliability for both biased and unbiased estimates, ICCmse, which replaces 

within-subject variance in the ICC formula with within-subject MSE. For unbiased 

estimates, including traditional estimates of FC with no shrinkage, ICCMSE is the same as 

ICC, since MSE equals within-subject variance when bias is zero. However, for shrinkage 

estimates ICCMSE considers both within-subject variance and squared bias to provide an 

overall picture of reliability, on the same scale as ICC. For the traditional and shrinkage 

estimates wi, 𝒯 q, q′  and w∼i, 𝒯 q, q′ , ICCMSE is computed as

ICCMSE wi, 𝒯 q, q′ =
σμ

2 q, q′

σμ
2 q, q′ + MSE wi, 𝒯 q, q′

ICCMSE w∼i, 𝒯 q, q′ =
σμ

2 q, q′

σμ
2 q, q′ + MSE w∼i, 𝒯 q, q′

,

where we estimate MSE as the mean squared difference (MSD) across repeated estimates, 

divided by two since both sets of estimates are observed with noise. That is, letting 𝒯′ index 

a second fMRI session the same length as 𝒯,

MSE wi, 𝒯 q, q′ = 1
2n ∑

i = 1

n
wi, 𝒯 q, q′ − wi, 𝒯′ q, q′ 2,

MSE w∼i, 𝒯 q, q′ = 1
2n ∑

i = 1

n
w∼i, 𝒯 q, q′ − wi, 𝒯′ q, q′ 2 .

Note that for both the traditional and shrinkage estimates, in the absence of the ground truth 

connectivity we use the traditional estimate from a second fMRI session to estimate MSE. In 
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particular, we do not use shrinkage estimates from the second session to assess reliability of 

shrinkage estimates; this would artificially reduce MSE, since estimates from both sessions 

would be moved towards the group average, which is very stable across visits. Instead, using 

the traditional estimate from the second session in place of the truth allows the shrinkage 

and traditional estimates to be compared fairly.

If we wish to quantify the reliability of an entire seed connectivity map, the image intra-class 

correlation coefficient (I2C2) is often used instead of the ICC (Shou et al., 2013). Using the 

ICCMSE framework, we can assess the accuracy of traditional and shrinkage estimates of 

connectivity maps and matrices using measures analogous to the I2C2. For seed q, let 

wi, 𝒯 q  and w∼i, 𝒯 q  be the traditional and shrinkage estimates, respectively, of the true Q × 1 

seed connectivity map μi(q). Then, the I2C2MSE of each estimated image is computed as

I2C2MSE wi, 𝒯 q =
∑q′ ≠ qσμ

2 q, q′

∑q′ ≠ qσμ
2 q, q′ + ∑q′ ≠ q MSE wi, 𝒯 q, q′

,

I2C2MSE w∼i, 𝒯 q =
∑q′ ≠ qσμ

2 q, q′

∑q′ ≠ qσμ
2 q, q′ + ∑q′ ≠ q MSE w∼i, 𝒯 q, q′

.

Similarly, letting Wi, 𝒯 and W∼ i, 𝒯 be the traditional and shrinkage estimates, respectively, of 

the true Q × Q connectivity matrix Mi, the omnibus ICCMSE (oICCMSE) of each estimate is 

computed as

oICCMSE Wi, 𝒯 =
∑q ∑q′ > qσμ

2 q, q′

∑q ∑q′ > qσμ
2 q, q′ + ∑q ∑q′ > q MSE wi, 𝒯 q, q′

,

oICCMSE W∼ i, 𝒯 =
∑q ∑q′ > qσμ

2 q, q′

∑q ∑q′ > qσμ
2 q, q′ + ∑q ∑q′ > q MSE w∼i, 𝒯 q, q′

.

ICCMSE, I2C2MSE and omnibus ICCMSE each range from 0 to 1, where 0 signifies no 

reliability and 1 indicates perfect reliability across repeated measurements from the same 

subject. They reduce to ICC, I2C2, and omnibus ICC, respectively, in the absence of bias, 

which is the case for traditional estimates.

3 Reliability study

We use test-retest data from the Human Connectome Project (Hep) to assess the reliability of 

traditional and shrinkage estimates of whole-brain FC between 100 regions identified using 

independent components analysis (ICA). Leveraging the relatively long duration of the 

resting-state fMRI data in the HCP, we also also examine how scan length affects the degree 

of shrinkage and the reliability of both traditional and shrinkage estimates of FC. We also 

consider and compare full Pearson correlation and partial correlation estimated using ridge 

regression.
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3.1 Data and processing

The HCP (Van Essen et al., 2013) is a collection of neuroimaging and phenotypic 

information for over one thousand healthy adult subjects (http://humanconnectome.org). For 

the analyses described below, we used the following data from the 523 subjects included in 

the 2014 Human Connectome Project 500 Parcellation+Timeseries+Netmats (HCP500-

PTN) release. All MRI data were acquired on a customized 3T Siemens connectome-Skyra 

3T scanner, designed to achieve 100 mT/m gradient strength. For 461 subjects, a multi-band/

multi-slice pulse sequence with an acceleration factor of eight (Moeller et al., 2010; 

Feinberg et al., 2010; Setsompop et al., 2012; Xu et al., 2012; Uğurbil et al., 2013) was used 

to acquire four roughly 15-minute rs-fMRI sessions, each consisting of 1200 volumes 

sampled every 0.72 seconds at 2 mm isotropic spatial resolution. The sessions were 

collected over two visits that occurred on separate days, with two runs collected at each visit. 

