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Summary

The inter-areal wiring pattern of the mouse cerebral cortex was analyzed in relation to a refined 

parcellation of cortical areas. Twenty-seven retrograde tracer injections were made in 19 areas of a 

47-area parcellation of the mouse neocortex. Flat mounts of the cortex and multiple histological 

markers enabled detailed counts of labeled neurons in individual areas. The observed lognormal 

distribution of connection weights to each cortical area spans 5 orders of magnitude and reveals a 

distinct connectivity profile for each area, analogous to that observed in macaque. The cortical 

network has a density of 97%, considerably higher than the 66% density reported in macaque. A 

weighted graph analysis reveals similar global efficiency but weaker spatial clustering to that 

reported in macaque. The consistency, precision of the connectivity profile, density and weighted 
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graph analysis of the present data differ significantly from those obtained in earlier studies in the 

mouse.

eTOC Blurb

Gămănuţ et al. investigation of anatomical cortico-cortical connections in mouse at the meso-scale 

level shows that almost all possible connections exist. Efficiency of the network and specificity of 

the connections is ensured by the existence of weighted connectivity profiles.
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Introduction

The concept of the cortical area is rooted in the notion of localization of function in the 

cortex, where individual areas are posited to have a distinct architecture, connectivity, 

function, and/or topographic organization (Felleman and Van Essen, 1991; Van Essen, 

2003). The mouse is increasingly used as a model system for investigating the cortex, where 

complex sensory (Ferezou et al., 2007), motor (Li et al., 2016) and cognitive (Carandini and 

Churchland, 2013; Kim et al., 2016; Manita et al., 2015) functions have been shown to 

depend on interactions among cortical areas via inter-areal connections, as well as on 

dynamic control involving higher-order thalamic nuclei (Mease et al., 2016; Sherman, 

2016). The highly interactive nature of cortical processing motivates efforts to investigate the 

statistical properties of inter-areal networks (Wang and Kennedy, 2016), and the 

development of large-scale models of the cortex that may provide insights into brain 

function in health and disease (Bullmore and Sporns, 2012).

Early evidence for distributed hierarchical processing within the cortex (Felleman and Van 

Essen, 1991) drew on collated tract tracing data from numerous studies using diverse 

methods of generally low sensitivity. This limited the reliability of inferences about 

statistical features of large-scale cortical networks (Kennedy et al., 2013), and notably led to 

underestimating the density of the cortical graph (i.e., the fraction of connections that can 

exist which do exist). This in turn leads to a failure to appropriately constrain the range of 

plausible models of cortical networks (Markov et al., 2013b). These considerations motivate 

the development and use of sensitive tract-tracing methods along with accurate areal 

parcellation (Bassett and Bullmore, 2016). The high density and wide range of connection 

strengths of the cortical graph (Markov et al., 2014a; Markov et al., 2011) point to the 

importance of quantifying the weights of the connections linking different cortical areas 

(Ercsey-Ravasz et al., 2013; Oh et al., 2014; Song et al., 2014; Ypma and Bullmore, 2016).

Recent quantitative retrograde tracer studies in the macaque (Markov et al., 2014a; Markov 

et al., 2011) demonstrated that compared to previous studies there were (i) many more inputs 

to each cortical area; (ii) a wider 5-order magnitude range of connection strengths to each 

area; and (iii) a much narrower range of variability in the strength of individual pathways 

tested with repeat injections. These findings support the concept of each area having a 
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distinctive fingerprint or connectivity profile defining its functional specificity (Bressler and 

Menon, 2010; Markov et al., 2011; Passingham et al., 2002); they contrast with earlier 

reports suggested that connection weights in cortical pathways are highly variable across 

individuals (MacNeil et al., 1997; Musil and Olson, 1988a, b; Olson and Musil, 1992; 

Scannell et al., 2000). Hence, it is important that the mouse database be investigated for its 

statistical variability of connection weights in order to estimate the validity of the 

connectivity profiles.

The weight-distance relations observed in macaque cortical connectivity data lead to a one 

parameter predictive model that captures multiple features of the cortical network including 

its spatial embedding, wire minimization, frequency distribution of motifs, global and local 

efficiencies and a core-periphery architecture (Ercsey-Ravasz et al., 2013). Spatial 

embedding constrains numerous geometrical features in a similar fashion in mouse as well 

as macaque cortex (Horvat et al., 2016b).

A recent systematic connectivity study obtained brain-wide weighted data (Oh et al., 2014) 

using anterograde tracer injections on a fixed grid of injection sites. Because most of the 

reported injection sites (>70%) spanned multiple areas, connectivity at the level of 

individual areas was inferred using a computational model involving several theoretical 

assumptions. Their probabilistic model of connectivity yielded an estimated density for the 

inter-areal cortical graph of 35–53%, much lower than the 66% reported for the macaque 

cortical graph (Markov et al., 2014a). The lower density reported in the mouse and also in 

the rat (Bota et al., 2015) is surprising given that one might anticipate increased graph 

density with decreasing brain size (Horvat et al., 2016b; Ringo, 1991). Furthermore, an 

earlier tracer study of mouse visual cortex (Wang et al., 2012) reported a considerably higher 

subgraph density (99%) than the 77% reported for visual areas by Oh et al., (2014). These 

findings suggest that the computational procedure used in the Oh et al., 2014 study to infer 

the connectivity of single areas from injections involving multiple areas might have resulted 

in significant numbers of false negatives. A re-analysis of the Oh et al., (2014) dataset 

estimated a whole-cortex graph density of 73% (Ypma and Bullmore, 2016). Hence, in the 

present study we focused on an empirical approach that is deterministic insofar as it depends 

on direct anatomical observations.

Here we investigate the mouse cortico-cortical connectivity and address two key issues: the 

density of the mouse cortical graph and the consistency of connectivity profiles across 

individuals. We minimized experimental variability by targeting injections of a retrograde 

tracer in post-hoc identified areas rather than a fixed grid of anterograde injections (Oh et al., 

2014). Our choice of retrograde tracer provides several advantages for quantifying 

connection strengths (see Suitability of DY tracing in STAR Methods for a detailed 

discussion). We coupled retrograde tracing with flatmounting the cortex, which is 

particularly advantageous when combined with multiple histological stains used for cortical 

parcellation (Qi and Kaas, 2004; Sincich et al., 2003; Wang and Burkhalter, 2007; Wang et 

al., 2011; Wang et al., 2012). Our experimental approach allows a positive identification of 

both injected cortical areas and of 41 areas and 7 sub-areas where the retrogradely labeled 

neurons are located.
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Our results show that the mouse cortex is ultra-dense, with a graph density of 97%, 

significantly higher than the probabilistically-based range of 35–73% (Oh et al., 2014; Ypma 

and Bullmore, 2016). The high density of the mouse cortical graph suggests that the activity 

pattern of a given area is interrelated via its connectivity profile to a widespread pattern of 

influences across the cortex. It seems implausible that smaller brains would be associated 

with greater variability of connection weights (as reported in Oh et al., 2014), as this in 

conjunction with a high graph density would entail lower specificity of the structure and 

function of the mouse cortical network compared to the macaque. Our analysis of the 

present retrograde labeling revealed variability of connectivity and connectivity profiles in 

the mouse comparable to those observed in macaque (Markov et al., 2014a). Likewise, our 

deterministic approach leads to a weight-distance relationship that is quantitatively similar in 

mouse and macaque (Horvat et al., 2016b), in contrast to the modeled data from the Oh, et 

al., (2014) study. Our results demonstrate that the densely-interconnected network of mouse 

cortex contains highly selective area-to-area connectivity profiles, which in primates 

underlie distributed hierarchical cortical processing (Markov et al., 2011).

Results

High-resolution cortical parcellation

The spatial precision of the alignment of DY labeling with the areal map is a critical 

experimental issue given the small size of the mouse cortex. PVtdT mice allowed 

parcellation of cortex into 25 parcels excluding entorhinal, hippocampal and piriform cortex 

(Figure 1A) and provided reliable landmarks for aligning matching/complementary 

expression patterns of M2, VGluT2, CO (Figure 1, S1C–D) and visuotopically mapped 

borders (Wang and Burkhalter, 2007). In each brain this procedure allowed positive 

identification of 115 of the 133 borders (86.5%), the remaining borders were inferred from 

the known patterns of CO, M2 and VGlutT2 (Figure S1B). Importantly, because the brain 

map is created for each tangentially sectioned individual brain it avoids assigning labeled 

cells to a standard template and obviates aligning large numbers of adjacent sections. Our 

approach largely takes into account the individual differences in parcellation across subjects 

(Krubitzer and Seelke, 2012) and significantly differs from that employed in two recent 

studies (Oh et al., 2014; Zingg et al., 2014), which mapped corticocortical projections onto a 

standard Allen Reference Atlas (ARA, (Dong, 2008), generated by averaging variations of 

background fluorescence across hundreds of cortices. This Common Coordinate Framework 

(CCF, Allen Institute, brain-map.org) has become a widely used parcellation of mouse 

cerebral cortex (Figure S1A).

Within the 25 parcels, additional areas were identified by comparing PVtdT with the 

patterns of M2, VGluT2 and CO expression (Figure S1C–F). These included: POR, PORa 

[previously referred to as 36p, (Wang et al., 2011)], AUDv, AUDpo, AUDv, DP, MOp, MOs, 

RSPagl, RSPd, RSPv, TEa and TEp). The borders of the visuotopically mapped areas (P, LI, 

LLA, RL, A, AM, PM; (Garrett et al., 2014; Wang and Burkhalter, 2007; Zhuang et al., 

2017) were only partially outlined by any of the molecular markers. Here, the missing 

borders could be filled in by registering PVtdT maps to instructions based on the 

stereotypical size, shape and relative position of areas derived by previous visuotopic 
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mapping (Wang and Burkhalter, 2007). Where this procedure differs from template 

matching is that areal boundaries are derived from the PVdtT map of each individual case. 

The grand total was 41 areas, of which SSp was subdivided into 7 subareas (Figure S1B). 

The variance of areal border assignments was estimated to be < 150 μm (for details see 

Parcellation of the cortex in STAR Methods).

Retrograde tracing with DY

For details about DY see Suitability of DY tracing in STAR Methods. Representative 

examples of the DY labeling at low power are shown Figures 2A–F (note, cell counts were 

acquired using higher magnification). The area V1 injection shown in Figure 2A–C was 

confined to the lower peripheral visual field representation near the tip of V1 (Marshel et al., 

2011). As expected from previous axonal tracing and topographic mapping experiments 

(Garrett et al., 2014; Marshel et al., 2011; Wang et al., 2007), retrogradely DY labeled 

neurons were clustered at the junction of areas LM, AL, LI and LLA. Additional clusters of 

labeled neurons were found at retinotopically corresponding locations within RL, A, AM, 

PM, MM, P, POR, PORa. In temporal cortex, DY labeling was contained in most areas of 

auditory cortex (AUDp, AUDPo, AUDd and DP) and the ventral portion of the posterior 

temporal area (TEp). On the medial wall, labeled neurons were clustered in dorsal 

retrosplenial cortex (RSPd), the secondary motor cortex (MOs), the dorsal and ventral 

anterior cingulate areas (ACAd, ACAv) and in the prelimbic (PL) and infralimbic (ILA) 

cortex. At the rostral end of cortex, labeling in orbitofrontal cortex was confined to ORBl. A 

complete map of neurons projecting to V1 is shown in Figure S2. The densest inputs 

originate from the occipital, temporal, parahippocampal, retrosplenial, cingulate, 

orbitofrontal, prefrontal cortex, whereas inputs from parietal somatosensory, gustatory, 

visceral and insular cortex are sparse or absent.

Statistical consideration of overdispersion

Variability in the retrograde tracer data from the present study was modeled by analyzing the 

statistical properties of connections resulting from repeat injections of tracers across 

individuals. Scatter plots of the standard deviation vs the mean (see Overdispersion in STAR 

Methods) are shown in Figure 3A, B with indicated dispersion values. Overall, the results 

indicate a negative binomial distribution with dispersion values of 6, which provides a 

reasonable estimate of the expected variability for neural counts obtained with retrograde 

tracing data in mouse. The θ estimate of 6.1 for V1 and LM is somewhat smaller than that 

obtained in the macaque, 7.9 (Markov et al., 2011), suggesting marginally greater levels of 

overdispersion across animals in the mouse data sets. These findings demonstrate that 

overdispersion is a systematic phenomenon of neural retrograde count data in both macaque 

and mouse. Thus, overdispersion needs to be considered in statistical evaluation of such data 

since ignoring it would lead to anti-conservative estimates of the probabilities of significant 

differences in connection strengths, i.e., erroneously assigning significance to small 

differences.

