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Introduction
The term microbiome was coined by Joshua Lederberg to sig-
nify the “ecological community of commensal, symbiotic, and 
pathogenic microorganisms that share our body space” 
(Lederberg and McCray 2001). Since then, most of the effort to 
understand the role of the microbiome in health and disease has 
been placed in characterizing changes in community composi-
tion under different conditions.

The assessment of community composition gives just a partial 
picture of the molecular processes by which dysbiosis occurs. A 
more comprehensive approach is needed to study the host- 
pathogen interactions in vivo that reveal the links between micro-
bial community crosstalk with the host and microbial activity in 
the oral microbiome. The metatranscriptome reveals the taxo-
nomic composition and active functions of a complex microbial 
community in contrast with the metagenome, which shows only 
the microbial composition of the community (Fig. 1).

The National Institutes of Health recently established the 
Integrative Human Microbiome Project (iHMP) as the second 
phase of the original Human Microbiome Project. iHMP will 
focus on the study of host-microbiome interactions by analyz-
ing microbiome and host activities via different “omics” 
(iHMP Research Network Consortium 2014).

Community composition does not necessarily reflect the 
active members of the community (Fig. 2), thereby supporting 
the need for functional analysis of the microbiome. Previous 
studies showed that metagenomic (microbial composition) and 

metatranscriptomic (global gene expression) profiles from the 
same sample differ in phylogenetic composition (Benítez-Páez 
et al. 2014; Duran-Pinedo et al. 2014; Franzosa et al. 2014; 
Yost et al. 2015). One direct consequence of this is that mem-
bers of the community that are present at low numbers in the 
metagenome may still be critical in carrying on metabolic 
activities essential to the community. For example, at low colo-
nization numbers, Porphyromonas gingivalis modulates the 
behavior of the oral community, showing its role as a “key-
stone pathogen” in disease (Hajishengallis et al. 2012).

Metagenomic and metatranscriptomic analyses treat the 
microbial community as a whole, overcoming problems associ-
ated with polymerase chain reaction amplification. Moreover, 
they are not limited to analysis of a predetermined assembly of 
bacteria, such as that used in checkerboard hybridization 
(Socransky et al. 1994), microarray-based techniques (Colombo 
et al. 2009), or a specific gene such as 16S rRNA (Kumar et al. 
2003). However, these techniques need complete genomes to be 
performed. Fortunately, the oral community is one of the best 
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Abstract
The last few decades have witnessed an increasing interest in studying the human microbiome and its role in health and disease. The 
focus of those studies was mainly the characterization of changes in the composition of the microbial communities under different 
conditions. As a result of those studies, we now know that imbalance in the composition of the microbiome, also referred to as microbial 
dysbiosis, is directly linked to developing certain conditions. Dysbiosis of the oral microbiome is a prime example of how this imbalance 
leads to disease in the case of periodontal disease. However, there is considerable overlap in the phylogenetic profiles of microbial 
communities associated with active and inactive lesions, suggesting that the difference in periodontal status of those sites may not be 
explained solely by differences in the subgingival microbial composition. These findings suggest that differences in functional activities 
may be the essential elements that define the dysbiotic process. Researchers have recently begun to study gene expression of the oral 
microbiome in situ with the goal of identifying changes in functional activities that could explain the transition from health to disease. 
These initial results suggest that, rather than a specific composition, a better understanding of oral dysbiosis can be obtained from the 
study of functional activities of the microbial community. In this review, we give a summary of these initial studies, which have opened a 
new door to our understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
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characterized in the human microbiome, 
which significantly facilitates metatran-
scriptome analysis.

Metatranscriptomic analysis charac-
terizes gene expression profiles of the 
entire microbial community based on the 
set of transcripts being synthesized under 
diverse environmental conditions. Given 
the complexity of the oral microbiome, it 
would not have been possible to perform 
this type of analysis without the arrival of 
next-generation sequencing technologies. 
For this reason, metatranscriptomic anal-
yses have just recently begun to be used 
in studying the human microbiome 
(Booijink et al. 2010; Duran-Pinedo et al. 
2014; Jorth et al. 2014).