Across runs at each visit, phase encoding directions were alternated between right-to-left 

(RL) and left-to-right (LR) directions.

Spatial preprocessing was performed using the minimal preprocessing pipeline as described 

by Glasser et al. (2013), which includes correcting for spatial distortions and artifacts and 

projection of the data time series to the standard grayordinate space. Structured artifacts in 

the time series were removed using ICA + FIX (independent component analysis followed 

by FMRIB’s ICA-based X-noiseifier; Salimi-Khorshidi et al., 2014; Griffanti et al., 2014), 

and each data set was temporally demeaned with variance normalization according to 

Beckmann and Smith (2004). As part of the HCP500-PTN release, group independent 

component analysis (GICA) was performed on the full rs-fMRI time series for all 461 

subjects to estimate a set of 100 spatial independent components (ICs) (Beckmann and 

Smith, 2004). Time courses were estimated for each subject and IC by performing the first 

stage of dual regression (Beckmann et al., 2009). Specifically, the group IC spatial maps 

were used as predictors in a multivariate linear regression model against the full rs-fMRI 

time series. To eliminate acquisition-related variability, we only used the IC time courses 

associated with the runs acquired with LR phase encoding, which corresponded to 

observations 1–1200 (visit 1) and 2401–3600 (visit 2) within the IC text file for each subject.
3

We assigned each IC to one of seven resting-state networks (RSNs) based on overlap with 

the Allen parcellation, a publicly available set of 100 ICs that have been previously 

classified as resting state networks (RSNs) or noise by a group of experts (Allen et al., 

2014). The 50 Allen ICs classified as RSNs are organized into seven large functional groups: 

default mode (DMN), cognitive-control (CC), visual (V), sensorimotor (SM), auditory (A), 

cerebellar (CB) and sub-cortical (SC) networks. As in Choe et al. (2017), we calculated the 

percent variance explained by the seven sets of Allen RSNs for each of the 100 HCP ICs to 

determine network membership. Several ICs were reassigned based on visual inspection of 

their spatial distributions and temporal spectra averaged across subjects, resulting in the final 

3Although the phase encoding direction order was reversed across visits for all data acquired after October 1, 2012 (RL/LR on visit 1 
and LR/RL on visit 2), for the GICA included in the HCP500-PTN release the runs of both visits were reordered to LR/RL before 
concatenating all four sessions.
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RSN assignments shown in Figure 1. Six HCP ICs were identified as likely representing 

nuisance signals; their time courses were regressed from the remaining 94 HCP signal ICs.

3.2 Reliability analysis

The quantity of interest for each subject is the Q × Q matrix of pairwise FC between each of 

the Q = 94 signal ICs. We estimate the full correlation between each pair of ICs using 

Pearson correlation. We also estimate the partial correlation between each pair of ICs as 

described in the following section. Both measures are Fisher-transformed before performing 

shrinkage.

3.2.1 Partial correlation estimation—We estimate partial correlation using ridge 

regression as proposed by Ha and Sun (2014). Specifically, given a sample correlation 

matrix S (p × p), the partial correlation matrix using ridge regression is given by R = 

−scale{(S + ρIp)−1}, where scale(A) = diag(A)−1/2Adiag(A)−1/2 (Ha and Sun, 2014). Several 

heuristics have been proposed to choose the regularization parameter, ρ. For instance, the 

discrepancy principle tries to find the point at which the residual of the regularized solution 

is comprised only of noise but assumes that the standard deviation of the noise is known 

(Morozov, 1984). The L-curve criterion tries to balance regularization error and perturbation 

error by finding the L-shaped corner of the log-log plot of the regularized solution versus the 

norm of the corresponding residual vector (Hansen, 1992). Generalized cross-validation 

attempts to minimize the average prediction error or maximize the out-of-sample likelihood 

in group studies (Golub et al., 1979; Varoquaux et al., 2010; Varoquaux and Craddock, 

2013). However, many functional connectivity studies employing ridge regression choose ρ 
in an ad-hoc fashion, with values ranging from 0.01 (e.g., Smith et al., 2015) to 1 or larger, 

and currently no consensus exists on the best choice or method of choosing ρ. Therefore, we 

first conduct a reliability analysis to assess the impact of the choice of ρ on the reliability of 

partial correlation estimates for varying scan duration.