Repeat injections make it possible to examine variability in the raw data of Oh et al., (2014) 

(Figure 3C, D). Although not based directly on counts, we applied the same framework to 

examine the variability in relation to the mean. In contrast to the retrograde tracer data, the 
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anterograde data of Oh et al., (2014) show a dispersion of 1.6 for the somatosensory barrel 

field and 2.3 for area V1 and therefore in both cases indicates a more overdispersed data set 

compared to the retrograde tracing data in the present study; the higher incidence in 

overdispersion in the anterograde data may be related to the difficulties in estimating 

projection strength from measurements of fluorescence intensity (see Effect of template 
matching on the weight distribution of connections).

Lognormal distribution of weights

An intriguing aspect of cortical organization is that many physiological and anatomical 

features are distributed according to a lognormal distribution (Buzsaki and Mizuseki, 2014). 

This is a skewed, heavy-tailed distribution, typically characterized by relatively few very 

strong and very weak values, with many intermediate ones. A lognormal distribution was 

first reported for synaptic weights (Song et al., 2005), and subsequently as a characteristic of 

the distribution of input strengths to a cortical area in macaque (Markov et al., 2011) and 

mouse (Oh et al., 2014; Wang et al., 2012).

Figure 3E, F shows that, for areas LM and V1, the areas analyzed in Figure 3A, B, the 

ordered means of log (FLNe) values follow lognormal distributions. The range of values 

spans 4 to 5 orders of magnitude. The fitted curves (solid lines) do not fall outside the 

expected variability represented by the grey envelopes, indicating that the differences from 

the lognormal prediction are not significant (see Accordance with the negative binomial 
model in STAR methods).

Variability of deterministic connectivity maps in mouse and monkey and the consistency 
of weak connections

The repeatability of connections to a given area across individuals makes it possible to 

evaluate the variability in terms of consistency of individual pathways. By consistency, we 

refer specifically to whether a connection is systematically present across injections (see 

Variability and consistency in STAR Methods).

Figure 4A–C shows violin plots of means of projections for repeat injections and explores 

the variability of the set of inputs to a given cortical area across individuals. In this figure, 

connected areas that are found for all repeat injections in an area are shown in gray and 

those that are absent from a given injection in red. The present study shows low variability 

across injections. Medium to strongly connected areas were found systematically after each 

injection (Figure 4A). Similar findings were obtained in macaque (Figure 4B). The macaque 

data (Markov et al., 2014a) differed from the present observations in mouse in that similar 

levels of inconsistent projections were found in ten of the 13 repeats compared to only three 

out of the 13 in the mouse (Figure 4B). The higher variability in macaque could be related to 

the partial sampling in the macaque study. The relatively low level of variability in the 

retrograde tracer studies of mouse and macaque differs from the high variability observed in 

the raw data in the Oh et al., (2014) anterograde data where inconsistent projections were 

found across nearly all injections and at much larger weight values (Figure 4C).

In Figure 4D, of the 598 possible connections from repeat injections, 581 (97.2%) were 

present and 17 (2.81%) were absent. Absent connections are concentrated in the lower half 
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of the diagram where low mean number of neurons per projection are found. The continuous 

line in Figure 4D indicates the estimated linear classifier for which the probability of a 

connection being present is 0.95 for this model. Its negative slope suggests a dependence of 

connectivity on both features such that small injections would lead to higher probabilities of 

absence at high mean connection strengths. However, only the mean of projection was found 

to contribute significantly to the linear classifier, (log(Mean): z = 5.57, p = 2.56*10−8; 

log(Total): z = 1.7; p = 9.6 10−2), thereby demonstrating no support for this hypothesis. The 

95% classifier based only on the log(Mean) is indicated by the dashed line and corresponds 

to a value of 24 neurons. This indicates that projections containing more than 24 neurons on 

average, will be highly consistently identified (but not always perfectly) across individuals.

In Figure 4E, we performed a similar analysis on the macaque data reported by Markov et al 

(Markov et al., 2014a) from repeat injections in areas V1, V2, V4 and 10. The solid and 

dashed lines correspond to the same models as in Figure 4D but fitted to the macaque data. 

Again, the influence of the total size of the injection was not found to contribute 

significantly to the classifier. The dashed line corresponds to a mean of 18 neurons, slightly 

lower than the value found for the mouse data and close to the value of 10 estimated more 

informally in Markov et al. (Markov et al., 2014a).

Verification of the model of data variability, estimation of dispersion and consistency as well 

as the generality of the lognormal distribution of weights and consistency justified the use of 

a single cortical injection of retrograde tracer in macaque to characterize the projection 

profile of an area (Markov et al., 2014a). The present results show that this also holds for the 

retrograde labeling of cortical pathways in mouse.

The mouse cortical connectome exhibits distinct connectivity profiles

Armed with a description of the distribution of the data, we tested whether there are 

signatures in the sets of projections to each area, as is the case in macaque (Markov et al., 

2011). Alternatively, every individual might present its own sets of connections and weights. 

Specifically, we examined each set of multiply injected areas to determine the minimum 

number of factors accounting for the systematic effects on the data (see Evaluating Akaike 
Information Criterion in STAR Methods).

For areas LM and V1, the model without interaction between explanatory variables AREA 

and BRAIN led to a decrease in AIC (LM: dAIC =23.8; VI: dAIC = 71.4). Thus, for both 

areas, this model yields a better or equivalent balance between complexity and goodness of 

fit than the more complex model. The optimal models were those for which individual 

differences appeared as unsystematic variability, i.e. without an interaction between the 

areas and the individual animals. The presence of such an interaction would have signified 

the presence of individual differences in connectivity profiles beyond the variability among 

animals. Its absence implies that quantitative connectivity profiles do not differ sufficiently 

across cases and therefore that a robust signature (connectivity profile) exists for each area.

Is it possible to observe a connectivity profile when there is overdispersion? In the 

hypothetical case of a Poisson distribution (Figure 5A, see Overdispersion and connectivity 
profiles in STAR Methods), the tight distribution of points about the ordered log normal 
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curve indicates that such Poisson data would show a clear example of a connectivity profile 

or signature and an individual injection would be likely to closely reflect the average 

behavior indicated by the red curve. At the other extreme is the geometric distribution 

(Figure 5C), where the high variability (2–3 orders of magnitude range of variation for each 

projection) obscures the systematic trend of the expected curve (blue). As shown in 

simulations by Scannell (Scannell et al., 2000), data distributed in this fashion would require 

an inordinate number of repeat injections to establish the average behavior of the curve with 

sufficient precision. Note that individual injections could follow any arbitrary path through 

the point cloud, so their value in establishing an areal profile would be of limited 

informativeness. In this case, statistical analysis of a small number of injections would likely 

lead to the conclusion of individual differences in the profile for a single injection site, that 

is the presence of a statistically significant interaction between area and brain injected. The 

simulated results from a Negative Binomial distribution (Figure 5B) with a dispersion 

parameter similar to that found in retrograde labeling in macaque and mouse, falls in 

between the Poisson and geometric distributions. However, with the variation of individual 

injections being only 1 order of magnitude, far less than the span of the ordered log normal 

curve, single injections are much more representative of the average curve than for 

geometrically distributed data. As shown in our data, the variation among animals is not 

sufficient to reject the proposition that projection profiles from different animals are the 

same.

In order to illustrate the effects of a geometric distribution (Figure 5C) of the anterograde 

data and negative binomial distributions (Figure 5B) for the retrograde data on connectivity 

profiles, we show a box plot analysis for area V1 for the present data (Figure 5E) and for the 

Oh et al., 2014 data (Figure 5F). This shows that the negative binomial distribution 

corresponds to a significantly more demarcated connectivity profile compared to the data 

with a geometric distribution in Figure 5F from Oh et al., 2014.

Effect of template matching on the weight distribution of connections

Comparison of raw connection strengths with those obtained from the computational model 

in Oh et al., 2014 allows appraisal of the modeling assumptions used in that study (see 

ProcessingOh et al., 2014data in STAR Methods). Figure 6A shows the agreement between 

the raw and the computed connections, with only 65% of them being true positives or true 

negatives, whereas 33% are false negatives (found in raw but not in computed) and 2% false 

positives (found in computed but not in raw). Moreover, the squared correlation between the 

true positives is modest, at only 0.58. Comparison of the weight distribution of the raw and 

computed data gives further insight into how the computational algorithm of the Oh et al., 

(2014) transforms the raw data Figure 6B. Here the blue bars are the connections that result 

from the raw non-mixed injections, and red bars the computed set of connections 

corresponding to the raw connections. The computed data equivalent to the 14 injected areas 

returns 314 connections, significantly less than the 478 connections observed in the raw 

data. The 164 connections that are present in the raw data but are absent in the computed 

(white bars), while predominantly weak are nevertheless found throughout the full range of 

weights. Figure 6B using a log scale for connection strength suggests that the Oh et al., 2014 

raw data does not follow the same lognormal distribution as the computed data.

Gămănuţ et al. Page 8

Neuron. Author manuscript; available in PMC 2019 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In Figure S3, nineteen of the 41 cortical areas in an adapted atlas from the present study 

correspond to areas listed in the Figure 6C legend in the atlas used by Oh et al. (2014), 

allowing some direct comparison between the two studies. The present study found 142 

connections in this set of common areas, which contrasts with the 87 connections computed 

for these areas by Oh et al., (2014). Figure 6C shows the set of connections shared by the 

two studies (same source area and same target area). This shows that the computed data 

from Oh et al., (2014) exhibits a lognormal distribution tightly restricted to the top three 

orders of magnitude compared to the broad lognormal distribution in the present study. 

Figure 6D provides a more direct comparison, by contrasting only those connections that are 

non-zero in both studies. They differ significantly in their weight range, and more 

importantly show no correlation (insert Figure 6D). These findings confirm that the 

algorithm used by Oh et al., (2014) to disentangle connections evidently led to significant 

transformations by reducing the number of connections and affecting their distribution of 

connection strengths. This is further supported by comparing those connections in the Oh et 

al., 2014 raw data with the 19 homologous connections in the present data (Figure 6E). 

Although the comparison is limited, this suggests that compared to the computed data, the 

raw data in the Oh et al., (2014) show an improved overlap in the weights and have a modest 

correlation with data from the present study (see Figure 6E insert). However, Figure 6F 

shows that the raw data of the Oh et al., (2014) possess a narrower range of weights 

compared to the present study.

Elsewhere we have shown that the weight-distance relationship is a cardinal feature of the 

connectome in both mouse and monkey, and it accounts for statistical aspects of many 

network features such as the motifs distribution, similarity and core-periphery (Ercsey-

Ravasz et al., 2013; Horvat et al., 2016). In Figure 6G we compare the decline of weight 

with distance in the computed and raw cortico-cortical connections from Oh et al., (2014). 

This shows only a very modest slope for the computed data, by contrast, the slope in the raw 

data is comparable to that found in the present study (Figure 6H). The slope of −0.68 mm−1 

obtained in the present study is similar to that obtained in Horvat et al., (2016). Finally, in 

the Oh et al., (2014) study, our analysis of their raw data from the 26 unmixed injections in 

14 isocortical areas yields a density of 92%, which is consistent with the density of 97% 

observed from our injections (see Partial coverage and global claims in STAR Methods).

In anterograde tracing it is challenging to distinguish between pre-terminal axons and 

boutons and to exclude labeled fibers of passage from the analysis. Further, there is an 

important difference in scale explored by the two tracers; anterograde is subcellular as it 

reveals individual boutons with hundreds to thousands per axon (Binzegger et al., 2004). In 

contrast, retrograde tracing is at the single cell level. These differences are compounded by 

the challenge of distinguishing boutons from interbouton axons when quantifying projection 

strength by measuring optical density (Wang et al., 2012), a difficulty that may contribute to 

the greater overdispersion in the anterograde data compared to the retrograde data (see 

Figure 3). Further, anterograde tracers occasionally label neurons retrogradely, and with 

them their collaterals both in the injected area and other areas to which the collaterals project 

(Reiner et al., 2000). Estimates of terminal densities from anterograde tracers using optical 

density measurements where axons of passage can introduce a significant bias may be less 

accurate than counts of labeled neurons following retrograde tracers. Since the observations 
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of LeVay and Sherk (LeVay and Sherk, 1983), anterograde tracers have been shown to lead 

to retrograde labeling, and this includes the viral tracers used in the Oh et al., 2014 study 

(Wang et al., 2014). This can lead to labeling of local collaterals of the retrogradely labeled 

cells and could explain the secondary anterograde labeling observed in the Oh et al., 2014 

study, where anterograde injections in the pontine nucleus and superior colliculus led to 

levels of labeling in cortex comparable to those reported for cortico-cortical projections (see 

Figure 6I, and Table S1). However, for measuring projection weights, anterograde and 

retrograde techniques are in principle complementary; retrograde labeling for revealing the 

diversity of source neurons, anterograde for informing about target specificity.

The ultra-high density of the cortical graph

Figures 7A, B show the weighted connectivity 19 × 47 and 19 × 19 matrices in which the 

color of each entry represents the log10 (FLNe) value for that pathway. Each column 

provides the FLNe profile of inputs observed for a given area and each row its outputs. The 

rows and columns were ordered so as to maximize the overall similarity between neighbors. 

