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Abstract
Purpose of Review Laser lithotripsy is increasingly used worldwide and is a continuously evolving field with new and extensive
research being published every year.
Recent Findings Variable pulse length Ho:YAG lithotripters allow new lithotripsy parameters to be manipulated, and there is an
effort to integrate new technologies into lithotripters. Pulsed thulium lasers seem to be a viable alternative to holmium lasers. The
performance of similar laser fibers varies from manufacturer to manufacturer. Special laser fibers and “cleaving only” fiber tip
preparation can be beneficial for the lithotripsy procedure. Different laser settings and the surgical technique employed can have
significant impact on the success of laser lithotripsy. When safely done, complications of laser lithotripsy are rare and concern the
endoscopic nature of procedure, not the technology itself, making laser lithotripsy one of the safest tools in urology.
Summary Laser lithotripsy has had several new developments and more insight has been gained in recent years with many more
advances expected in the future.
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Introduction

This year is the 50th birthday when lasers first made their
debut in urology [1], as well as the 30th birthday when urinary
laser lithotripsy began establishing itself as a method of uri-
nary stone treatment [2, 3]. Similar to most technological ad-
vancements, laser lithotripsy has also advanced with ongoing
new developments. We therefore review the latest advances in
laser lithotripsy to keep up to date with them.

Material and Methods

A PubMed search was performed (December 2017) for papers
including the terms “laser(s)” or “holmium” in association with
any of the following terms “lithotripsy,” “lithiasis,” “stone(s),”

“calculus,” “calculi,” “lithotripter(s),” “lithotrite(s),” “fiber(s),”
“(endo)urology,” (endo)urologic(al),” or “intrarenal” in their
title and published between the years 2015 and 2017, as well
as 2018, to include already accepted, but not yet published
papers. Additionally, the medical sections of ScienceDirect,
Wiley, SpringerLink, and Mary Ann Liebert publishers where
also searched for abstract presentations published in that time
frame that were not indexed on PubMed. Moreover, key papers
and other important studies on the subject were also included
and cross-referenced, if they were considered noteworthy, de-
spite being published before 2015. The authors adhered to
PRISMA guidelines for this review [4]. All relevant data was
identified, selected, and has been summarized below.

Bibliographic Search Results

The PubMed search returned 1255 articles. Most of these
articles (845) relate to basic laser research not necessarily re-
lated to medicine. They include research of new laser media
and fiber production, soliton and quantum research, down to
communications, nanotubes, and random bit generators creat-
ed with lasers, all of them published in journals specialized in
the wide-raging field of optics, and hence indexed in PubMed.
Other 108 articles relate to the use of lasers in non-urological
medical specialties such as ophthalmology, gastroenterology,

This article is part of the Topical Collection on Endourology

* Bhaskar Somani
b.k.somani@soton.ac.uk

Peter Kronenberg
peterkronenberg@gmail.com

1 Hospital Prof. Doutor Fernando Fonseca, Amadora, Portugal
2 University Hospital Southampton NHS Trust, Southampton, UK

Current Urology Reports (2018) 19: 45
https://doi.org/10.1007/s11934-018-0807-y

ENDOUROLOGY (P MUCKSAVAGE, SECTION EDITOR)

The Author(s) 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s11934-018-0807-y&domain=pdf
mailto:b.k.somani@soton.ac.uk


ENT, vascular and general surgery, interventional radiology,
and pneumology, as well as dermatology. The other 302 arti-
cles relate to urology-related fields, of which 150 concern the
use of lasers in a non-lithotripsy-related setting, such as
HoLEP, Greenlight laser, or other laser ablative techniques.
Finally, the last 152 articles relate to urological laser lithotrip-
sy. More than half of these papers are about case series, single-
surgeon series, and comparisons of laser lithotripsy to other
lithotripsy methods or case reports.

The search in the medical sections of ScienceDirect, Wiley,
SpringerLink, and Mary Ann Liebert returned 12,454 papers
or abstract presentations, 759 of them related to urinary stone
treatments, some of them already picked up in the PubMed
search. All abstract presentations of the major urology con-
gresses were also reviewed and included [5–16].