For ρ = {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}, we estimate the partial correlation matrix for 

each subject using the first ℓ = {100, 200, …, 1200} volumes of both visits. For comparison, 

we also compute estimates of full correlation for each scan duration. We use the resulting set 

of repeated estimates to compute the omnibus intra-class correlation coefficient (oICC) of 

the partial and full correlation matrix estimates as an overall measure of their reliability. As 

with ICC, omnibus ICC ranges from 0 to 1, with 0 indicating that the estimates contain no 

subject-level information and 1 indicating that they are perfectly reliable across multiple 

observations of the same subject. Note that the choice of ρ changes the scale of partial 

correlation values, with larger ρ resulting in smaller partial correlations. Therefore, partial 

correlations obtained using different ρ values cannot be compared directly or with full 

correlations; however, ICC is scale-free and can be compared across measures on different 

scales. To assess the reliability of full and partial correlations for different types of 

connections, we also compute the average ICC across all within-network connections for 

each network shown in Figure 1.

Figure 2 displays the results of this reliability analysis. Figure 2a shows that, as expected, 

reliability increases with scan duration for each measure. More surprisingly, however, we 
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observe that the reliability of partial correlation estimates using small values of ρ are much 

less reliable than full correlations; reliability increases with ρ up to ρ = 50, with ρ = 50 and ρ 
= 100 resulting in partial correlations with similar overall reliability to that of full 

correlations. Figure 2b shows that for highly reliable connections, e.g. those within the 

DMN and CC networks, partial correlations are more reliable than full correlations for p 

greater than 0.5, and reliability of these connections is maximized at ρ = 5. For other 

networks, partial correlations are generally less reliable than full correlations for smaller 

values of ρ and achieve similar reliability for larger values of ρ. Based on these findings, we 

use ρ = 5 to estimate partial correlations, as this choice maximizes the reliability of the most 

consistent connections and achieves somewhat comparable reliability to full correlations for 

all other within-network connections.

3.2.2 Shrinkage estimation of functional connectivity—We use the first visit from 

each subject to compute traditional and shrinkage estimates of functional connectivity (full 

and partial correlation) based on varying scan length. We reserve the second visit to assess 

the accuracy of each of those estimates. Specifically, as described in Section 2.1 we compute 

traditional and shrinkage estimates of the FC matrix using the first ℓ = 100, 200, …, 1200 

volumes of visit 1 for each subject. With a TR of 0.72 seconds, the resulting time series 

range in duration from 1.2 to 14.4 minutes. Using the second visit, we compute only the 

traditional estimate of the FC matrix using the full time series (1200 volumes) for each 

subject as an unbiased proxy for the ground truth. We also assess the performance of an 

“oracle” shrinkage estimator, which uses the oracle estimate of within-subject variance 

described at the beginning of Section 2.1.2. This provides an upper bound on the reliability 

of shrinkage estimators relative to the second visit, since it is based on the actual within-

subject variance across the two visits.

For each scan duration, we assess the reliability of traditional, shrinkage and oracle 

estimates at multiple resolutions. First,/we compute ICCMSE for each connection (q, q′), q′ 
≠ q = 1, …, 100. Second, we compute I2C2MSE for the seed connectivity map using each IC 

q = 1, …, 100 as the seed. Third, we compute the omnibus reliability of the connectivity 

matrix using oICCMSE. Finally, we investigate reliability of traditional and shrinkage 

estimates of FC for connections within each resting-state network shown in Figure 1. For 

each network, we compute the average ICCMSE of traditional and shrinkage estimates of FC 

across all within-network connections to determine the overall reliability of within-network 

connectivity at each scan duration.

3.3 Results

Throughout this section, we present the results using full correlations as the measure of FC 

in the upper triangle of each matrix and those using partial correlations (using ρ = 5) in the 

lower triangle.

Figure 3 displays the group-average connectivity matrix based on all 1200 volumes 

(approximately 15 minutes) of visit 1, which serves as the target for shrinkage of subject-

level estimates based on the same scan duration. Figure 4 displays traditional and single-

session shrinkage estimates of FC for three randomly selected subjects based on all 1200 
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volumes of visit 1, along with the “gold-standard” for each, the traditional estimate based on 

visit 2, which we use to assess reliability of the visit 1 estimates. The root MSE (rMSE) of 

each estimate, relative to visit 2, is displayed above the matrix. For all three subjects, the 

shrinkage estimate is closer to the observed connectivity at visit 2 (lower rMSE) than the 

traditional estimate. This improvement is seen for both full and partial correlations, although 

note that rMSE is not comparable across the two measures due to differences in scale.