One of the challenges faced when 
measuring bacterial gene expression in 
situ is the limited amount of biomass 
present in oral samples. To overcome 
this problem, researchers have followed 
2 strategies. The first involves pooling 
samples with similar clinical characteris-
tics to reach the amount of RNA needed 
for analysis (Jorth et al. 2014), including 
an amplification step where the final amplified RNA is a direct 
representation of the relative abundance of mRNA in the origi-
nal sample (Duran-Pinedo et al. 2014; Yost et al. 2015). The 
second involves linear RNA amplification methods that have 
been successfully applied in deep sequencing, rendering cover-
age that is indistinguishable from that of nonamplified libraries 
(Hoeijmakers et al. 2011).

Although metatranscriptomics is emerging as a powerful 
technology for the functional characterization of microbiomes, 
there is still no consensus on what is the best approach to per-
form these kinds of studies.

Bioinformatic analyses of the metatranscriptome involve 
managing large data sets through a series of steps, called a 
pipeline or a work flow. The first step is to remove low-quality 
sequences, followed by an alignment step against the genomes 
of interest, then a differential expression analysis to identify 
changes in metabolic activities, and, finally, a phylogenetic 
analysis of the transcripts to identify active members of the 
community (Fig. 3). One of the crucial elements when optimiz-
ing metatranscriptomic experimental designs is sample size 
estimation with a particular statistical power. In estimating 
sample size, we should consider sequencing depth, power wanted, 
single- or paired-end reads, the coefficient of variation (CV), effect 
size, and budget constraints (Hart et al. 2013; Ching et al. 2014). 
Increasing sample size and sequencing depth and using paired-
end reads significantly enhance the statistical power (Ching  
et al. 2014; Liu et al. 2014). However, increasing sample size 
is more potent than sequencing depth to increase power, espe-
cially when the sequencing depth reaches 20 million reads 
(Ching et al. 2014). In most cases, a large number of replicates 

is not possible. Nonetheless, the statistical power of deep 
sequencing provides a robust output that can provide highly 
informative statistically significant data. This in vivo–derived 
information can then be followed by studies of clinical samples 
with quantitative polymerase chain reaction to further validate 
the findings. Interestingly, in model organisms, it seems that 
there is no need for a large number of replicates to reach the 
desired statistical power. For instance, in a study by Ching et 
al. (2014) comparing 5 differential expression analysis pack-
ages and evaluating their performance by power and other met-
rics, the authors found that when the sequencing depth reached 
20 million paired-end reads, all packages reached a power >0.8 
with only 10 replicates per condition. Hart et al. (2013) per-
formed a similar analysis and found that the biological CV of 
the data sets was a significant driver in calculating sample size, 
but with low CVs, the number of samples per group was also 
small. With a CV of 0.4, they needed only 10 samples per con-
dition and 10 million sequences to reach a power of 0.8. 
However, with a CV of 1.2, they needed 40 samples per condi-
tion to achieve the same statistical power.

Microbial Metatranscriptome in Health
To understand the dynamics of gene expression of any microbi-
ome, there is a need to characterize what the transcriptome looks 
like under healthy conditions. Thus far, there is a significant void 
in the metatranscriptomic studies under healthy conditions. Only 
1 study focused on the metatranscriptome during biofilm forma-
tion and after meal ingestion (Benítez-Páez et al. 2014). The 
authors characterized the gene activity repertoire of the microbial 

Figure 1.  Laboratory work flow for metatranscriptome analysis. A general overview of the 
different kinds of analyses that can be performed to study the oral microbiome metatranscriptome.
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community during development in supragingival dental plaque 
samples and determined the taxonomic identity of the active 
microbiome before and after ingestion of a meal. Changes in bac-
terial activity during plaque development and after meal ingestion 
were person-specific. In some cases, >80% of active bacteria cor-
responded to only 3 genera (Actinomyces, Corynebacterium, and 

Rothia), whereas other individuals did not 
show any dominant genera in the active 
microbial community.