Source areas of the occipital, posterior temporal and retrosplenial cortex are concentrated in 

the lower third of the matrix. Somatosensory, gustatory, visceral, insular, orbitofrontal and 

prefrontal source areas are clustered in the upper third. Motor, cingulate, auditory and 

parahippocampal source areas are mainly in the middle portion. Much to our surprise we 

found connections between nearly all injected areas. Figure 7A, B shows that the connection 

weights vary over five orders of magnitude, revealing two dissimilar but highly 

interconnected subnetworks. One exhibited strong connections between visual areas, strong 

inputs to occipital cortex from posterior parietal, auditory and retrosplenial cortex, moderate 

inputs from somatosensory, motor and orbital cortex, whereas projections from visceral, 

gustatory and prefrontal cortex were sparse. The other subnetwork (Figure 7A, B) exhibited 

strong inputs to somatosensory cortex from motor, visceral, gustatory, and insular areas, 

moderate input from posterior parietal and orbital cortex, and weak input from retrosplenial 

and prefrontal areas. Inputs to both subnetworks from cingulate parahippocampal and higher 

auditory cortex were similarly strong.

In the edge-complete 19 × 19 matrix (Figure 7B) (meaning that the connectivity status of all 

node pairs are known), most connections between pairs were reciprocal, except for 2% 

(8/342 which were unidirectional showing no detectable inputs from P, LM, AL and RL to 

GU (Figure 7B), and from AL and PM to MOp. Note that in Figure 7B the distribution of 

colors is not perfectly symmetrical across the diagonal, indicating that the connection 

weights between pairs tended to be asymmetrical. For example area MOp received only 

weak inputs from visual auditory and posterior parietal areas but projected back strongly to 

these areas. Overall, inputs from gustatory, visceral, motor, somatosensory and prefrontal 

cortex to visual and auditory areas were stronger than the ascending inputs from these 

sensory areas.

The G19×19 graph has M = 334 (binary) directed links from the maximum possible of 

N(N-1) = 342, and therefore it is strongly interconnected, with a very high graph density of 

ρ=0.97 (97%)(see Network density in STAR Methods). Because it is an edge complete 

subgraph of FIN, the density of G19×19 is expected to be comparable to that of the FIN.

Gămănuţ et al. Page 10

Neuron. Author manuscript; available in PMC 2019 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The in-degrees of the G19×47 graph (i.e., the number of source areas projecting to each of 19 

target areas), range from 38 to 46 with a mean of <k>in = 44.8 (Figure S4A); their 

distribution is asymmetrical and not concentrated around the mean, but instead strikingly 

close to the maximum (Figure S4A, top right). To estimate the density of the FIN, the 

expected number of connections MFIN ~ <k>in NFIN = 2107 for the FIN (G47×47) leads to 

the prediction that ρFIN = MFIN/[NFIN (NFIN − 1)] ~ <k>in/(NFIN − 1) ~ 0.97) (see Network 
density in STAR Methods).

A dominating set analysis (Markov et al., 2014a) shows that for all sets of 2 target area 

combinations from the 19 target parcels (171 pairs), 92% of them dominate 100% of the 47 

parcels (Table S2) (see Network density in STAR Methods). Thirteen parcels out of 19 

(68%) are fully connected.

Since the present study sampled only 19 areas, we may ask whether it is legitimate to infer 

the high-density of the full network from this data. To answer this question, in a first 

instance, we have examined the coverage of the injected areas across the cortex (Figure S5). 

This shows that injected areas are reasonably well distributed. Nevertheless, could we, by 

chance, have injected a subset of areas in the mouse that exhibit unusually high in-degrees? 

Our evidence indicates this is not the case (see Partial coverage and global claims of the 

STAR Methods); the necessary equivalence of in- and out-degrees coupled with graph 

theoretic analysis of the different data sets and parcellation schemes supports the conclusion 

that the mouse cortical connectome is indeed ultra-dense.

Communication efficiency in the weighted cortical network

Increasingly, the investigations of weighted networks are providing deeper insights into 

large-scale brain networks (Alstott et al., 2014; Bassett and Bullmore, 2016; Ercsey-Ravasz 

et al., 2013; Markov et al., 2013b; Muldoon et al., 2016; Song et al., 2014). Continued 

refinement of such approaches will be important for understanding the consequences of the 

ultra-high density network of the mouse brain relative to the sparser networks of larger 

brains (see Network communication efficiency in STAR Methods).

When sequentially removing from the macaque network the weakest (smallest FLNe) links, 

the global efficiency Eg stays nearly constant (see Figure 8A, green line) until more than 

76% of the links are removed, indicating the existence of a high bandwidth, global efficiency 

backbone embedded within the network. This ensures a stable, baseline, high bandwidth 

average information transfer rate across the cortex, independent of the activity along the 

weak, long-range connections. The local efficiency El, however, shows a fast increase with 

the sequential removal of the weak links (see Figure 8A, blue line). This happens because, as 

explained in (Ercsey-Ravasz et al., 2013) and (Markov et al., 2013b), pruning the 

interregional shortcuts makes the network more localized, modular, and decreases 

interactions between the diverse functional modalities. As the weak links are removed, the 

local pathways between neighbors of a node through the rest of the network are mostly made 

of high bandwidth (large FLNe) projections, resulting in higher conductance values. The 

picture that emerged from this analysis for the macaque was that the cortical network has a 

structure which is well adapted to high-volume local information processing via high-

conductance local pathways and also to a stable, nearly constant efficiency level of global 
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information processing. It also revealed the relationship between network modularity and 

long-distance functional interactions, illustrated by the distribution of network communities 

that form when weak long-range links are present or absent (see Figure 8B, C).

How does the mouse network compare with the macaque? Figures 8D, E, F show the results 

of the same analysis for the mouse data. Interestingly, the overall behavior of transmission 

efficiency is similar between the two mammals, suggesting that these features are strongly 

constraining for the mammalian brain. As Eg and El are both captured by the EDR in the 

macaque (Ercsey-Ravasz et al., 2013) and as EDR holds in the mouse as well (Horvat et al., 

2016), this reflects EDR as an organizational principle. In mouse, as in macaque, the areas 

also cluster into functional regions (compare Figure 8E with 8B). Further, the high-

bandwidth backbone (Figure 8F) presents stronger clustering than the full network (Figure 

8E), just like in macaque (compare Figure 8C vs Figure 8B). However, there are significant 

differences between the two species. From a network point of view, the clusters in the 

macaque are stronger, with more high-bandwidth intra-cluster connections than high-

bandwidth inter-cluster connections, especially for primary areas, whereas in the mouse the 

clusters are weaker with significant inter-cluster high-bandwidth connections. Moreover, 

while there are no strong connections between primary areas in the macaque, those do 

appear in the mouse, notably with a projection from V1 to SSp-bfd. When the same analysis 

is repeated on the Oh et al., 2014 data (see Figure 8G), the local efficiency has a weaker 

increase relative to the global efficiency when compared to present mouse data (Figure 8D) 

and macaque (Figure 8A). This happens presumably because of the inconsistencies 

discussed in the rest of the article.

Discussion

We find that mouse interareal connectivity is comparable to macaque in showing relatively 

high consistency and well-defined connectivity profiles but differs in possessing a much 

higher graph density. Our findings using a deterministic methodology give significantly 

different results from the computational data reported by Oh et al., 2014, and we explored 

the impact of these differences via an analysis of the high efficiency backbone. Finally, this 

weighted graph analysis reveals marked differences in the cortical connectomes of the 

mouse and macaque.

Technical considerations

PVtdT-expressing mice allowed accurate areal parcellation in each brain used for tracer 

injections, as reflected in the spatial map of labeled projection neurons shown in Figure S2. 

The utilization of quantitative retrograde tracing in these flat maps was an important part of 

our experimental design aimed at minimizing inter-animal sampling errors. The 

experimental design of the present study made it possible to verify that the uptake zone of 

the injection site (see Suitability of DY tracing in STAR Methods) was entirely confined to 

the intended area for the 27 cases fully analyzed (out of 102 injections). Modeling of FLNe 

variance in repeat injections across animals allowed exclusion of a geometric distribution in 

favor of a negative binomial distribution (Figure 3). Ranking FLNe values revealed 

lognormal distributions spanning five orders of magnitude with estimated 95% confidence 
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intervals that satisfactorily contained the mean values (Figure 3). In addition, the consistency 

analysis of repeat injections showed that means in excess of twenty-four labeled neurons 

showed high consistency across injections (Figure 4). Finally, the dominating set analysis of 

the cortical subgraph studied here suggests that the full matrix may indeed have a density of 

97% (Figure 7).

This density is considerably higher than the maximum 53% reported in the probabilistic 

mouse connectivity matrix (Oh et al., 2014) and in a meta-analysis of rat intracortical 

connections (Bota et al., 2015). High connection density might be caused by spillage of DY 

beyond the borders of areas or grey matter, and/or uptake by fibers of passage and damaged 

axons (Keizer et al., 1983). While such concerns are difficult to rule out entirely, 

examination of image stacks (Figure 2) revealed the location and 3D extent of the injection 

sites, allowing us to eliminate cases with spillage across areal and grey/white matter borders. 

Another potential concern involves labeling of area-to area-projecting neurons via tracer 

uptake by inadvertently injured axons running through layers 5 and 6 (Coogan and 

Burkhalter, 1993). Control experiments (not reported here) indicate that injuring callosal 

fibers is necessary for retrograde DY-labeling of interhemispheric projecting neurons, 

whereas application of DY to uninjured fibers of passage is ineffective. Thus, judged by the 

tight and topographically precise distribution of DY labeled cells (Figures 2, S2) we consider 

labeling via interareal deep layer axons likely to be negligible.

Our experimental design involved implementing a procedure to parcellate the mouse cortex 

that was applicable in each experimental case and therefore avoided registration to a 

template as was done in the study of Oh et al. (2014). By using PVtdT mice we were able to 

generate such an areal map for each mouse (Figure S1C). Although the parcellation by Oh et 

al., (2014) relied on different, presumably structural features in background fluorescence, 

the overall layout of the CCF and the parcellation used in the present study are notably 

similar (Figures S1A, B). Nevertheless, because we found a different connection density 

than Oh et al., (2014), it is important to consider whether this may be attributable to 

differences in parcellation schemes. Comparing the density observed in the two parcellation 

schemes gives an estimation of the relative accuracy of the density measure and its 

sensitivity to small changes in parcellation. Analysis of the present data using the 

parcellation of Oh et al., (2014) yielded a density of 95.7%, nearly identical to that of the 

present study (97.4%) (see Figure S6). Further, our analysis of the raw anterograde data 

generated by Oh et al., (2014) revealed an ultra-dense network of 90.1% (see Partial 
coverage and global claims of the STAR Methods). Hence, the minor parcellation 

differences did not have a significant impact on connection density, regardless whether it 

was derived by anterograde studies (Oh et al., 2014) or retrograde tracing (this study). 

Nevertheless, referencing connections to the individually derived map rather than a template 

may account for the higher consistency of connectivity profiles in the present study.

A second aim of our study was to compare the cortical graph density of mouse and macaque. 

Given the large differences in brain size, one possible concern is that the mouse injections 

might occupy a larger fraction of each area thereby encompassing local connectional 

heterogeneities (Falchier et al., 2002; Malach, 1989) and hence labeling a larger proportion 

of the total afferents to the injected area. We consider this unlikely to be a major factor, 
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however, as measurements of injection sites showed that relative to brain size the volumes of 

DY injections in mouse and macaque were similar (Figure S7). Another concern is that the 

longer distances in the larger macaque brain may lead to suboptimal labeling of widely 

separated areas. Elsewhere, we have argued that this is unlikely, given that survival times 

exceed the active retrograde transport times required and that the intensity of individual cell 

labeling does not decline discernibly with increases in distance (Markov et al., 2014a).

Functional implications of the present results

Graph density is an important measure of the level of connectivity in a network. While many 

networks are sparse (e.g., social networks, technological/IT networks, infrastructure 

networks, gene regulatory networks, metabolic networks, protein interaction networks), 

cortical interareal networks, surprisingly, form high-density graphs. A graph is considered 

sparse when the number of links is of the same order as the number of nodes: for example, a 

network of 19 nodes would be sparse if it had 20 ~ 50 directed links, not the 334 reported 

here. The high-density character of the cortical network was first reported in the macaque, 

with a graph density of 66% (Markov et al., 2011). The current data, obtained with the same 

deterministic approach reveals an ultra-desnse mouse interareal network (97% density, 

nearly a complete graph). It is consistent with a predicted decrease in density with increasing 

brain size (Ringo, 1991). The much-expanded human cortex has a reported 180 areas per 

hemisphere (Glasser et al., 2016), about four-fold greater than the 41 reported here for the 

mouse and more than the ~130 areas reported for the macaque (Van Essen et al., 2012). An 

intriguing but unresolved question is whether human cortex might exhibit network sparsity 

resulting in specific structural and functional consequences as well as an increased 

susceptibility to disconnection syndromes (Bullmore and Sporns, 2012; Friston and Frith, 

1995; Horvat et al., 2016b).