Figure 4 also illustrates how the unique features of each subject are not lost through 

shrinkage. The shrinkage estimates are qualitatively similar to the traditional estimates for 

each subject, and many similar features are seen in both. For example, subject 1 displays 

strong anticorrelations between some cerebellar regions and the visual, sensorimotor and 

auditory networks, features that are preserved after shrinkage and replicated at visit 2. 

Subject 3 displays unusually strong negative partial correlations between some DMN and 

CC regions, features that are again preserved after shrinkage and reliable across both visits. 

This illustrates how, rather than discarding true subject-level information, shrinkage serves 

to reduce noise by bringing unreliable, noisy features closer to the group average, while 

retaining features that are observed to be reliable at the subject level.

Figure 5 displays the degree of shrinkage towards the group mean for single-session and 

oracle shrinkage for three different scan durations: 400, 800 and 1200 volumes, 

corresponding to approximately 5, 10 and 15 minutes, respectively. For each scan duration 

and shrinkage type, the degree of shrinkage for each unique pair of nodes is displayed. 

Figure 5a shows that the degree of shrinkage tends to decrease as scan duration increases, as 

traditional estimates of connectivity become more reliable and less shrinkage is required. 

The degree of shrinkage varies dramatically across the connectivity matrix, with more 

reliable connections (e.g., most within-network connections) receiving relatively little 

shrinkage and less reliable connections (e.g., those between the visual network and other 

networks) receiving more shrinkage. These patterns are somewhat similar whether full or 

partial correlation is used as the measure of FC, with some exceptions. For example, most 

connections involving cerebellar or subcortical regions receive more shrinkage using partial 

correlation, indicating that these connections are less reliable based on partial correlation. 

Meanwhile, some connections within and between the DMN and cognitive control networks 

receive slightly less shrinkage when partial correlation is used, indicating that these 

connections can be more reliably measured using partial correlation, with the caveat that ρ 
must be chosen correctly (see Figure 2).

Below each matrix, we “zoom in” on all connections with one DMN seed region to better 

visualize the spatial differences in the degree of shrinkage for full correlations. The selected 

seed shown in black in each image. For this seed, the degree of shrinkage is highest for 

connections with motor, visual and auditory regions and is lowest with other default mode 

regions and cognitive control regions. This is consistent with previous findings that 

connectivity within and between the default mode and cognitive control networks tends to be 

highly reliable, while connectivity between the DMN and other networks is generally less 

reliable (Van Dijk et al., 2010; Finn et al., 2015; Laumann et al., 2015; Airan et al., 2016).
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Figure 5b shows that oracle shrinkage results in substantially greater shrinkage compared 

with single-session shrinkage. Recall that single-session shrinkage is based on an estimate of 

within-subject variance from a single session, while oracle shrinkage is based on within-

subject variance across multiple sessions, in this case occurring on separate days. The 

greater degree of shrinkage with oracle shrinkage is reflective of greater within-subject 

variance in FC across sessions than within a single session. This is not surprising, since 

inter-session differences in FC and related measures have been found to be greater than 

intra-session differences (Shehzad et al., 2009; Anderson et al., 2011; Birn et al., 2013; Zuo 

et al., 2013). Single-session shrinkage can therefore be considered a conservative form of 

shrinkage, since it tends to preserve more subject-level information than oracle shrinkage. 

However, the patterns of shrinkage within the connectivity matrix are similar for oracle and 

single-session shrinkage, suggesting that the proposed single-session within-subject variance 

estimator is an attenuated version of the true within-subject variance across multiple 

sessions.

Figure 6 displays the reliability of traditional, single-session shrinkage and oracle shrinkage 

estimates of connectivity by scan duration. The upper triangle of each matrix shows the 

ICCMSE of full correlations; the lower triangle shows that of partial correlations. For each 

measure, the I2C2MSE of each node and the omnibus ICCMSE are displayed in the margins 

of the upper and lower triangles. As previously observed in terms of degree of shrinkage, 

Figure 6a shows that reliability tends to increase with scan duration and the most reliable 

connections are those within and between the DMN and cognitive control networks. 

Connections between these networks and some visual and cerebellar nodes are also among 

the most reliable.

Figure 6b shows that single-session shrinkage estimates are significantly more reliable than 

traditional estimates of connectivity at each scan duration, with improvement observed 

across all parts of the connectivity matrix. Not surprisingly, the benefits of shrinkage are 

greatest for shorter scan duration, but improvement is still substantial for 1200-volume 

(approximately 15-minute) acquisitions. Specifically, based on full correlations, single-

session shrinkage increases omnibus ICCMSE by 17.6% for 400-volume scans, 11.3% for 

800-volume scans, and 8.9% for 1200-volume scans; based on partial correlations, the 

improvement is slightly higher at 22.1%, 13.6% and 10.4%, respectively. Notably, single-

session shrinkage estimates based on 5-minute (400-volume) acquisitions are nearly as 

reliable as traditional estimates based on 15-minute (1200-volume) acquisitions.