The relevant data of the publications and abstracts have
been categorized into the following four main groups: laser
lithotripters, laser fibers, laser settings and technique, and laser
safety and related complications (Table 1).

Laser Lithotripters

Laser technology was foreseen in 1917 and has been available
and developed for 60 years [1, 17–19]. Most of the (initial)
lasers emitted their laser energy in a continuous mode which
has not been shown to be suited for lithotripsy [20], besides
producing heat that can be harmful. On the contrary, pulsed
lasers, e.g., the holmium:yttrium–aluminum–garnet (Ho:YAG)
or the frequency-doubled double-pulse neodymium:YAG
(FREDDY) laser [21, 22], deliver their energy in packets
(pulses) that are suddenly released and very efficient at stone
lithotripsy. Nevertheless, there are anecdotal reports of using
Greenlight lasers for lithotripsy [23]. The reason for this differ-
ence in lithotripsy capabilities between continuous and pulsed
lasers can be explained using the electric drill machine analogy:
while trying to drill a hole in a wall, a continuous rotating drill is
less efficient in perforating that wall and also generates much
heat; on the contrary, a similar powered impact or percussion
drill machine is much faster and efficient and also produces
lower levels of heat. These features, together with its excellent
safety profile, established and made the Ho:YAG laser ideal for
laser lithotripsy in the last 30 years [2, 24, 25, 26••].

Despite the launch of more powerful and high-frequency
Ho:YAG lithotripters over the years [27], they still only
allowed the urologist to manipulate two parameters: pulse en-
ergy and pulse frequency. It took more than 20 years for hol-
mium laser lithotripters to get their first, true technological
upgrade, i.e., the ability to change pulse length, aka pulse du-
ration or pulse width [26••]. Standard Ho:YAG lithotripters
were restricted to short pulse lengths, while the newer lithotrip-
ters, besides short pulse, were now also capable of doing long-
pulse lithotripsy (Fig. 1). Although all other lithotripter param-
eters (pulse energy, pulse frequency, and consequently total

energy delivered) remain unchanged, in short-pulse mode,
the energy delivered by a single laser pulse occurs during a
short period of time (approximately 300 μs), while in long-
pulse mode, that same amount of energy is distributed over a
longer period of time (approximately 600 μs or more) [26••].
Pulse length was shown to be inversely correlated with abla-
tion volume, i.e., the shorter the pulse length, the more ablative
is the setting. Extreme pulse length comparisons of ultra-short
and long-pulse mode (150 vs 800 μs) showed an average
60.6% higher ablation volume difference favoring ultra-short-
pulse mode [28]. Despite this apparent lower efficiency, long-
pulse mode showed to produce less fiber tip degradation and
stone retropulsion [26••, 29, 30, 31•]. However, there is still
some controversy in the subject, with some authors consider-
ing long pulse to be as ablative as short pulse [32•], or studies
showing short-pulse lithotripters producing less retropulsion
than more powerful long-pulse lithotripters [33]. There is also
the general belief that long pulse produces smaller residual
fragments and promotes a more “dusting” technique.

Regardless of the Ho:YAG lithotripsy domination, thulium
laser technology, known for its usefulness in prostate ablation
using continuous laser emission, and consequently considered
unsuited for lithotripsy, has evolved and is now capable of
pulsed laser emission. Although its usefulness in lithotripsy
was demonstrated back in 2005 [34], only recently has it gained
more attention. It has shown to be 2- to 4-fold faster without any
significant heat increase and also producing three times less
retropulsion, sometimes none at all, in comparison to
Ho:YAG lithotripsy [35–37, 38•]. Pulsed thulium lithotripsy
looks promising; however, true clinical studies are still lacking.