The high cortical density implies that almost all area pairs in the mouse have direct 

connectivity, both ways, suggesting high integration of information across the entire cortical 

network. While at such high densities specificity is lacking for the purely binary graph, it is 

restored once we take into account the weights of the connections. Inspection of the 

weighted connectivity matrix in Figure 7B demonstrates striking asymmetries in many 

bidirectional connectivity strengths, showing that the G19×19 is a directed graph with strong 

weight specificity. This is also evident from comparison of individual tracer injections, for 

example, V1 injections show sparse labeling of somatosensory sub-areas, whereas 

somatosensory injections show much stronger labeling in V1. To decipher processing and 

information flow in such networks one must use methods that exploit the weighted nature of 

connections (Barrat et al., 2004; Newman, 2004), and the geometrical and morphological 

features of the areas within the cortical plate.

Despite its small size (<8 mm in length), the mouse brain has become an increasingly 

important model for investigating higher functions of the cortex using sophisticated methods 

that enable unprecedented progress in neuroscience. The fact that the mouse cortex has a 

graph density of 97% strongly impacts on how we understand the relationship between the 

structure and function of the cortex. The mouse cortical graph can achieve a high functional 

specificity despite its high density because each area has distinct connectivity profiles 

Gămănuţ et al. Page 14

Neuron. Author manuscript; available in PMC 2019 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Bressler and Menon, 2010; Markov et al., 2013a; Passingham et al., 2002). Comparison of 

the present results with findings in macaque (Markov et al., 2011; Markov et al., 2014) show 

specificity of the connectivity profiles, reflecting similar levels of variability in both species.

There are multiple origins of variability of cortical connectivity. The number of cortical 

areas in an ancestral mammal common to rodents and primates is not known, but evolution 

evidently led to an increase in the number of cortical areas in the primate lineage (especially 

humans) compared to the rodent/mouse lineage (Kaas, 2000; Striedter, 2005). Evolutionary 

changes include a relative increase in the extent of the cortical mantle that is referred to as 

association cortex in primates (i.e. cortex outside of the early sensory/motor areas). Cortical 

development is known to be under both intrinsic and extrinsic factors. Environmental factors 

that are known to influence the development of the cortex (Kennedy and Dehay, 1993; 

O’Leary et al., 2007) could potentially have a differential impact on arealization and 

variability in cortical connectivity in mouse and macaque (Buckner and Krienen, 2013). 

Further, the laboratory mouse is a highly-inbred strain that may exhibit less phenotypic 

variability than the macaque.

Many of the connections linking cortical areas show very low weights. Nevertheless, weak 

projections show good consistency both in mouse (present study) and macaque (Markov et 

al., 2013a; Markov et al., 2013b; Markov et al., 2011)). While the role of weak connections 

in brain networks is unknown, in social and ageing biological networks, the loss of weak 

connections may render the system unstable (Csermely, 2006; Granovetter, 1973). A similar 

hypothesis was used in theoretical analysis of the macaque cortical connectome (Goulas et 

al., 2015) and in recent imaging data in human (Bassett and Bullmore, 2016). Our 

confirmation that weak connections are consistent in the mouse highlights the importance of 

considering them in large-scale models of brain networks.

What does all this tell us about neural function? The combination of a high-density and 

marked connectivity profiles affirms the specificity of the mouse cortical graph but 

nevertheless suggests a comparatively high redundancy in the mouse cortex compared to 

larger brains, which are predicted to be sparse (Horvat et al., 2016). Future analysis of the 

weighted features of high and low density cortical graphs may suggest which features are 

invariant and which have adaptive value. These lines of research, exploring the network 

properties of the small and large brain and informed by differences in scaling rules across 

rodents and primates (Ventura-Antunes et al., 2013), are part of the emerging field of 

comparative connectomics (Horvat et al., 2016; van den Heuvel et al., 2016; Wang and 

Kennedy, 2016). The present study provides a weighted, edge-complete subgraph of the 

mouse cortex that will facilitate the development of comparative models across species. To 

the extent that such graphs are based on a uniform coverage of the cortex, the results 

computed on them should be representative of the expected values for the full connectome. 

They also serve as templates on which models of the cortex can be implemented and the 

results compared among them and with those from the data (Ercsey-Ravasz et al., 2013; 

Horvat et al., 2016; Noori et al., 2017; Song et al., 2014). This will be important for 

assessing the limitations of the rodent model for understanding the human brain. For 

example, the dense network linking the primary sensory areas in the mouse have only a 

limited anatomical counterpart in primates and might dictate a rodent-specific multimodal 
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sensory integration process (Lee and Whitt, 2015; Olcese et al., 2013; Teichert and Bolz, 

2017). Finally, this data will also facilitate the application of network control frameworks to 

help predict the neural function of diverse network modules (Yan et al., 2017).

STAR Methods

Contact for Reagent and Resource Sharing

Further information and requests for reagents and resource may be directed to the Lead 

Contact, Henry Kennedy (henry.kennedy@inserm.fr).

Experimental Model and Subject Details

Animals—Retrograde tracing experiments with Diamidino Yellow (DY), immunostaining 

for M2 muscarinic acetylcholine receptor (M2), vesicular glutamate transporter 2 (VGluT2) 

and cytochrome oxidase (CO) histochemistry were performed in 141 male and female mice. 

33 C57BL/6J (Jackon Lab) (of which 14 injected with DY, 3 of which successful for this 

study; 19 used for immunostaining and histochemistry). 88 PV-Cre (B6.129P2-
Pvalbtm1(cre)Arbr/J, Jackson Lab) × Ai9 (B6;129S6-Gt(ROSA)26Sortm9(CAG-tdTomatoHze/J, 

Jackson Lab) of which 24 successful for DY labeling in this study; 8 for fluorescence 

imaging of VGluT2 (Slc17a6tm2(cre)Lowl/J, Jackson Lab); and 12 for fluorescence imaging of 

M2 (B6;Cg-Chrm2tm1.Hze/J, Jackson Lab). All experimental procedures were approved by 

the institutional Animal Care and Use Committee at Washington University.

For the 27 mice which were successfully injected, the age span is 8–30 weeks, and sex is 

known for only 2 cases, both females (see Table S6). The others are mostly males, for 

technical reasons – females being retained for breeding. Sex wasn’t registered because there 

are no known sex differences in cortical connectivity.

Method Details

Tracer injections—Prior to tracer injection, mice were anesthetized with a mixture of 

Ketamine (86 mg · kg -1) and Xylazine (13 mg · kg −1, i.p) and secured in a headholder. 

Body temperature was maintained at 37°C. Left-hemisphere tracer injections were made by 

inserting a glass pipette (20 μm tip diameter) through the dura into the brain and injecting 

DY (50 nl, 2% in H2O; EMS-Chemie, Gross-Umstadt, Germany) by pressure (Picospritzer, 

Parker-Hannafin). Injections were aimed stereotaxically 0.35 mm below the pial surface and 

often required pulling back the pipette to correct proportionally for dimpling of the dura and 

confining potential injury to layers 1–4. Cases in which injected DY spilled into the white 

matter or across areal borders were excluded from the study. From a total of 102 DY 

injections, 27 were successfully confined to 17 distinct areas and two subareas of SSp 

(Figures 2A–F). The origin of the coordinate system was the intersection between the 

midline and a perpendicular line drawn from the anterior border of the transverse sinus at the 

posterior pole of the occipital cortex. The injection sites identified as 120–280 μm-wide 

crystalline deposits of DY (Figure 2A, D, E, F) of occipital, temporal, insular, parietal, 

restrosplenial, motor, cingulate and prefrontal cortex. Their details are the following, 

specifying the injected area, the anterior/lateral position in mm, and the number of 

successfully injected animals: ACAd (6/0.1, n = 1), AL (2.4/3.7, n = 1) (Figure 2E), AM 
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(3/1.7, n = 2), AUDpo (2.3/5, n = 1), DP (4.5/2, n = 1), GU (6/4, n = 1), LM (1.4/4.2, n = 3) 

(Figure 2D), MM (1.9/1.6, n = 1), MOp (6.45/2, n = 1), P (0.7/4.1, n = 1), PL (6.8/0.1, n = 

1), PM (1.9/1.6, n = 1) (Figure 2F), RL (2.8/3.3, n = 2), RSPd (2.1/0.4, n = 1), SSp-bfd 

(3.4/3.25, n = 2), SSp-un (3.4/2.4, n = 1), SSs (3.75/3.25, n = 1), V1 (1.1/2.4–2.9, n = 4) 

(Figure 2A–C), VISC (4.2/4.5, n = 1). Note that under fluorescence illumination, injection 

sites appeared larger, but nevertheless showed no apparent spread to neighboring areas. In all 

cases, retrograde DY labeling was very bright and labeled large numbers of neurons in 

multiple areas distributed across the cortex.

Suitability of DY Tracing—The choice of a highly sensitive retrograde tracer was crucial. 

In contrast to tracers such as FluoroGold and Cholera Toxin B, DY is predominantly a 

nuclear stain, which means that labeling is dense and spot-like (Figure S2B) and lacks the 

ambiguities introduced by the often fragmented appearance of cytoplasmically labeled 

neurons. Hence, high-density labeling, such as found in the present project, can be 

accurately mapped out and the full range of labeling density successfully captured (Figure 

S2B).

How reliable is DY tracing with respect to sensitivity, restriction of pick-up zone and 

minimization of false positives?

Firstly, the reason for using DY was to enable direct comparison of cortical connectivity in 

mouse and monkey. The identification of projections that were previously unknown (Markov 

et al., 2014b) has shown that DY is a non-selective tracer which preferentially labels nuclei 

of projection neurons (Conde, 1987) with superior efficiency.

Secondly, importantly, DY has a highly restricted and identifiable pick-up zone making it 

possible to identify the area effectively injected with great precision. DY was taken up from 

a crystalline bolus deposited in the cortex, which in the present study was 120–280 μm in 

diameter (Figure 2). Such injections were small enough to be confined to the tiny areas of 

the mouse cortex, but sufficiently large to overcome possible connectional heterogeneities 

within an area that may cause between-injection variability (MacNeil et al., 1997; Scannell 

et al., 2000). Because experiments in monkey have shown that the bolus diameter roughly 

corresponds to the DY-uptake zone (Bullier et al., 1984a; Conde, 1987; Kennedy and Bullier, 

1985; Perkel et al., 1986), we are confident that in all the reported cases here DY was 

captured from within a given area. To exclude DY-uptake through injured fibers we have 

further confined injections to layer 1–4 and thus, minimized labeling through damaged 

fibers of passage between different cortical areas (Yamashita et al., 2003), but allowing 

uptake of spreading tracer by terminals projecting to layers 5 and 6. Uptake by intact fibers 

of passage is rare and inefficient (Payne, 1987).

Thirdly, the problem of false positives is well defined with DY. Leakage of DY from 

backlabeled neurons in vivo is negligible (Keizer et al., 1983) and we have argued elsewhere 

with respect to published results that there is no evidence that secondary pick-up leads to 

false positives with this tracer (Markov et al., 2014a; Markov et al., 2011). For instance the 

lack of secondary uptake in cortex (Bullier et al., 1990; Bullier et al., 1984, 1984a; Markov 

et al., 2014b) was most convincingly shown by the failure of labeling transcallosal 
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projection neurons in monkey V1 after injection of DY in contralateral V2, which failed to 

label cells in the unconnected region of V1, away from the heavily connected strip along the 

V1/V2 border (Dehay et al., 1986; Dehay et al., 1988). Release and secondary pick-up is 

rare for fixed, floating sections, but as a precaution of secondary labeling sections were 

immediately mounted on glass slides, air dried and stored at −20° C until analysis under 

fluorescence optics. Taken together it seems highly unlikely that, following retrograde 

transport to the source area, DY was released and picked up by neurons in quantities 

sufficient to produce secondary labeling.

Fourthly, for comparison, anterograde labeling with viral (Oh et al., 2014) and non-viral 

tracers (Zingg et al., 2014) can lead to a category of false positives that do not occur in 

retrograde DY tracing and complicate the interpretation of results. These include retrograde 

labeling of neurons and their local axon collaterals in the projection target (LeVay and 

Sherk, 1983; Wang et al., 2014). Such contamination may explain false positive cortical 

inputs from the superior colliculus and pontine nucleus observed by Oh et al. (2014).