Figure 6c displays the reliability of oracle shrinkage estimates. Oracle shrinkage provides an 

upper bound on the benefit of shrinkage, since it uses the same repeat measurements used to 

assess reliability to determine the optimal degree of shrinkage. While oracle shrinkage 

estimates are more reliable than single-session shrinkage estimates, the improvement is less 

dramatic than that of single-session shrinkage estimates over traditional estimates. For 

example, based on full correlations oracle shrinkage increases omnibus ICCMSE over single-

session shrinkage by an additional 4.2% with 400 volumes and 6.5% with 1200 volumes. 

However, as seen in Figure 5, on average oracle shrinkage requires nearly twice the amount 

of shrinkage toward the group mean; single-session shrinkage therefore achieves much of 

Mejia et al. Page 14

Neuroimage. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the possible improvements in reliability, while preserving more subject-level information 

than oracle shrinkage.

Figure 7 displays the average reliability of all within-network connections for the seven 

resting-state networks shown in Figure 1. For traditional and shrinkage estimates alike, 

connections within the default mode and cognitive control networks are by far the most 

reliable in terms of ICCMSE, while connections within the visual, sensorimotor, auditory, 

cerebellar and subcortical networks tend to be less reliable. Due to the choice of ρ = 5 (see 

Figure 2), partial correlations are more reliable than full correlations for connections within 

the DMN and cognitive control networks and are worse than or comparable to full 

correlations for all other networks.

For both full and partial correlations, single-session shrinkage estimates of within-network 

FC are sub-stantially more reliable than traditional estimates across all scan durations and 

networks. The improvement is most dramatic for shorter durations, with an increase in 

ICCMSE of 24.0 – 50.9% across the different networks using full correlation and 24.3 – 

47.7% using partial correlation, based on 100-volume acquisitions. Based on 1200-volume 

acquisitions, the improvement is 5.1 – 9.0% using full correlation and 4.7 – 12.6% using 

partial correlation. Note that even the most reliable connections based on the longest scan 

durations become more reliable with shrinkage. For example, based on 1200-volume 

acquisitions, the ICCMSE of partial correlations within the DMN increases from 0.649 to 

0.680 (4.7%) due to shrinkage, and within the CC network from 0.621 to 0.654 (5.3%). This 

suggests that reliability of certain connections can be maximized by simultaneously 

increasing scan duration, employing partial correlations—if ρ can be chosen optimally—and 
performing shrinkage on the resulting estimates.

4 Discussion

In this paper, we propose an empirical Bayes shrinkage method for resting-state functional 

connectivity (FC) using single-session fMRI data. The proposed method is rooted in a novel 

measurement error model for FC that takes into account between-subject differences in FC, 

sampling error in estimation of FC, and dynamic changes in FC over time. In contrast with 

previously proposed Bayesian or shrinkage methods for FC, this method does not require 

access to multiple fMRI sessions. To compare the reliability of shrinkage and traditional 

estimates in a scale-free way, we also propose a novel reliability measure, ICCMSE, 

applicable to both biased and unbiased estimators. The ICCMSE reduces to the intra-class 

correlation coefficient (ICC) in the absence of bias. Similar to ICC, it ranges from 0 to 1, 

and is a measure of how much reliable subject-level information is contained in a set of 

estimates, relative to the variance across subjects. As with ICC, ICCMSE can also be used to 

compare reliability of estimates on different scales, such as full and partial correlations. 

Finally, we illustrate a multi-resolution approach to evaluate reliability of FC at the level of 

individual connections, seed maps, networks, and the entire entire connectivity matrix. This 

approach can be used to assess the effects of shrinkage, scan duration, connectivity measure 

and other factors on overall reliability of FC and how these effects vary across different 

networks, regions and connections.
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We test the proposed methods on 461 subjects from the Human Connectome Project, using 

both full and partial correlation as the measure of FC. We find that single-session shrinkage 

improves overall reliability of FC estimates by approximately 18 – 22% for 5-minute (400-

volume) acquisitions and 9 – 10% for 15-minute (1200-volume) acquisitions. As 

consistently observed in the literature, we find that reliability varies substantially across 

connections, with the most reliable connections being those within and between the default 

mode and cognitive control networks, and between those networks and certain visual and 

cerebellar regions. Notably, we find that shrinkage substantially improves even the most 

reliable connections based on the longest acquisitions.

Both full and partial correlations benefit from shrinkage to similar degrees. However, we 

find that the choice of ρ is critical for partial correlations, and that partial correlations are 

generally less reliable overall than full correlations, particularly for small values of ρ. This is 

consistent with the findings of Abraham et al. (2017), whose analysis was based on the 

Autism Brain Imaging Data Exchange (ABIDE) dataset (Di Martino et al., 2014); compared 

to the HCP, the resting-state fMRI data of ABIDE are of shorter duration, have longer TR, 

and are based on less sophisticated acquisition and processing techniques. Therefore, our 

results serve to somewhat generalize these previous findings. However, we also find that 

certain connections actually become more reliable using partial correlations for specific 

values of ρ, as illustrated in Figure 2b. This likely reflects the property that partial 

correlations are used to estimate a relative few “direct” connections, while shrinking the 

remaining “indirect” connections towards zero. These indirect connections may be 

meaningfully estimated when using full correlation but are essentially equal to zero for all 

subjects using partial correlations, hence resulting in worse reliability as measured by ICC. 