There is a new technology developed for a high-power 120-
W Ho:YAG lithotripter, called the Moses effect. The theory is
that this lithotripsy mode emits a modulated laser pulse whose
first part divides the water between laser fiber tip and the stone,
allowing the second part of the pulse to hit the stone unobstruct-
ed, more efficiently and with less retropulsion. However, on a
closer look at the official high-speed videos, it reveals to bemade
of two separate laser pulses with a short time interval between
them, rather than a single “modulated” laser pulse. Surgical
opinions and in vitro experiments have indeed shown that this
Moses effect reduced retropulsion [39, 40] and is significantly
more ablative; however, in vivo experiments did not show any
significant differences in terms of lasing and procedural times
between regular and Moses lithotripsy techniques [40].

Recently, a novel Ho:YAG laser lithotripsy mode has
been developed: burst laser lithotripsy (Fig. 1). Each burst
consists of three individual laser pulses, the first one being
the more energy intense while the last one the least energy
intense, having successive increasing pulse lengths and
which are emitted in a rapid succession after one another
[41•, 42, 43]. The novel burst mode is significantly more
ablative, achieving 60% higher ablation volumes than
standard lithotripsy at similar power and energy settings
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[41•]. Possibly, the synchronized continuous variation of
pulse energy and pulse length of high-frequency burst
pulses, throughout the same lithotripter setting, might im-
prove and speed up laser lithotripsy procedures in the
future.

There have been also some efforts to incorporate use-
ful auxiliary technologies into laser lithotripters. These

include real-time stone/tissue differentiation using auto-
fluorescence preventing the laser from firing against any
structure other than the stone surface [44], or the at-
tempt of in vivo analysis of urinary stone composition
[45]. Some manufacturers are also trying to make care-
fully designed user interfaces, because most lithotripters
are not as user friendly [46•].

Table 1 Summary of the advances or technical aspects of laser lithotripsy, its complications, and their prevention

Advancement or technical aspect Benefit Verdict

Laser lithotripters Long pulse length (pulse
duration or pulse width)

• Less fiber tip degradation
• Less stone retropulsion
• Smaller residual fragments
• Ideal for “dusting”

Gradual rise in its use

Moses effect (modulated
laser pulse)

• More ablative (in vitro)
• Less retropulsion

• No significant difference between lasing
and procedural time in vivo

• Limited availability (one manufacturer)
• Costly

Burst laser lithotripsy • Greater ablation volume • Likely to be used more often
• Limited availability (one manufacturer)

Thulium laser (pulsed) • More ablative than Ho:YAG
• Less retropulsion

• New technology
• Very limited availability
• Lack of clinical studies

Laser fibers Ball tip fiber • Easier insertion in deflected scope • Initial benefit lost after a few seconds
with degradation

Tip cleaving tools • All were equivalent • Simple scissors are equally effective

Leaving fibers coated • Greater stone ablation
• Easier to pass in the scope
• Safer than stripped fiber

• More advantageous than stripped fibers
in several categories

Stripping of fibers • Debatable higher stone ablation • Significantly less advantages than coated
fibers

Laser settings and
technique

Fragmentation technique • Faster ablation of primary stone • Excellent for bladder or PCNL

Dusting technique • No fragments (dust)
• No basketing
• Decreased ureteral access sheath use

• Ablation itself takes more time,
compensated by other time gains

• Ultra-high-frequency lithotripters further
shorten surgical time

Pop-corning • Ideal for multiple smaller stone
fragments in an enclosed space

Avoids endless chase of fragments

Helpful technique, complementing other
lithotripsy methods

Pop-dusting • Similar to pop-corning, but creating
more dust

• Helpful technique, complementing other
lithotripsy methods

Complication Prevention

Laser safety and related
complications

Fever, subcapsular hematoma • Reduce operative time
• Use low-pressure ureterorenoscopy
Confirm negative urine culture

Local thermal damage • Never close irrigation
• Intermittent laser use
• Cooled irrigation if necessary

Eye damage • Use eye glasses (simple ones will do)
• Avoid laser fibers near eyes

Collateral instrument damage • Keep fibers coated for better
identification and regularly cleave them

• Respect the safety distance between
scope and laser fiber tip

• Avoid passage of fibers through
deflected scopes or else use BT fiber
or at least a coated fiber
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Laser Fibers