Histology—Four days after tracer injection, mice were euthanized with Ketamine/Xylazine 

and perfused through the heart with phosphate buffered saline, followed by 1% 

paraformaldehyde (PFA) in 0.1M phosphate buffer (PB, pH 7.4). The cortex was 

immediately separated from the rest of the brain. To unfold and flatten the cortex, the tissue 

was placed on a glass surface, pial surface down. Using microsurgical knives, the 

hippocampus was disconnected from neocortex along the seam between alveus and 

cingulate bundle, and flipped outwards while still attached to the entorhinal cortex. A small 

incision was made to separate medial from lateral orbital cortex. Proceeding in a posterior 

direction the white matter was split between the corpus callosum and the cingulate bundle, 

enabling the unfolding of the medial wall containing medial orbital, prefrontal, cingulate, 

and retrosplenial cortex. The tissue was then transferred white matter down onto a filter 

paper covering a sponge and weighed down by a glass slide placed on top. The assembly 

was postfixed in a petri dish filled with 4% PFA and stored overnight at 4°C. After 

postfixation the tissue was cryoprotected in 30% sucrose and 40 μm thick sections were cut 

on a freezing microtome in the tangential plane.

In order to assign in each mouse the injection site and DY labeled neurons to individual 

cortical areas, we developed a parcellation scheme based on the distinctive distribution of 

PVtdT expression (see Parcellation of the cortex below). This eliminated counterstaining for 

additional areal markers, thereby avoiding loss of signal and the associated risk of secondary 

labeling by leakage from retrogradely DY labeled cells (see Suitability of DY Tracing 
above). To determine the reliability of PVtdT in distinguishing distinct parcels, we compared 

PVtdT borders to borders observed with M2, VGluT2 and CO reactivity, all of which have 

been employed previously to parcellate rodent cortex (Ichinohe et al., 2003; Wang et al, 

2011; Wang et al, 2012). In order to compare all four patterns we used flatmounted PVtdT-

expressing sections reacted against M2 (MAB367, Millipore) or VGluT2 (AB2251, 

Millipore) using fluorescent secondary antibodies for visualization. Alternatively, we used 

tdT fluorescence or non-fluorescent immunohistochemical ABC staining methods to 

visualize M2 or VGluT2 expression, with histochemistry to reveal CO reactivity. In each 

case, alternate sections were stained for Nissl substance to reveal the cytoarchitectonic 
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landmarks annotated in the Allen Brain Atlas. The expression patterns were imaged under a 

microscope equipped for brightfield and fluorescence illumination.

Processing of labelled neurons—Sections were mounted onto glass slides and DY 

labeling was analyzed under UV fluorescence (excitation: 355–425 nm, emission: 470 nm) 

at 20×, with a microscope controlled through a computer using the Mercator software 

package, running on ExploraNova technology. This software enables the observer to 

manually tag individual neurons at high magnification levels, extensively using the Z-axis to 

focus on individual labeled cells (Figure S2B). High-fidelity digital charts of the co-

ordinates of labeled neurons were made for all 12–24 sections per hemisphere and digitally 

stored (Figure S2A). Once charting was complete, sections were imaged for PVtdT 

(excitation 520–600 nm, emission 570–720 nm) (Figure 2), stained for Nissl substance with 

cresyl violet, and imaged under bright field illumination. The images of the sections were 

acquired using MorphoStrider software (ExploraNova). We have extensive experience with 

DY as a retrograde tracer (see Suitability of DY Tracing above). The manual charting of 

neurons as described above (see Figure S2B) minimizes false positives.

The digitized charts of labeled neurons and the images of the corresponding sections were 

aligned in Adobe Illustrator. The sets of images from each brain were parcellated using the 

regional patterns in PVtdT expression and Nissl stained cell bodies. This allowed the 

creation of an individual template at layer 4 for each brain, which was then aligned via 

adjacent section to superficial and deep layers by matching blood vessels.

Parcellation of the cortex—Our choice of PVtdT expression for areal identification was 

inspired by the work of Saleem and Logothetis (Saleem, 2012), who successfully used PV 

immunostaining to delineate cortical areas in rhesus monkey. However, there is no a priori 
reason to assume that the expression pattern of PVtdT outlines areal boundaries in the 

mouse. As this is of course true for any individual architectonic marker, we compared the 

pattern of PVtdT expression with those of immunolabeling for M2, VGluT2, histochemical 

reactivity for CO, and Nissl staining. Based on previous observations (Wang et al., 2011), 

our expectation was that comparing different markers would reveal overlapping or 

complementary spatial expression gradients reflecting areal borders across individuals. The 

excellent alignment of markers in for example layer 4 of V1 and SSp (Figure 1) affirms the 

utility of the PVtdT borders for delimiting areas.

What follows explains how, in tangential sections through layer 2–5, overlapping or 

complementary patterns of M2, VGluT2 and CO labeling, and overlaying visuotopically 

mapped areas (Wang and Burkhalter, 2007) to stained landmarks were used to further 

subdivide the 25 parcels identified by PVtdT expression (Figure 1A, white dashed outlines). 

Although the PVtdT map was less detailed than the 36 areas annotated in the CCF (Figure 

S1A, C), the overall layout, shapes and sizes of multiple parcels of our atlas is notably 

similar (Figure S1B). Moreover 19 of the parcels shown in the PVtdT map were simple (i.e. 

showed no additional subdivisions except for subfields of body parts in SSp) (Figure 1A, 

black dashed lines), and closely matched those marked positively or negatively by M2, 

VGluT2 and CO (Figure 1B–D; Figure S1C–F). These included: V1, SSp, SSs, AUDp, GU 

(Chen et al., 2011; previously annotated as the tooth/tongue representation of SSp; (Remple 
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et al., 2003; Wang et al., 2012)), VISC (previously referred to as posteroventral area; (Fabri 

and Burton, 1991; Wang et al., 2012); also known as insular auditory field or insular 

somatosensory field; (Rodgers et al., 2008; Sawatari et al., 2011). Further, areas identified by 

PVtdT-expression alone included the posterior (AIp), ventral (AIv) and dorsal (AId) 

agranular insular areas (Van De Werd et al., 2010), ACAd, ACAv (Tanahira et al., 2009; Van 

De Werd et al., 2010), PL and ILA (Van De Werd et al., 2010), FRP (ARA), ORBm and 

ORBl (Van De Werd et al., 2010), as well as MM (Wang et al., 2012), ECT and PERI 

(Beaudin et al., 2013).

For the 6 remaining PVtdT-expressing parcels, at least one of M2, VGluT2 and CO markers 

revealed additional subdivisions, indicated by colored labels and dashed lines in Figure 1A, 

while 7 borders had to be inferred from stereotypical position relative to PVtdT-labeled 

landmarks. Such compound parcels were found in retrosplenial (RSPagl, RSPd, RSPv), 

motor (MOp, MOs), temporal (TEa, TEp), auditory (AUDv, AUDpo, DP, AUDd) and visual 

extrastriate (one parcel containing AL, LLA, RL, A, AM and PM, and another with LM, LI, 

P, POR and PORa) cortex, denoted in Figure S1C by red and pink shading. These compound 

parcels were sub-divided as follows:

Retrosplenial cortex, here we observed intensive expression of M2 in its 0.5 mm wide 

agranular part (RSPagl) and moderate VGluT2 and M2 expression in its ~0.25 mm dorsal 

part (RSPd).

Motor cortex, showed intense, uniform PVtdT expression without an obvious boundary 

between MOp and MOs (Tanahira et al., 2009) (Figure 1A, Figure S1C). However, a clear 

border between both motor areas was apparent in the transition from strong to weak CO 

reactivity (Figure 1D, Figure S1F). On PVtdT maps we therefore marked MOp as 1–2mm-

wide curved strip along the medial border of SSp and MOs as a 1mm-wide strip adjoining 

MOp on the medial side.

Temporal cortex, TE, was identified as a U-shaped belt of weak and uniform PVtdT 

expression at the ventral border of auditory cortex (Figure 1A, Figure S1C), which was 

further subdivided by VGluT2 into a more darkly labeled anterior half (TEa) and a weakly 

expressing posterior portion (TEp) (Figure 1C, Figure S1E).

In auditory cortex, the primary area (AUDp) was surrounded by a weakly labeled, uniform 

belt (Figure 1A, orange labels; Figure S1C; pink shading). On the M2 map, the belt was 

further subdivided into the more darkly labeled AUDv, AUDpo and AUDd and the intensely 

labeled posterior dorsal auditory area, DP (Kimura et al., 2004) (Figure 1B, orange labels 

Figure S1D). On the PVtdT map AUDv and AUDpo were identified as the anterior and 

posterior half of the weakly-expressing parcel lateral to AUDp (Figure 1A, Figure S1C). DP 

was identified in the M2 map as a separate rectangular parcel anterior to TEp, lateral to LI, 

posterior to SSs and posterior to AUDd (Figure 1B, Figure S1D). In the VGluT2 and CO 

maps DP stood out as a medially-facing nose of a uniformly labeled auditory cortex (Figure 

1C, D, Figure S1E, F, dark red shading). The overall partitioning of auditory cortex closely 

resembled the five separate tonotopic maps (Issa et al., 2014; Tsukano et al., 2016).
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In extrastriate cortex, PVtdT expression was more intense in a boot-shaped compound parcel 

(Figure S1C, red shading) at the lateralposterior side of V1 (Figure 1A, yellow labels), 

surrounded by ECT, TEp, DP and AL. PVtdT expression in the parcel continuing forward 

and around the tip to the medial side of V1 (Figure S1C, pink shading) was weaker (Figure 

1A, blue labels). Both of these extrastriate PVtdT parcels overlapped with similar parcels 

found in M2 and CO maps (Figure 1B, D, Figures S1D, F). Although bipartite by all of these 

markers, previous topographic mapping of extrastriate visual cortex has shown that the 

anteromedial parcel contained AL, RL, A, AM and PM, whereas the lateralposterior 

comprised LM, LI, P, POR and PORa (previously denoted 36p) (Wang and Burkhalter, 

2007; Wang et al., 2011). Of all these areas only POR and PORa stood out as a VGluT2-

expressing sub-parcel located at the foot of the lateral PVtdT-expressing boot (Figure 1C; 

Figure S1E; red shading). Furthermore, the toe was more darkly stained with M2 and 

marked area PORa (Figure 1B, Figure S1D, dark red shading), which was previously known 

as 36p and identified by its low abundance of the non-phosphorylated intermediate filament 

protein, SMI32 (Wang et al., 2011). Although PVtdT revealed few details of this 

organization, labeling in layer 4 provided readily identifiable landmarks (V1, SSp, RSP, 

AUDp) and unambiguous reference points (tip of V1, barrels of SSp, rhinal fissure, TEp) for 

accurately positioning all of the extrastriate areas and complete their borders based on the 

size and shape determined previously by mapping visuotopic connections (Wang and 

Burkhalter, 2007; Wang et al., 2011). For example in the lateral parcel, POR was centered on 

the foot of the PVtdT expressing boot lateral to V1 (> 0.75/< 1.5 mm lateral/medial of V1 

and 0.75 mm anterior to the rhinal fissure [rf]), PORa occupied the toe (> 1.5mm lateral of 

V1) and P the heel (< 0.75 mm lateral of V1, < 0.6 mm anterior to the rf) (Figure S1C). LM 

and LI occupied medial and lateral parts of the boot shaft, respectively (LM: < 0.8 mm 

lateral of V1, > 1.25 mm anterior to POR/P; LI: > 0.8/< 1.1 mm lateral of V1, < 1.2 mm 

anterior to POR).

In the weakly PVtdT-expressing parcel around the tip and the medial side of V1, M2- and 

CO-expression was distinctly sparser (Figure 1A, B, D, blue labels; Figure S1C, D, F, pink 

shading). Although uniform by these markers, topographic and callosal mapping has 

identified six areas, AL, LLA, RL, A, AM and PM within this belt (Garrett et al., 2014; 

Wang and Burkhalter, 2007), which were not revealed by PVtdT, M2, VGluT2 or CO. 

Nevertheless, we have annotated these areas based on their stereotypical position relative to 

PVtdT-labeled landmarks. Specifically, AL was a triangular area with its vertex at the lateral 

posterior corner of SSp, its base at the border with LM (2 mm anterior to the rf) marked by a 

sharp decrease in PVtdT expression (Figure 1A, (Wang et al., 2011)). Of the two remaining 

sides one was parallel to V1 (1mm lateral of V1) and the other ran parallel to the lateral 

border of SSp from its posterolateral corner to intersect V1 at an approximately right angle 

(Wang and Burkhalter, 2007). LLA was the rectangle enclosed by DP, SSs and AL and a line 

parallel to the V1 border, intersecting the lateral posterior corner of SSs. RL occupied a 0.7 

× 1.2 mm wide rectangle between AL, V1 and SSp with the medial border aligned with the 

E-row of the barrel field (Figure 1A). Area A was a 0.65 × 0.75 mm wide rhomboid between 

the tip of V1 and SSp, bordering RL and AM (Figure 1A). AM extended between the tip of 

V1 to the medial corner of SSp and was bordered laterally by A (Figure 1A). Its medial 

border was a narrow longitudinal strip of low PVtdT-, M2-, VGluT2- and CO-expression in 
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MM (Figure 1A). The posterior border of AM was a line through the tip of V1 angled 

backwards by 35° from the coronal axis. PM was the triangle behind AM between MM and 

V1 (Figure 1A). MM was a narrow strip with sparse PVtdT, M2, VGluT2 and CO 

expressions, which separates PM/AM from the strongly VGluT2-expressing agranular 

retrosplenial area (RSPagl) (Figure 1A–D, Figure S1C–F).