This illustrates the importance of investigating reliability at multiple resolutions and 

focusing on connections of interest when assessing the value of various processing and 

analysis choices or determining optimal parameter values.

If “direct” connections are of primary interest, the use of partial correlation combined with a 

principled method for choosing ρ may thus be beneficial. While we find ρ = 5 to maximize 

the reliability of certain connections, the optimal value likely depends on many factors 

specific to the dataset being analyzed, along with the particular connections of interest. 

Therefore, ρ should be chosen for each analysis in a principled manner. For example, ρ can 

be chosen to maximize reliability using a measure (e.g., ICC) that (1) is scale-free and 

therefore robust to changes in scale of partial correlations induced by changes in ρ, and (2) 

reflects within-subject reliability relative to differences between subjects. We did not find 

that scan duration strongly influenced the choice of ρ to maximize overall reliability, so it 

seems reasonable to use intra-session reliability as a proxy for inter-session reliability in the 

absence of retest data. Overall, our results suggest that future research is needed to develop 

principled methods for estimating partial correlations in order to fully realize their benefits.

We also perform “oracle” shrinkage to provide an upper limit on the inter-session reliability 

that can be achieved with shrinkage. We find that oracle shrinkage results in approximately 

double the degree of shrinkage towards the group average versus single-session shrinkage, as 

seen in Figure 5. This is due to higher inter-session variance of FC, the basis of oracle 

shrinkage, compared with intra-session variance, the basis of single-session shrinkage. 
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Single-session shrinkage is therefore a conservative form of shrinkage for FC, as it places 

greater weight on the original subject-level estimates compared with oracle shrinkage; yet it 

captures most of the possible improvement in inter-session reliability, suggesting that the 

proposed single-session shrinkage methods offer significant benefits while preserving 

subject-level information.

While in this paper we focus on static connectivity, the proposed methods are directly 

applicable to shrinkage of dynamic connectivity states shared across subjects. For each state, 

the proposed model is simply applied to the time series for each subject corresponding to 

that state (these are allowed to differ in duration across subjects, with subject-specific 

variance estimators given in Appendix A). Performing shrinkage within each state is indeed 

likely beneficial, since within each state variation in true connectivity is reduced, and 

therefore shrinkage will be driven more by random noise than dynamic fluctuations, which 

are biologically meaningful and potentially of interest. In the complete absence of dynamic 

fluctuations, within-subject variance of FC would reflect primarily differences in SNR 

across the brain as well as motion and physiological confounds. These latter sources of 

variation, if measured, can also be removed from the data before performing shrinkage, 

which would serve to reduce the total noise and lead to less shrinkage of subject-level 

estimates of FC. Indeed, any processing steps that serve to reduce noise at the subject level 

are highly advisable prior to shrinkage in order to maximize the SNR in the estimates and 

therefore minimize shrinkage. In this way, shrinkage can also be used as a way to assess the 

benefit of various processing and analysis choices in the absence of retest data, with choices 

leading to minimal shrinkage being most beneficial.

Here we have focused on reliability across multiple visits, but it is important to consider the 

measure or effect of interest when choosing how to assess reliability. While reliability across 

multiple visits is appropriate for detecting trait-level effects, which are stable over long 

periods of time, reliability within a single visit is more appropriate for state-level effects. 

Functional connectivity is known to vary substantially across visits, so single-session 

estimates of FC will tend to achieve only modest inter-session reliability, limiting their 

utility for studying trait-level effects. Several recent studies have suggested that it may be 

preferable to combine data from multiple sessions occurring on different days, rather than 

simply increase scan duration within a single session (Shehzad et al., 2009; Laumann et al., 

2015; Noble et al., 2017b).

In this study we assess the reliability of FC estimates produced from scans up to 

approximately 15 minutes in duration. Even within this relatively short scan duration, the 

results shown in Figure 7 suggest that increasing scan duration, while beneficial, offers 

diminishing returns in terms of improving inter-session reliability. Reliability of FC has been 

shown to depend on many factors, including the connection(s) of interest, temporal and 

spatial resolution, node definition, and the measure of functional connectivity, as well as 

how reliability is defined (Zuo et al., 2013; Murphy et al., 2007; Anderson et al., 2011; 

Smith et al., 2011; Dawson et al., 2013; Birn et al., 2013; Zuo et al., 2013; Liao et al., 2013; 

Airan et al., 2016). In light of this, it is not surprising that recommendations regarding how 

long to scan have differed widely, ranging from 7 minutes or less (Tomasi et al., 2016; Airan 

et al., 2016) to 90 minutes or more (Laumann et al., 2015). Our findings contribute to a 
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growing body of work that suggests that maximizing reliability requires not only increasing 

the duration or number of scans, but adopting other best practices in processing and analysis, 

such as borrowing strength across subjects through shrinkage.