Besides the lithotripter, the laser fiber used also plays a vital
role in the lithotripsy procedure. It is already known that larger
laser fibers hinder the flow of irrigation fluid, limit the flexi-
bility of instruments, and produce more retropulsion as well as
larger stone fragments [26••, 47, 48•, 49, 50]; hence, the urol-
ogists prefer for small-diameter laser fibers, especially in flex-
ible ureterorenoscopy. Additionally, there is emerging evi-
dence about significant performance differences (e.g., on flex-
ibility, degradation, ablation capabilities) among laser fiber
manufacturers and no single fiber seems to be an ideal per-
former in every situation [51••, 52••] corroborating older stud-
ies on the subject [53•]. These performance differences should
also be considered together with the manufacturers’ misinfor-
mation and mislabeling issues about laser fiber diameters,
which were discussed not so long ago and these issues are
far from being settled [48•, 54]. Even small-diameter changes
can have a critical impact, because they indirectly affect ac-
cessibility, visibility, efficiency, total surgical time, and the
lithotripsy procedure as a whole [48•]. On the other hand,
pulsed thulium lasers are able to use smaller diameter laser
fibers, than the ones used with the Ho:YAG lasers,
representing a clear advantage and affecting favorably on the
abovementioned aspects [55].

Lately, much attention has been given to ball-shaped tip
(BT) laser fibers. BT laser fibers are particularly interesting
because of their reduced insertion force in a completely
deflected working channel without damaging it [56].
However, those features are lost as soon as laser emission
occurs, because of the laser fiber tip degradation, the so called
“burn-back” effect. Hence, most of these BT fibers should be
only used once for a single, deflected working channel passage
and at the very beginning of the surgery, because after several
seconds of laser emission, they exhibit exactly the same

characteristics as standard laser fibers [57]. Additionally, no
better ablation properties where found on these special (and
more costly) designed fiber tips in comparison to single-use
standard fibers [56, 57]. Regarding reusable fibers, they show
exactly the same tip morphology and degradation as new
single-use standard fibers, as well as similar performances as
long as they are not damaged along their length or at the
connector. Although reusable fibers are more expensive than
standard single-use fibers, they decrease fiber costs after the
third and subsequent uses [57]. Yet other authors have shown
that the use of single-use laser fibers can help decrease the
overall cost of flexible ureterorenoscopy [58].

Still, laser fiber degradation, fiber fracture with smaller
bend diameters or burn-back at its tip, affects every fiber,
regardless of its shape or type (single-use or reusable fibers).
It has been demonstrated that higher pulse energies, shorter
pulse lengths, or harder stone material are more detrimental to
laser fibers, in particular to their tips [26••, 29, 59•]. But there
are also some conflicting results from other authors claiming
that there is a trend for less fiber fracture with higher pulse
energies [52••].

Related to these degradation issues is laser fiber tip prepa-
ration. This old, but still current practice of laser fiber prepa-
ration can be done before and during the procedure (to “re-
new” the fiber tip) and consists of stripping off the terminal
portion of the plastic fiber coating and then cleaving several
millimeters off the end of the glassy fiber components using
special instruments (e.g., laser fiber stripper, ceramic scissors)
[60–62, 63••]. One publication compared several cleaving
methods, demonstrating that the “scribe pen” cleaving tool
produced the highest average power output. However, these
measurements were done without any laser emission, thus
without considering any degradation issues over time [64].
Another paper analyzed the influence of stripping and cleav-
ing methods of laser fibers on lithotripsy performance. The