The accuracy of parcellation was estimated by comparing maps drawn independently by 3 

investigators. This involved a zeroing procedure by which stacks of sections were aligned to 

the pattern of PVtdT expression in layer 4 of V1 and SSp, the borders of 25 uniformly 

PVtdT-expressing parcels were outlined (Figure 1A), and the parcels were further 

subdivided into 41 areas based on position relative to readily identifiable PVtdT-positive or -

negative landmarks (i.e. tip of V1, SSp, RSP, AUDp, TE, rhinal fissure), shape, and size 

revealed by previous mapping of connections, expression patterns of M2, VGluT2 and CO 

(Wang and Burkhalter, 2007; Wang et al., 2011, Wang et al., 2012). The spread in the 

location of areal borders between visual areas (LM/LI, LM/AL, LM/P, LM/POR, AL/RL, 

A/AM) measured in 5 animals was 87–142 μm. Our estimate of a < 150 μm-wide transition 

zone between neighboring areas differs from the sharp borders annotated in the Allen Brain 

Atlas (ARA; Zingg et al., 2014) and the crisp boundaries derived from averaging of 

background fluorescence in sections from 1231 mice (Oh et al., 2014). It is important to note 

that this large sample size reduced the variance over that seen in single cases, suggesting that 

our maps are not only highly accurate but as shown in Figure S1A, B, remarkably similar to 

those of the Common Coordinate Framework. Thus the important difference to Oh et al. 

(2014) and Zingg et al. (2014) is not the parcellation per se but the precise registration of DY 

injection sites and labeled neurons with parcellations derived in each individual case.

Quantification and Statistical Analysis

Computation of FLN—The assignment of the labeled neurons to their respective cortical 

areas resulting from the parcellation was done with in-house software, written in Python 2.7. 

The fraction of labeled neurons per area (FLNe) was computed by dividing the number of 

labeled neurons expressed within the area by the total number of labeled neurons, extrinsic 

to the injected area, from the ipsilateral cortical hemisphere.

FLN data is available in Table S6.

Overdispersion—Quantifying variance of weights (FLNe) allows accurate statistical 

inferences based on the data and estimation of the uncertainties associated with observed 

weight values. This allows evaluation of connectivity profiles and provides useful constraints 

on how well single injections can be used to estimate connectivity profiles (Markov et al., 

2014a; Markov et al., 2011).

Count data are intrinsically heteroscedastic, meaning that their variability depends on the 

mean (Hilbe, 2007). The simplest case occurs when counts are well-described by a Poisson 

distribution, and the variance equals the mean. It is usually easier to reason in terms of the 

standard deviation, the square root of the variance, rather than the variance. The standard 

deviation (SD) of Poisson distributed data, increases as the square root of the mean. This 

implies that the coefficient of determination, defined as the ratio of the SD to the mean, 
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decreases rapidly with increase in the mean. Hence for counts of 100, 1000, 10000, and 

100000 neurons, the expected SDs would correspond to 10%, 3%, 1% and 0.3%, 

respectively, of the means. For the large counts involved in neural projections, such low 

variability is unlikely. Previous retrograde labeling data have, in fact, demonstrated that 

cortical connectivity data sets display significant overdispersion (Markov et al., 2011; 

Markov et al., 2014b; Scannell et al., 2000).

Overdispersion occurs in count data when the variance increases faster than the mean and is 

displayed in many data sets (Hilbe, 2007). If overdispersion is ignored, then variance is 

underestimated and statistical tests become anti-conservative, i.e., significance is attributed 

to differences that are within the normal variation of the data set. This underlines the 

importance of characterizing the mean-variance relations in the data and using appropriate 

statistical models that incorporate terms that correctly characterize the dispersion of the data.

Overdispersion can be characterized in a variety of ways. Previous retrograde labeling 

studies in macaque indicate that a negative binomial distribution provides a reasonable 

description of the data. The negative binomial distribution can be derived as a mixture of a 

Poisson and a Gamma distribution. In effect, the Poisson mean is no longer considered to be 

a fixed parameter, but instead follows a Gamma distribution. This yields a 2-parameter 

distribution that is specified by its mean and a dispersion parameter, θ (Hilbe, 2007). The 

variance of the negative binomial distribution is given by σ2 = μ + μ2/θ. As θ becomes large, 

the mean-variance relation approaches that of a Poisson distribution. Thus, the Poisson 

distribution can be seen as a special case of the negative binomial. For θ = 1, the distribution 

becomes a geometric distribution that is quite overdispersed. Higher values of this parameter 

signal less overdispersion. Studies in macaque found an overdispersion parameter of about 

7–8 (Markov et al., 2011; Markov et al., 2014b). Importantly, while this reflects considerable 

variation in counts across injections for a given area, the variability was not sufficient to 

obscure the 5 orders of magnitude range in the projection strengths obtained from a given 

injection.

Transformation of the raw counts to FLNe changes their statistical distribution. For example, 

in the case of the Poisson distribution, normalization of counts results in a variable 

distributed according to binomial law (Chung, 2006). The relation of the SD to the mean of a 

binomial distribution is given by: σ = μ(1 − μ)/n, where the mean is now constrained to be a 

value in the interval (0, 1) and n is the size of the count. Note that this is an inverted U-

shaped function of the mean, but on a double-logarithmic plot, the rising portion continues 

to follow a square-root law and would be expected to have a slope of 0.5. In Figure 3 this is 

shown by the red curve in each graph. The curve turns down for values greater than 0.5, but 

no FLNe values this large are observed, so that the initial portion of the curve can be 

compared with the data. Importantly, the curve provides a poor description of the data, rising 

less steeply and predicting values of SD that are systematically below those in the data. This 

leads to rejecting a simple Poisson model of the variability of the data, as is the case in the 

macaque (Markov et al., 2011; Markov et al., 2014b) and demonstrates evidence of 

substantial overdispersion.
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How much overdispersion is required to model the data was assessed informally by plotting 

curves for different values of the dispersion parameter and evaluating what value describes 

the data best. There is no simple expression for relating the normalized counts, i.e., FLNe, to 

the SD for a negative binomial distribution. We estimated such a curve, however, by 

simulating samples from a negative binomial distribution with a fixed dispersion and a range 

of mean values spanning those obtained in the data and then normalizing the counts as if we 

were computing FLNe. We repeated this simulation many times and obtained an average 

curve with which to compare the data. For example, the blue curve in each of the plots of 

Figure 3 is obtained for simulations with the dispersion equal to 1, generating the prediction 

for a geometric distribution. Importantly, the data points tend to fall systematically below 

this curve, providing evidence that the data are not as dispersed as a geometric distribution 

would predict. We rejected the geometric case more formally by fitting a negative binomial 

model to the data by maximum likelihood under the constraint that the dispersion was equal 

to 1 and by letting the dispersion be a free parameter. Nested likelihood ratio tests rejected 

the geometric distribution for the 2 injection sites shown in Figure 3 A, B in our mouse data 

(LM: χ2 (90) = 57.3, p = 3.8 10−14; V1: χ2 ( (180) = 76.8, p = 1.9 10−18).

Given that the geometric distribution could be rejected, we repeated the simulations as 

described above for a wide range of dispersion values to estimate the expected relation 

between SD and mean FLNe as a function of the dispersion. We then compared these curves 

with the values in Figure 3 and estimated a dispersion value that minimized the error 

between the simulation and the data, which constitutes the green curves for each plot with 

the dispersion parameter and the 95% confidence interval (indicated in brackets).

Accordance with the negative binomial model—In Figure 3E, F the error bars are 

twice the standard errors of the means from repeat injections.

The solid curves are the predicted values for ordered Gaussian variables with the same mean 

and SD as the data set. Specifically, we took the means of log (FLNe) represented by white 

dots and we computed the parameters of the Gaussian that would best fit these points.

To evaluate whether differences between the predicted values and the data were significant, 

we simulated 10000 count data sets from a negative binomial distribution with the same 

means as the data and with the dispersion parameters obtained from the analyses displayed 

in Figure 3A, B. For each data set, we normalized the counts by the total to obtain simulated 

FLNe values. From these distributions, we estimated the 2.5% and 97.5% quantiles to obtain 

a confidence interval (the grey envelopes in Figure 3E, F).

Variability and consistency—In Figure 4D, E we addressed specifically if it is possible 

in the retrograde studies in mouse and macaque to define a threshold above which all 

projections can be expected to be consistent. For discrete distributions, it is expected that 

there is a non-zero probability of observing no neurons, even if the projection exists, simply 

based on sampling variability. The probability of observing such cases would be expected to 

increase as the mean size of the projection decreased. In fact, the probability distributions 

predict the expected incidence of such missing connections. For Poisson distributed data, the 

probability of observing zero neurons is e−μ, where μ is the mean number of neurons in the 
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projection. For a negative binomial distribution, the probability of observing zero neurons is 
θ

θ + μ
θ
. Deviations from such predictions in the direction of too many observations of zero 

labeled neurons (leading to zero-inflation) or too few (leading to zero-deflation) constitute 

evidence against the statistical model used for the data. An alternative is to explain such 

deviations as evidence that the connections are actually absent in some animals, providing 

evidence of individual differences in the connectivity pattern. The overdispersion of the 

count data might be taken as evidence of individual differences in connectivity strength, 

which could be due to genetic or environmental influences. However, without detailed 

knowledge of what factor(s) are responsible for the overdispersion, such a hypothesis cannot 

be confirmed.

Figure 4D displays mouse data from 13 repeat injections in target areas, where the mean 

number of neurons for a given projection across the multiple injections is plotted as a 

function of the total number of neurons counted for each injection. Thus, points are 

individual projections. Those resulting from different injections but for the same target areas 

are at identical ordinate values, as they all have the same mean and different abscissa values 

as injections differ only in the total number of neurons labeled in the brain. When no 

neurons from a given source area were observed in an injection but were observed in at least 

one other repeat injection, the point is plotted as a white disk but is otherwise colored. We 

analyzed the distribution of inconsistent projections by determining whether the features 

log(Mean) and log(Total) could be used to linearly classify the presence and absence of 

connections. This can be implemented as a logistic regression in which the expected value of 

the binary variable (Presence/Absence) is predicted by the two features.

Figure 4E displays the same analysis for the 13 repeat injections in macaque.

Evaluating Akaike Information Criterion—For every group of repeat injections in V1 

and LM (Figure 3A, B), we modeled the number of labeled cells in the source areas as a 

function of two explanatory variables: AREA (a factor with a level for each source area) and 

BRAIN (the individual from which the counts were obtained). We fitted the data with 

generalized linear models (McCullagh and Nelder, 1989), with a negative binomial family. 

We chose the link function to be logarithmic and we used the log of the total number of cells 

counted from each injection as an offset or constant component, added to the model, so that 

in fact the FLNe was modeled.

The selection of the factors and interactions that best described the data was based on 

Akaike’s Information Criterion (AIC) that evaluates what terms lead to a model with the 

best predictive power for new data (Akaike, 1974). AIC is defined as minus twice the log 

likelihood for the best fitting model plus twice the number of parameters estimated in the 

model. The second term is a penalty for complexity. Including more factors and interactions 

will improve the fit to the data. The AIC introduces a penalty for additional parameters, so 

that in comparing several models, lower AIC values correspond to better models in the sense 

of balancing a tradeoff between model complexity (number of parameters) and goodness of 

fit. We report the difference in AIC (dAIC) between the models with and without the 

interaction between factors, so a positive value supports the model without an interaction. 
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For example, when AREA is considered as an explanatory variable then it is treated as a 

factor with as many levels as source areas that contain retrogradely labeled cells from the 

injections in the target areas. A model fit to the data containing only this factor provides 

estimates of the average FLNe and its variability for each level of AREA. If, on the other 

hand, the best model fit to the data requires that the FLNe values be described by the 

interaction of explanatory variables AREA and BRAIN, i.e., that the values for a particular 

area vary significantly across individuals, then there is no basis for describing an average 

profile of connectivity as a signature.

Overdispersion and connectivity profiles—In Figure 5A, C, to illustrate the 

relationship between the different levels of the statistical modeling, we performed a 

simulation of the expected experimental results under three different scenarios for the 

sampling distribution of the data: Poisson, Negative Binomial with θ = 7, and Geometric 

(i.e., Negative Binomial with θ = 1). In each case, we first simulated a log normal 

distribution of FLNe with mean and standard deviation based on the average mean and 

standard deviation of the log FLNe values from all of our mouse injections (red, green and 

blue curves in Figure 5A–C). Then we simulated 1000 repeats with dispersion specified 

according to each of the models. The results of these repeats are plotted as grey, semi-

transparent points in Figure 5 A–C. Figure 5D shows the SDs of the FLNe in the source 

areas plotted against the mean FLNe values, from the 1000 simulations, replicating the 

relation that we observed in Figure 3A, B.