Our study has several limitations. Our results are based on a single dataset, parcellation, and 

subject group; while we believe that the findings are generalizable, future work should focus 

on determining the effect of shrinkage in different contexts. Additionally, while we perform 

connection-specific shrinkage, we apply the same degree of shrinkage to each subject. It is 

plausible that reliability of FC differs based on subject characteristics, and therefore 

differential shrinkage across subjects would be more beneficial. While tailoring the degree 

of shrinkage for different subjects is possible, doing so increases the number of parameters 

that must be estimated and may therefore actually worsen the performance of shrinkage 

estimators (Mejia et al., 2015). This should be explored as an area of future research.
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A Differing scan duration

In some studies, subjects may have varying scan duration, due to differences in protocol, 

varying ability of subjects to undergo scanning, or scrubbing (removal of volumes 

contaminated with artifacts) during preprocessing. Let 𝒯i = 1, …, T i  index the fMRI time 

series for subject i. Then, the model in equation (1) becomes

wi, 𝒯 q, q′ = μi q, q′ + δi, 𝒯i
q, q′ + εi, 𝒯i

q, q′ ,

and δi, 𝒯i
q, q′  and εi, 𝒯i

q, q′  are approximately distributed

δi, 𝒯i
q, q′ = 1

Ti
∑

t = 1

Ti
δi, t q, q′ N 0, Tδ, i

−1σδ
2 q, q′ and

εi, 𝒯i
q, q′ = 1

Ti
∑

t = 1

Ti
εi, t q, q′ N 0, Tε, i

−1σε
2 q, q′ ,

where Tδ,i = Ti/τδ and Tε,i = Ti/τε are the the effective sample size (ESS) of δi, t q, q′
t ∈ 𝒯i

and εi, t q, q′
t ∈ 𝒯i

, respectively.
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Then, the variance estimation procedures described in Section 2.1.2 can be modified as 

follows. First, note that the between-subject variance of the long-term average FC for each 

subject, σμ
2 q, q′ , is unchanged, but the total variance of the estimates wi, 𝒯i

q, q′  will vary 

across subjects due to differences in within-subject variance. Specifically, the within-subject 

variance for each subject is

σwithin, i
2 = Tδ, i

−1σδ
2 q, q′ + Tε, i

−1σε
2 q, q′

= τδTi
−1σδ

2 q, q′ + τεTi
−1σε

2 q, q′

= Ti
−1 τδσδ

2 q, q′ + τεσε
2 q, q′

= :Ti
−1c q, q′

and the common term c(q, q) can be estimated as follows. Assuming without loss of 

generality that T is even, define the two sub-time series 𝒯i, 1 = 1, …,
Ti
2  and 

𝒯i, 2 =
Ti
2 + 1, T i . For j = 1, 2, let wi, 𝒯i, j

q, q′  be the estimate of static connectivity within 

sub-time series 𝒯 j for subject i. As before, we can write 

wi, 𝒯i, j
q, q′ = μi q, q′ + δi, 𝒯i, j

q, q′ + εi, 𝒯i, j
q, q′  for j = 1, 2, where the ESS of 

δi, t q, q′
t ∈ 𝒯i, j

 is (Ti/2)/τδ and the ESS of εi, 𝒯i, j
q, q′  is (Ti/2)/τε. Therefore, 

δi, 𝒯i, j
q, q′ N 0, 2τδT i

−1σδ
2 q, q′  and εi, 𝒯i, j

q, q′ N 0, 2τεT i
−1σε

2 q, q′  for j = 1, 2.

Taking the difference wi, 𝒯i, 1
q, q′ − wi, 𝒯i, 2

q, q′  for each subject, we can compute

Vari wi, 𝒯i, 1
q, q′ − wi, 𝒯i, 2

q, q′ = Vari δi, 𝒯i, 1
q, q′ + εi, 𝒯i, 1

q, q′ − δi, 𝒯i, 2
q, q′ − εi, 𝒯i, 2

q, q′

= 2Vari δi, 𝒯i, 1
q, q′ + 2Vari εi, 𝒯i, 1

q, q′

= 2E δi, 𝒯i, 1
2 q, q′ + 2E εi, 𝒯i, 1

2 q, q′

= 2ETi
E δi, 𝒯i, 1

2 q, q′ Ti + 2ETi
E εi, 𝒯i, 1

2 q, q′ Ti

= 2E 2τδTi
−1σδ

2 q, q′ + 2E 2τεTi
−1σε

2 q, q′

= 4 τδσδ
2 q, q′ + τεσε

2 q, q′ E Ti
−1

= 4c q, q′ E Ti
−1

Therefore, c(q, q′) can be estimated as 

c q, q′ = 1
4

1
n ∑i = 1

n T i
−1 −1

Vari wi, 𝒯i, 1
q, q′ − wi, 𝒯i, 2

q, q′ , and the within-subject 

variance for subject i is estimated as σwithin, i
2 = T i

−1c q, q′ .
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The between-subject variance σμ
2 q, q′  can be easily estimated as follows. Writing the total 