Fig. 1 Graphic representation of
differences between standard
(short-pulse) laser lithotripsy,
high-frequency laser lithotripsy,
long-pulse laser lithotripsy, and
burst laser lithotripsy over time
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authors concluded that coated fibers outperformed stripped
fibers; were not exposed to possible initial cladding damage
caused by stripping; prevented damage caused by tip cleav-
age; and avoided cladding or other silica components to break
off during lithotripsy as well as being more visible during the
treatment. They also concluded that simple cleaving methods
such as using a metallic surgical scissor were as good as more
costly methods, as long as the fibers remain coated [63••].
Some of these results favoring coated fibers have been con-
firmed by other researchers [65]. Another advantage of keep-
ing the fibers coated is that most of these fibers are able to pass
through all angles of deflections in most scopes, while
stripped fibers cannot without being harmful to the scopes’
working channel [66]. However, there is also evidence that
initial advantages of certain cleaving methods over another
level themselves out and the fibers become quite similar in
performance in the first minutes of lithotripsy, because of
equal, short-term fiber degradation [65, 67, 68•]. However,
even over this topic, there is controversy among researchers,
with some advocating against routine cleaving [67], others
endorsing fiber tip preparation and renewal after 15 min or
10,000 J of laser emission, which is also important for reus-
able fibers [63••, 68•, 69], while still others claim that stripped
fibers achieve greater stone ablation [65].

There are also other developments that can change the laser
fiber as we know it. One of them is a miniaturized integrated
thulium laser fiber and a stone basket. This device may min-
imize stone retropulsion, increase scope flexibility, allow
higher saline irrigation rates through the working channel,
reduce material degradation compared with separate fiber
and basket manipulation, and reduce laser-induced nitinol
wire damage [70]. The other is a more peculiar development:
a fiber optic muzzle brake tip made of stainless steel to apply
on thulium laser fibers. Similar to muzzle brakes used in rifles
and artillery canons to reduce recoil and redirect propellant
gases sideways, this laser fiber muzzle brake not only reduces
stone retropulsion by 85%, but also provides minimal fiber
degradation and an efficient stone ablation [71].

Laser Settings and Technique

Most experts agree that fragmentation settings with higher pulse
energies (> 0.5 J) and shorter pulse lengths have advantages,
because they speed up the process of breaking up a large stone
into smaller pieces. This can be speedy and useful in the bladder
or in kidney stones with a large caliber percutaneous approach.
However in ureterorenoscopy, this technique may also turn a
single large problem intomultiple, more time-consuming smaller
problems. This is the reason why many urologists prefer to use a
“dusting” technique [72–74]. Although dusting settings with low
pulse energies (0.2–0.5 J), higher frequencies, and preferably
longer pulse lengths ablate less stone material per unit time, it
has several advantages: it decreases the use of ureteral access

sheaths and therefore reduces potential ureteral trauma [75••,
76]; basket-associated complications are reduced because dust
is naturally eliminated [73]; in the long run, it even reduces
operative time by 20–40% by avoiding lengthy extraction pro-
cedures [73, 75••, 76]. Besides using low pulse energies for
dusting, some authors also recommend keeping the laser fiber
slightly away from the stone to “defocus” it and produce smaller
fragments [75••]. With the recent arrival of high-powered high-
frequency long-pulse Ho:YAG lithotripters, ultra-high pulse fre-
quencies are available (up to 80 Hz), further speeding up the
dusting lithotripsy procedure [77–79]. Despite all this evidence,
according to an international survey, most urologists still use
lithotripter settings around 10 Hz and 0.8 J [80]. However, it
must also be acknowledged that if the dust does not evacuate
spontaneously, stone-free rates in patients can be lower and this
increases the risk of future stone-related events [75••, 81].

All the aforementioned settings and modalities relate to
contact lithotripsy, which constitutes the first (and usually
the only) stage of the lithotripsy procedure. However, when
numerous smaller fragments result, which are still big enough
to need treatment, but too time-consuming to chase individu-
ally, a second stage (completion) non-contact lithotripsy can
be performed. The aim of non-contact lithotripsy is to pulver-
ize these fragments and allow their spontaneous passage [82],
preferably in a smaller and enclosed space such as a calix to
increase the efficiency [83]. Two different techniques can be
employed. One is the “pop-corn” technique, whose optimal
settings have been confirmed by using a higher pulse energy
(≈ 1.5 J), usually associated with a high-frequency (20–
40 Hz), long-pulse mode, as well as a small-diameter laser
fiber, and taking asmuch time as possible to produce clinically
insignificant fragments [84•]. The other one is the “pop-
dusting” technique, quite similar to the pop-corn technique
but using a lower pulse energy (0.5 J), resulting in finer frag-
ments without compromising fiber tip burn-back [82].