We considered 30 hypothetical source areas with fixed mean FLNe spanning 5 orders of 

magnitude and evenly distributed along an average log-normal curve with the same mean 

and SD as one of our injections (red, green and blue, respectively, for the three 

distributions). Each mean FLNe was multiplied by 106 to give the expected mean numbers 

of neurons in the source areas. These values were used for generating random counts from 

each of the distributions (Poisson, Negative Binomial and Geometric), as indicated in the 

insets of A–C. The set of random counts from every simulation were then normalized by 

their sum to transform them to simulated values of FLNe. This procedure was repeated 1000 

times, thus revealing the expected spread of results from 1000 injections under each of the 

hypotheses.

Processing Oh et al., 2014 data—The Oh et al., 2014 study reports densities from data 

derived computationally from mixed injections involving multiple areas, which we call 

“computed data”, but the Supplementary Information from that study provides results 

obtained from a small number of unmixed injections, which we refer to as “raw data”. We 

calculate the density of the network that we derived from those unmixed injections and show 

that it differs markedly from that reported by Oh et al., 2014 for the computed data and that 

they are much closer to our results in the present study (see Partial coverage and global 
claims below).

In the study by Oh et al. (2014), the location of injection sites was inferred from a template. 

With this computational approach 86% of the 469 injection sites in the brain were reported 

to involve 2–18 different structures. There were 105 injections restricted to isocortex, of 

which 76% involved 2–9 different structures. The connections labeled by mixed injections 
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were disentangled, and the strengths of connections between individual areas estimated 

algorithmically using both mixed and injections restricted to single structures (non-mixed 

injections). For the computed data, the authors derived from 452 out of 469 experiments 

across the whole brain a full matrix of interareal connections, from which we extracted the 

ipsilateral cortico-cortical connections. In contrast, the raw data contains connections from 

26 injections confined to 14 single areas (non-mixed injections) in the isocortex.

Network density—The density of a directed graph is given by the ratio ρ =M/[N(N−1)] 

between the number of directed edges (links) M of the graph and the maximum possible 

number of directed links, N(N−1), where N is the number of nodes in the graph.

The graph density of the full interareal network (FIN, which contains the whole information 

about the connections between areas) is a fundamental measure of the graph’s overall 

connectedness, extensively used in network science and also in earlier analyses of cortical 

connectivity (Markov et al., 2013b; Markov et al., 2014a; Sporns and Zwi, 2004). Referring 

to the weighted connectivity matrix in Figure 7A (for the full FLN weights data see Table 

S6), but employing the corresponding binary connectivity matrix, we can infer the density of 

the FIN (Janson et al., 2000; Markov et al., 2014a; Newman, 2010). Consequently, MFIN 

will be the product between the average indegrees <k>in and the number of areas NFIN. The 

density of FIN will be the ratio between this number and the total possible connections NFIN 

(NFIN − 1).

Based on an atlas of 47 areas (41 areas with SSp divided into 7 subareas, Figure S1B), the 

mouse FIN contains NFIN = 47 cortical areas that represent the nodes of the G47×47 graph. 

The directed edges of the FIN correspond to directed connections between nodes, with 

weights given by the fraction of labeled neurons. Our analysis of the FIN makes use of the 

G19×47 directed subgraph of projections within FIN, which reveals all the in-degrees of the 

injected 19 nodes. It also makes use of the G19×19 edge-complete subgraph of FIN, 

corresponding to the connections among just the 19 injected areas. Both G19×47 and G19×19 

subgraphs contain complete information about the status of their edges and their statistical 

properties would not be expected to be influenced by injections into additional areas 

elsewhere in the cortex (see Partial coverage and global claims below). Given that the 19 

injected areas are widely distributed across the cortex (see Figures S1B, S5), the G19×19 

subgraph is likely to reflect major characteristics of the FIN.

We performed a dominating set analysis on G19×47 (Table S2) for further evidence that the 

FIN is indeed dense (Figure S4B). In graph theory, a subset D of nodes of a graph G with 

node set V is said to be dominating G, if all elements of V have a link to at least one node in 

D (Kulli and Sigarkanti, 1991). Here we modify this definition slightly by saying that D 
dominates x% of the nodes of G, if an x% of all nodes in V are linked to one or more nodes 

in D. The x%=100% corresponds to “full” domination. This definition includes also nodes 

from D. The Minimum Dominating Set (MDS) Dmin is defined as the one that fully 

dominates G and it has the smallest size (number of nodes).
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Partial coverage and global claims—For the following analysis, for simplification, 

we’ll name ABI the data from Oh et al., 2014 and SBRI the data obtained in the present 

study.

Density calculation: The density of square 1–0 matrices NxN is calculated the standard way 

by dividing the number of 1-entries with the number of matrix elements minus the number 

of intrinsic connections (A→A type entries), i.e., by N(N−1). The density of rectangular 1–0 

matrices NxM with N denoting the number of injected areas and N < M, is calculated by 

dividing the number of 1-entries by the number of matrix elements less the number of 

intrinsic connections, i.e., by NM-N.

Dataset #1: The ABI anterograde (Oh et al. 2014) raw data is based on anterograde 

injections in 14 areas and identifies labels in a 40-area atlas. Accordingly, the 14×14 

edge-complete square matrix/graph has a density of 90.11% and the 14×40 matrix 

has a density of 92.12%.

Dataset #2, ABI parcellation: For our retrograde data with the Oh et al 2014 (ABI) 

parcellation, the matrix is 21×45 (Figure S6A), with a density of 95.71% for the 

21×21 edge-complete (injected) subgraph (Figure S6B), and a density of 96.1% for 

the 21×45 matrix.

Dataset #3, present parcellation: For our retrograde SBRI data with our present 

parcellation, the matrix is 19×47 (Figure 7A), with a density of 97.37% for the edge-

complete 19×19 matrix (Figure 7A) and the same density of 97.37% for the full 

19×47 matrix.

This shows that across different parcellations and different datasets from different 

experiments, and different methods (anterograde vs retrograde), the mouse matrix 

connectivity density is consistently above 90%.

The connectome is not uniform; as shown previously, both in the macaque and mouse, the 

connectome is organized into a core-periphery structure with the cortical network core 

(primarily of high degree nodes) mostly comprised of associative areas. Selecting target 

areas only from the core, would, indeed generate an edge-complete subgraph that is very 

dense. However, all datasets include both primary and associative injected areas. In 

particular, ABI injected 6 primary areas, representing 43% of the 14 injected areas. SBRI 

with ABI parcellation has 5 primary areas injected, representing 24% of the 21 areas 

injected, while SBRI with present parcellation has the same 5 primary areas injected, which 

forms 26% of all injected areas. Additionally, the choices of the locations of injections 

between the two sets of experiments (ABI and SBRI) differ considerably. As we have shown 

above, all densities are consistently above 90%.

Next, we investigate the possibility that the non-injected areas contribute only with a low 

connectivity so that the full graph would have a lower final density. Recall that retrograde 

tract tracing reveals all the incoming connections to the injected node, from both injected 

and non-injected nodes. If the non-injected nodes contributed a lower connectivity to the 

connectome, then we should observe lower out-degrees from the non-injected nodes to the 

injected set, when compared to the out-degrees of the injected nodes to injected set. Table S4 
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shows the values of the out degrees for nodes separated into the injected and non-injected 

groups respectively. To be able to compare similar quantities, we normalize by the number 

of injected nodes. For example, for our data with the ABI parcellation, there are 21 injected 

nodes, but an injected node can send out-links only to 20 other nodes from the injected set 

(no outlinks to self), whereas a non-injected node can send outlinks in principle to all the 21 

injected. Thus, if we divide the outdegree of an injected node by their number minus one 

(20) and the outdegree of a non-injected node by 21, we get the fraction of injected nodes 

towards which a specific node has an outlink to. We then repeat this with the SBRI data and 

present parcellation (with 19 injected nodes), shown in Table S5. For the ABI parcellation 

(Table S4), the outlink average fraction for an injected node is 95.7%, with a standard 

deviation of 5.7%, whereas for a non-injected node the same quantity is 96.4% with a 

standard deviation of 7.3%. Thus, from an out-degree point of view, towards the same set of 

nodes, there is virtually no difference between an injected node or a non-injected node. For 

the SBRI dataset with the present parcellation (Table S5), the average out-degree fraction of 

an injected node is 97.4% with a standard deviation of 3.9%, whereas the same quantity for 

non-injected nodes is an average of 97.4% and standard deviation of 4.4%.

For anterograde tract tracing, the roles of out-links and in-links are reversed, as in this case 

all the outlinks are revealed for an injected area. Repeating the same analysis as above with 

the anterograde ABI (raw) data, we find a similar pattern, as shown in Table S3. The average 

in-degree fraction of an injected node is 90.1% with a standard deviation of 8.8%, whereas 

the same quantity for non-injected nodes is an average of 93.1% and standard deviation of 

8.7%. Here as well, from an in-degree point of view, we see no significant difference 

between an injected node or a non-injected node.

The above data all show very similar numbers with small deviations and they indicate that 

there is nothing special in terms of out-degrees between injected and non-injected nodes, and 

across different parcellations.

In-degree analysis for retrograde data—Since retrograde injection in an area reveals 

all its incoming connections, the in-degrees into the injected areas will not change with 

additional injections, they are final. Figures S8A, B show the in-degree distribution for the 

SBRI dataset for both parcellations (ABI and present). In both cases the in-degrees are very 

high, near the maximum. For the Oh et al parcellation (21×45 matrix), among the 21 

injected areas, 10 receive in-links from all the rest (45–1 = 44), five from 43, two from 42 

and the lowest is one area receiving in-links from 33 others. More than 85% of the nodes, 

each, receive at least 93% of all possible incoming connections. For the present parcellation 

(19×47 matrix), among the 19 areas 13 receive from maximum possible (46) one from 45, 

two from 44 and the lowest receives 38 in-links. More than 84% of the nodes, each, receive 

at least 95% of all possible incoming connections! Clearly, other injections would bring new 

edges into the network. Assuming that the average in-degree of the non-injected nodes is the 

lowest value found among the injected nodes (although the previous analysis shows that it 

should be higher than this assumption), even this brings the full network density down to 

only (33×24+888)/(45×44) = 85% for the ABI parcellation and to (38×28+851)/(47×46) = 

89% for the SBRI parcellation, both still very high.
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Network communication efficiency—The five order of magnitude variability in the 

interareal projection weights indicates strong specificity, and has important consequences, in 

particular on the capacity, or bandwidth of information transfer between cortical areas. This 

is best illustrated via network communication efficiency measures, first introduced in 

network science applications by Latora and Marchiori (Latora and Marchiori, 2003) and 

expanded upon by Vragovic et al (Vragovic et al., 2005). There are two such measures, the 

global efficiency measure Eg (Latora and Marchiori, 2003) and the local efficiency El 

(Vragovic et al., 2005). Eg is the average conductance between all source-target pairs in the 

network, whereas El measures the conductance between the neighbors of an area X through 

the network that does not include X, averaged over all neighbor pairs and for all X. 

Conductance from a source node to a target node is a weighted measure and it’s given by the 

conductance of the path of minimal total resistance through the network from source to 

target. As explained in (Markov et al., 2013b), resistance for information transfer along a 

projection can be modeled as the negative logarithm of the FLN edge weight of that 

projection and therefore resistances are additive along paths. Accordingly, a directed path 

from source to target that contains only high FLN edges will have a very low resistance and 

thus high conductance, or high information transfer bandwidth and vice-versa. In (Ercsey-

Ravasz et al., 2013) and (Markov et al., 2013b), both the global and local efficiency 

measures revealed an optimal organization for information transfer in macaque cortex. The 

same studies showed that this optimal organization was well captured by the exponential 

distance rule (EDR) model, which describes the negative exponential dependence of weights 

on distance.

The clustering analysis and plotting from Figure 8D-G was done with Pajek, and it uses the 

Kamada-Kawai force-based algorithm (Kamada and Kawai, 1989), which draws areas that 

share stronger connections closer to one another than otherwise.