variance, which can be estimated directly from the data, as 

Vari wi, 𝒯i
q, q′ = σμ

2 q, q′ + Vari δi, 𝒯i
q, q′ + Vari εi, 𝒯i

q, q′ , the between-subject 

variance estimate is σμ
2 q, q′ = Vari wi, 𝒯i

q, q′ − 1
2Vari wi, 𝒯i, 1

q, q′ − wi, 𝒯i, 2
q, q′ .

The degree of shrinkage for subject i is given by 

λi q, q′ = σwithin, i
2 q, q′ / σwithin, i

2 q, q′ + σμ
2 q, q′ . Subjects with longer scans will receive less 

shrinkage for a given connection than subjects with shorter scans, since their estimates are 

based on more data and are therefore more reliable.
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Figure 1. 
Resting-state network assignment of each IC based on overlap with the Allen parcellation. 

Cortical boundaries delineate the borders between ICs, based on a discretization of the 

continuous spatial ICA maps, used for visualization purposes. ICs labeled as noise are 

displayed in red.
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Figure 2. 
(a) As expected, reliability increases with scan duration for each measure. More surprisingly, 

we observe that the overall reliability of partial correlation estimates is much lower than that 

of full correlation estimates for small values of ρ, while large values of ρ (50 and 100, which 

are nearly indistinguishable in the plot) result in partial correlation estimates with 

comparable overall reliability to full correlation. Reliability begins to worsen slightly when 

ρ is increased from 50 to 100, suggesting that further increases in ρ would not result in 

improved reliability of partial correlations. (b) For connections within the DMN and CC 

networks, partial correlations are more reliable than full correlations for ρ greater than 0.5, 

and the maximal reliability is seen for partial correlations with ρ = 5. For all other networks, 

partial correlations are generally less reliable than full correlations for smaller values of ρ 
and achieve similar reliability for larger values of ρ.
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Figure 3. Group-average FC
Average FC across all subjects, based on traditional estimates using all 1200 volumes of visit 

1. Full correlations are displayed in the upper triangle; partial correlations are displayed in 

the lower triangle. Subject-level estimates based on the same scan duration are shrunk 

towards this group-level average to obtain more reliable estimates, where the degree of 

shrinkage for each connection depends on the within-subject and between-subject variance.
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Figure 4. Subject-level estimates of FC
Traditional estimates (top row) and single-session shrinkage estimates (middle row) of 

subject-level FC based on all 1200 volumes of visit 1. Full correlations are displayed in the 

upper triangle of each matrix; partial correlations are displayed in the lower triangle. The 

bottom row shows FC for each subject at visit 2, based on the traditional estimate using all 

1200 volumes. This estimate is used as a proxy for the truth to assess the accuracy of the 

visit 1 estimates. The root mean squared error (rMSE) of full and partial correlations, 

relative to visit 2, are displayed in the margins of each matrix.
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Figure 5. Degree of shrinkage
Each matrix shows the degree of shrinkage λ(q, q′) ∈ [0, 1] for the FC between nodes q and 

q′, based on single-session shrinkage(a) and oracle shrinkage (b). The upper triangle 

corresponds to full correlations and the lower triangle to partial correlations using ρ = 5. For 

one selected seed in the DMN (shown in black in the images), the degree of shrinkage for all 

connections with this seed is displayed as an image below the matrix, based on full 

correlations. Overall, the degree of shrinkage decreases as scan length increases; some 

connections receive more shrinkage than others due to differences in reliability; full and 
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partial correlations show somewhat similar patterns of shrinkage with some notable 

differences; and single-session shrinkage tends to be more conservative (less shrinkage) than 

oracle shrinkage.
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Figure 6. Reliability of FC estimates
For each estimation method and scan duration, the ICCMSE of all unique region-pairs is 

displayed for full correlations in the upper triangle and for partial correlations in the lower 

triangle; I2C2MSE for each region and omnibus ICCMSE are displayed in the margins for 

each measure.
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Figure 7. Accuracy of within-network FC estimates
Average ICCMSE across all within-network connections within each network for traditional 

and single-session shrinkage estimates of FC. For both types of estimates, accuracy tends to 

taper off with increasing scan duration, but shrinkage estimates are substantially more 

accurate than traditional estimates across all durations.
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