However, fragment size may not only be related to laser
lithotripter settings, but also on the surgical technique
employed, i.e., how the surgeon approaches the stone with
the laser, i.e., “perforating,” “chipping,” “cutting into pieces”
vs working uniformly and tangentially on the surface, by
“dancing” or “painting” the stone with the laser and taking
care not to break off large fragments from the main stone
[26••, 75••, 85, 86]. Thus, even the best dusting setting, when
used improperly, can produce large stone fragments.

Concerning settings and technique, it is the authors’
opinion that one should use lower pulse energy levels, with
long pulse length (thus achieving smaller residual frag-
ments and minimizing retropulsion, as well as reducing
laser fiber degradation), and very high frequencies as tech-
nically possible to “go faster” and speed up the procedure.
The laser fiber should be moved uniformly over the stone,
without chipping or fragmenting the stone. The surgeon
should be aware of the resulting fragment size, and if
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necessary adjust the settings, or even use a pop-corn tech-
nique to finish the procedure.

Laser Safety and Related Complications

Ho:YAG laser lithotripsy is an efficient and safe technology
for the treatment of urinary stones in almost any patient group,
ranging from young children to adults and older patients,
pregnant women to spinal cord injury patients, from solitary
to allograft kidneys, or patients on certain medications and
anticoagulants. Its safety profile has been largely demonstrat-
ed and still is in countless and recent safety-oriented studies
[87•, 88•, 89, 90•, 91–98, 99•, 100, 101•]. Yet there are still
some direct and indirect complications and safety concerns
about laser lithotripsy, which have been recently researched.

The most frequent complication in laser lithotripsy is fever
[102]. Renal backflow and infected urine fluid reabsorption can
be one of the causes, and curiously retrograde intrarenal surgery
(RIRS) has higher total fluid absorption than percutaneous
nephrolithotomy (PCNL) procedures [103], which makes sense
considering the enclosed space in RIRS. The presence of a pre-
operative stent, obstructive pyelonephritis, a positive preopera-
tive bladder urine culture result, female gender, increased stone
size, or lengthy operating time are significantly associated with
postoperative fever and risk of sepsis [104, 105]. Spinal cord
injury or patients with severe motor disabilities are in particular
risk of sepsis (27%) after laser lithotripsy [106].

Bleeding is also a concern and several cases of renal sub-
capsular hematomas have been reported with Ho:YAG laser
lithotripsy [102, 107, 108]. Yet it is questionable that these
infections or bleeding complications were exclusively related
to the Ho:YAG technology itself, because they are also known
to occur in ureterorenoscopy without the use of laser lithotrip-
sy [109]. On the other hand, one should bear in mind that there
are at least three reported mortalities resulting from ureteral
perforation and retroperitoneal bleeding using the Ho:YAG
laser, although it is not specified if it was during a lithotripsy
or endoureterotomy procedure [110]. In any case, the risk of
subcapsular hematoma can be reduced by avoiding prolonged
endoscopy and performing ureterorenoscopy under low pres-
sure [111, 112], and the importance of always having a nega-
tive urine culture before any RIRS cannot be overemphasized.

Lately, attention has been given to local temperature rise at
the site of laser lithotripsy, i.e., in the ureter or the kidney.
Multiple authors and papers have confirmed that holmium
laser emission in long bursts, even at lower power settings,
does indeed rise fluid temperatures (up to 70 °C or more),
particularly when irrigation is closed, potentially causing tis-
sue injury [113•, 114•, 115•]. Since thulium laser has compa-
rable absorption properties in water, it also shows similar tem-
perature rises as the Ho:YAG laser [116, 117]. Considering
that only 4.18 J of energy is needed to rise the temperature of
1 mL of water by 1 °C [118], and that holmium laser energy is

highly absorbed by water, it comes as no surprise, that even
with modest lithotripter settings providing dozens of Joules
per second to a fewmilliliters of water enclosed in a very small
space (e.g., a segment of the ureter or a renal calyx), the tem-
perature is able to rise considerably and literally cook the
surrounding tissues. Therefore, an endourologist should be
aware of the risk of temperature rise during laser emission
and implement a variety of techniques (higher irrigation flow
rates, intermittent laser activation, and potentially cooled irri-
gation fluid) to control and mitigate thermal effects during
laser lithotripsy and avoid unnecessary damage of the sur-
rounding tissues [113•, 114•, 119].