Data and Software Availability

The FLNe data is available at www.core-nets.org

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

A Anterior area
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ACAd, ACAv Anterior cingulate area dorsal part, ventral part

AId, AIv, AIp Agranular insular area dorsal part, ventral part, posterior 

part

AM Anteromedial area

AMY Amygdala

AOB Accessory olfactory bulb

AON Anterior olfactory nucleus

AUDp, AUDpo, AUDv Auditory cortex primary area, posterior area, ventral area

CoA Cortical amygdala

DP Dorsal posterior area

ECT Ectorhinal area (also referred to as area 36, (Beaudin et al., 

2013))

ENTl, ENTm Entorhinal area lateral part, medial part

FRP Frontal pole

GU Gustatory area

HPF Hippocampal formation

ILA Infralimbic area

LM Lateromedial area

LLA Laterolateral anterior area

LI Laterointermediate area

MM Mediomedial area

MOp, MO Motor cortex primary, secondary

NLOT Nucleus lateral olfactory tract

OB Olfactory bulb

OT Olfactory tubercle

ORBl, ORBm Orbitofrontal area lateral part, medial part

PERI Perirhinal area (also referred to as area 35; (Beaudin et al., 

2013))

P Posterior area

Pir Piriform cortex
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PL Prelimbic area

PM Posteromedial area

POR Postrhinal area

PORa Postrhinal anterior (previously annotated as 36p, (Wang et 

al., 2011))

RSPagl, RSPd, RSPv Retrosplenial area agranular part, dorsal part, ventral part

ParS Parasubiculum

PreS Presubiculum

RL Rostrolateral area

SSp Somatosensory cortex primary (barrel field [SSp-bfd], 

lower jaw [SSplj], lower limb [SSp ll], upper limb [SSp-

ul], trunk [SSpt], nose and mouth [SSnm])

SSs Somatosensory cortex secondary

SUB Subiculum

TEa Temporal area anterior part posterior part (TEp)

TEp Temporal area posterior part

TR Postpiriform transition area

VISC Visceral area

VISa Visual anterior

VISal Visual anterolateral

VISam Visual anteromedial

VISli Visual intermediolateral

VISlm Visual lateromedial

V1, VISp Visual primary

VISpl Visual posterolateral

VISpm Visual posteromedial

VISpost Visual postrhinal
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Highlights

• Retrograde tracer injections are restricted to single areas in mouse cortex

• Individual areal maps for each brain are used for location of labeled neurons

• 97% of all possible cortico-cortical connections exist

• Areas are characterized by weight-specific connectivity profiles
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Figure 1. Expression of M2, VGluT2 and CO with respect to PVtdT in layer 3/4 of flatmounted 
left mouse cerebral cortex
(A) Tangential section showing tdTomato fluorescence in PV-containing interneurons (bright 

white labeling). Parcels outlined by white dashed lines and labeled by black and white letters 

were positively identified by PVtdT expression. Black dashed lines indicate subdivisions 

within primary somatosensory (SSp) cortex representing different body parts. Colored letters 

denote known areas contained within distinct compound parcels (orange, yellow, blue, 

green, pink, purple) in which PVtdT-expression exhibits similar intensity and reveals no 

detectable subdivisions. Colored dashed lines indicate presumptive borders between these 

areas. (B) Bright field image of tangential section stained with an antibody against the M2 

muscarinic acetylcholine receptor (dark staining). Areas outlined with white and black 

dashed lines and denoted with white and black letters were positively identified as distinct 

parcels. Areas denoted in orange, yellow, blue, green, pink, red and purple letters indicate 

known areas contained within distinct, but uniformly M2-labeled parcels. (C) Bright field 

Gămănuţ et al. Page 39

Neuron. Author manuscript; available in PMC 2019 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



image of tangential section stained with an antibody against VGluT2 (dark staining). Areas 

outlined with white and black dashed lines and denoted in white and black letters were 

positively identified as distinct parcels. Areas denoted in orange yellow, blue, green pink and 

red letters indicate known areas contained within distinct, but uniformly VGluT2-labeled 

parcels. (D) Bright field image of tangential section reacted for cytochrome oxidase (CO) 

activity (dark staining). Areas outlined with white and black dashed lines and denoted in 

white and black letters were positively identified as distinct parcels. Areas denoted in 

orange, yellow, blue, green, red and purple letters indicate known areas contained within 

distinct, but uniformly CO-labeled parcels. See also Figure S1 and Figure S5
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Figure 2. Retrograde DY labeling in PVtdT mice
(A) Tangential section (slightly tilted to the lateral side away from the tangential plane) 

through layers 3–5 of flatmounted cortex showing the distribution of PVtdT-expressing 

neurons (false colored white). Parcel boundaries were assigned based on PVtdT expression 

densities. False colored yellow spot marks the DY injection site. Black dashed outlines 

indicate the border of the crystalline DY deposit, which is confined to lower peripheral 

visual field representation of V1. Note that the injections site appears larger due to 

overexposure of the fluorescence image to visualize the labeled neurons. (B) Same section 

as in (A) showing the distribution of retrogradely DY-labeled neurons (false colored yellow 

dots). Note that due to the long exposure time required to reveal DY-labeled neurons at low 

magnification, the injection appears larger than the site outlined (black dashed outlines) in 

(A). Importantly DY labeled neurons are tightly clustered at sites that match the topographic 

location of the injection site (Garrett et al., 2014; Marshel et al., 2011; Wang and Burkhalter, 

2007). (C) Overlay of images shown in (A) and (B). (D–F) Tangential sections through layer 

4 of poster half of cortex in PVtdT expressing mice, showing DY deposits (outlined by 

dashed black lines) in areas LM (D), AL (E) and PM (F). Although under fluorescence 

illumination the injection sites appear larger than the DY deposit, it is important to note that 

they are confined to individual areas. See also Figure S2 and Figure S7
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Figure 3. Variance and lognormal distribution of FLNe
A–D Repeat injections SD as a function of the mean; θ, dispersion parameter, Red curves, 

Poisson distribution; blue, geometrical distribution; green, negative binomial; brackets, 95% 

confidence interval. (A–B) retrograde DY tracer injections of (A) LM (n=3) and (B) V1 

(n=4) (present study) of DY-labeled neurons. (C–D) Anterogradely projections described by 

Oh et al., (2014) after injections of viral tracer into mouse (C) somatosensory barrel cortex 

SSp.bfd (n=5) and (D) primary visual cortex VISp (n=8). Note difference in θ values for A, 

B versus C, D. In order to have the same normalization as in AB, for each injection we 

divided the strengths of cortico-cortical projections by the sum of cortico-cortical 

projections from the injection (E–F) Lognormal distribution of retrograde tracing data in 
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present study, observed means (white dots) ordered by magnitude, SEMs (error bars) of 

logarithms of the FLNe for the cortical areas projecting on the injected area. V1 (n=4), LM 

(n=3). Black curves, the expected lognormal distribution for an ordered set of projections of 

size n, equal to the number of source areas. The grey envelopes around each curve indicate 

the 95% confidence intervals obtained by simulating 10000 sets of count experiments drawn 

from a negative binomial distribution, with means of counts and dispersion parameter as the 

data.
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Figure 4. Consistency in mouse and macaque as a function of mean weight and size of injection 
for repeat injections across individuals
In A–C, violin plots of means of projections consistent across repetitions (gray), and of 

inconsistent projections (red). (A) Mouse retrograde tracing data from present study 

representing repeat injections in areas AM, LM, RL, SSp-bfd and V1; (B) Macaque 

retrograde tracing data from repeat injections in areas V1, V2, V4 and 10 (Markov et al., 

2014a). (C) Mouse anterograde raw data, where repeat injections were restricted to single 

areas (VISp, SSp-bfd) (Oh et al., 2014). In order to have non-normalized data as in A and B 
we multiplied each strength of cortico-cortical connections with the volume of the respective 

injection taken from Supplementary data of Oh et al., 2014. In D, E, colored dots represent 

projections which are present; white dots absent. On the vertical axis are represented mean 

numbers of neurons per projection, on the horizontal axis injection size in terms of total 

number of labeled neurons per injection. The solid lines correspond to a linear classifier 

from a logistic regression with the variables of both axes used as features for a probability of 

the presence of the projection at 95%. The dashed lines correspond to a similar criterion for 
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which only the ordinate variable was used as a classification feature. (D) Repeat injections 

retrograde tracer DY in mouse area V1 (n=4); LM (3), RL (2) SSp-bfd (2), AM (2); (E) 

Repeats in macaque area 10 (3), V1 (5), V2 (3), V4 (2).
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Figure 5. Relations of discrete probability distributions on log-normal FLNe distribution 
variabilities and connectivity profiles
In A, B, C, the hypothetical results of 1000 injections were simulated according to a 

Poisson, Negative Binomial (dispersion parameter θ = 7) and Geometric distributions (θ = 

1). (D) The standard deviation is plotted as a function of the means calculated for the 

simulated injections from A, B and C with the colors indicating the distribution from which 

the calculations were made. (E, F) Example of the effect of overdispersion on the reliability 

of projections in present data (E) and in Oh et al. 2014 (F). In both plots a single injection in 

V1 (VISp, respectively) was taken and the areas were ordered according to their strengths. 

The difference between the log of the maximum and of the nonzero minimum was then 

divided into four intervals (delimited by dashed horizontal lines), and assigned the log of the 

FLNe to the corresponding intervals, forming four groups. Next, the strengths of the 

corresponding areas from the other repeats were used to obtain the boxplots. The stars 

represent the significance levels attained of the p values of one-sided permutation tests for 

each pair of consecutive groups, with the null hypothesis that the mean of the group on the 

left is larger than the mean of the group on the right. Notice that the present data are all 
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restricted to the initial intervals (within the limits of the dashed horizontal lines), while the 

data from Oh et al. 2014 in all but one case cross these limits.
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Figure 6. The data in the present study shows some similarity to the raw data in Oh et al. 2014, 
but not to the computed data
(A) Correlation between the raw and computed data in Oh et al., 2014, zero values shown in 

red. (B) Distributions of the raw data and the corresponding connections in the computed 

data for the 14 areas which received unmixed injections in Oh et al., 2014; red bars, 

computed data, blue bars, raw data, white bars, non-zero connections in the raw data, but 

zero in the computed. (C) Distribution of strengths of connections for areas which are 

homologous in Oh et al. 2014, computed data (red) and present study (grey). Source areas: 

ACAd, ACAv, AId, AIp, AIv, ECT, GU, ILA, MOp, MOs, ORBl, ORBm, ORBvl, PERI, 
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PL, RSPd, RSPv, SSp-bfd, V1; target areas, ACAd, GU, ILA, MOp, MOs, RSPd, SSp-bfd, 

V1. (D) Same as in C, but considering only projections that are nonzero in both sets. Insert, 

correlation diagram. (E) Distribution of strengths of connections for areas which are 

homologous and nonzero both in Oh et al. 2014, raw data (blue, the 14 areas which received 

unmixed injections) and present study (grey). Insert, correlation diagram. Source areas: 

MOp, SSp-bfd, V1; target areas: ACAd, GU, ILA, MOp, MOs, RSPd, SSp-bfd, V1. (F) 

Distribution of connection strengths for the full data set in present study (gray bars) 

compared to raw data in Oh et al., 2014 shown in panel B. (G) Distribution of projection 

lengths in Oh et al., 2014, raw data (blue) and computed data (red). (H) Distribution of 

projection lengths in present study. Notice that the spatial constant is close to the one in raw 

data in G. (I) Comparison of cortical labeling in Oh et al., 2014 follow anterograde tracer 

injections in the superior colliculus, pontine nucleus and basal ganglia with label obtained 

following cortical injections. See also Figure S3 and Table S1
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Figure 7. Weighted connectivity matrix
Strengths of the projections (FLN) are color coded; black, absent connections; green, 

intrinsic projections where FLN is not indicated. (A) Rows, one of the 47 source areas; 

column, one of the 19 injected target areas. Note that the SSp-bfd and SSp-un subfields are 

listed as separate areas. The row and column ordering was determined by a clustering 

algorithm based on input and output profile similarity. (B) A weighted connectivity matrix 

for the 19×19 subgraph. See also Figure S4, Figure S6, Figure S8 and Table S6
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Figure 8. Local and Global Communication Efficiency
(A–C) Macaque data (taken from Ercsey-Ravasz et al., 2013). (A) Effects of graph density, 

via sequentially deleting weak (blue, green) and strong (red, black) links, on global 

efficiency (Eg) and local efficiency (El). Black arrow shows when the graph exhibits onset of 

unreachability (16% density), indicating the high efficiency backbone shown in C. (B) 
Weight-based layout, macaque full density (all 536 links). The Kamada-Kawai force-based 

algorithm for graph-drawing reveals optimal layout, with edges representing springs 

proportional to the link weights. (C) High-capacity backbone, blue edges are the 130 

strongest connections (16% density) after weak link removal (thin gray edges), indicated by 

black arrow in A. (D–F) Same analysis as (A–C), for present mouse data. (D) The mouse 

graph exhibits onset of unreachability at 26% density. (E) Weight-based layout, mouse full 

density (all 334 links). (F) High-capacity backbone, blue edges are the 90 strongest 

connections (26% density) after weak link removal (thin gray edges), indicated by black 

arrow in B. (G) same analysis as in A for mouse computed data from Oh et al., 2014.
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