In summary, considering the aforementioned issues, and
with very few exceptions, patient-related safety and compli-
cations are probably less dependent on the laser technology
itself, but dependent on multiple other factors relating to the
procedure, e.g., the surgeon’s skill, the use of ureteral access
sheaths, basketing instead of dusting, good intraoperative vis-
ibility, and operative time [63••, 73, 75••, 110].

But laser safety is not only about patient-related problems, but
also concerns the safety of urologists and other staff in the oper-
ating room (OR). Eye injury is one of the main concerns when
lasers are used; however, it was demonstrated that Ho:YAG la-
sers can only cause damage when all the following three condi-
tions are met: high-energy laser settings, at very close distances
(0–5 cm), and with no eye protection. Simple eyeglasses are
equally effective in preventing laser damage as special laser safe-
ty glasses, and should an eye burn still occur, it would be restrict-
ed to the cornea [120••]. Not surprisingly, no eye injuries were
reported so far with the use of Ho:YAG lasers [110]. Considering
all reported adverse events with Ho:YAG lasers, if there is harm,
it is to the patient or the surgeon (minor skin burns for the latter),
but never to non-medical operators [110].

Radiation exposure for the patient as for the surgeon is a
familiar problem in laser lithotripsy. Studies have confirmed
the positive correlation between stone burden and radiation
exposure during laser lithotripsy. Hence, clinicians should con-
sider strategies to reduce the total radiation exposure, such as
using pulsed instead of continuous fluoroscopy [121], although
there are even defenders of using no fluoroscopy at all [122].

Material-related safety is also an issue, because laser energy
can be harmful to other instruments, in particular to the delicate
scopes used in endourology. To prevent accidental material
damage, several strategies are recommended: to keep the laser
fiber tip coated for better identification and to know its where-
abouts [63••] and at a reasonable safety distance from the opti-
cal end of the scope (approximately one fourth of the endoscope
field of view) [123••]; to regularly cleave the fiber tip to prevent
back burns and retrograde laser emission [69]; to avoid passing
a laser fiber through a deflected ureterorenoscope, and if inev-
itable, it is better to opt for an unused BT fiber or a recently
cleaved and coated (not stripped) laser fiber [57, 124]; to avoid
narrowed scope deflections with active laser fibers, and if
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inevitable, to change to smaller core fibers since they are less
likely to fracture [59•]; and to avoid laser emission adjacent to
auxiliary instrument components such as guidewires or basket
tip parts since they are susceptible to breakages [125, 126].

Conclusions

After 20 years of few technological developments, with the
arrival of variable pulse length Ho:YAG lithotripters, new
lithotripsy parameters can be manipulated to their advantage
by the endourologist. There is an effort to integrate new lith-
otripsy modes and helpful technologies into lithotripters, in-
cluding the use of pulsed thulium lasers instead of the
Ho:YAG. Laser fibers from several manufactures perform sig-
nificantly differently from one another and BT laser fibers
have some short-lived advantages that can also be obtained
with standard laser fibers. Laser fiber stripping is always det-
rimental for their performance and fiber cleavage can be done
securely with simple metallic scissors. There are several set-
tings for contact and non-contact laser lithotripsy, each with
their own advantages and disadvantages, but the importance
of the procedural movements of the laser fiber by the surgeon
to deliver the laser energy to the stone should not be neglected.
There are some reported complications with laser lithotripsy,
but most of them are procedure-related and not with the laser
technology itself. The remaining few safety issues can be pru-
dently avoided, making laser lithotripters one of the safest
instruments urologists can use in any patient group.
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