The authors (Benítez-Páez et al. 2014) 
minimized potential errors in taxonomic 
assignment in the active community by 
assigning reads at the family and genus 
taxonomic levels only, selecting matches 
against a 16S rRNA database of 100% 
sequence identity and keeping only hyper-
variable informative regions of the 16S 
rRNA gene. The predominant genera of 
active members of the community were 
Streptococcus (12% to 19%) and Actino- 
myces (3% to 12%). Actinomyces showed 
higher frequencies in early plaque sam-
ples, in agreement with its known role  
as an early colonizer. Other frequent 
active genera were the Actinobacteria 
Rothia, Angustibacter, and Kineococcus; 
the Proteobacteria Neisseria, Kingella, and 
Alysiella; the Firmicutes Gemella, Paeni- 
bacillus, and Veillonella; and, finally, Cap- 
nocytophaga and Fusobacterium. Kineo- 
coccus, Alysiella, and Paenibacillus are 
genera commonly found in environmental 
samples. Nonetheless, members of those 
genera have been identified in oral sam-
ples, although generally at low numbers 
(Kuhn 1981; Kraal et al. 2014; Tetz  
et al. 2015; Tønjum 2015; Zheng et al. 
2015; Tetz et al. 2016).

In early samples, genes involved in the 
metabolism of carbohydrates, energy, 
amino acids, cofactor/vitamins, and xeno-
biotic degradation were predominantly 
upregulated. In the late stages, the 
researchers (Benítez-Páez et al. 2014) 
observed upregulation of genes involved 
in quorum sensing response—in particu-
lar, genes identified as belonging to type 
II secretion systems. Since type II secre-
tion systems promote secretion of folded 
periplasmic proteins that typically play a 
role in survival, this finding indicates that 
the community is adapting as it develops. 
Finally, regarding changes in the active 
community after a meal, some individuals 
demonstrated microbial communities that 
were very resilient to changes in gene 

expression profile, while others had more apparent differences 
in the proportions of active bacteria; however, no specific pat-
tern was common to all individuals. Actinomyces was the only 
genus found in a percentage of >10% in all samples.

Among the significant findings of this work (Benítez-Páez 
et al. 2014) is that the metatranscriptomic profiles during  

Figure 2.  Comparison of metagenome and metatranscriptome in the oral and gut microbiome. 
(A) Metagenome and metatranscriptome analysis of the gut microbiome. Comparison of between-
sample diversity for taxonomic and functional profiles with the Bray-Curtis metric (adapted with 
permissions from Franzosa et al. 2014). (B) Microbiota composition in the human oral biofilm from 
a 24-h dental plaque sample. Relative abundance of bacterial genera from metagenomic data differs  
from that obtained from metatranscriptomic data (adapted from Benítez-Páez et al. 2014). 
(C) Rank distribution of statistically significant relative increase in number of hits for the 
metagenome and metatranscriptome results in samples from healthy patients and patients 
with severe periodontitis. In green, species with statistical differences in both metagenome and 
metatranscriptome. In blue, species with statistical differences in metagenomic counts. In red, 
species with statistical differences in metatranscriptome counts (adapted from Duran-Pinedo et al. 
2014).
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biofilm formation and after meal ingestion 
were person-specific. Some individuals 
showed virtually no changes in the active 
bacterial population after food ingestion, 
which suggests that their microbiota is not 
affected by food ingestion, thereby poten-
tially reducing the risk of acidic pH and 
promoting dental health. The authors also 
showed that expression of genes linked to 
translation machinery is higher in early 
biofilm stages, whereas more specialized 
genes are expressed in the mature biofilm. 
Among them, genes involved in compe-
tence, quorum sensing, mutacin produc-
tion, and DNA uptake were overexpressed 
in late biofilm, indicating a more complex 
level of interactions in mature biofilm than 
at earlier stages of biofilm formation.

Microbial 
Metatranscriptome in 
Caries
For a long time, acidogenic species of the 
genus Streptococcus (e.g., S. mutans) have 
been considered the causative agent  
of dental caries. Indeed, numerous 16S 
rRNA studies showed that certain acido-
genic and aciduric species, such as S. 
mutans and Lactobacillus spp., are highly 
correlated with active caries (McLean 
2014). Many other species are likely to be relevant, as evi-
denced by the diverse microbial populations present in caries. 
They include members of the genera Actinomyces, 
Fusobacterium, Porphyromonas, Selenomonas, Bifidobacteria, 
Scardovia, and Haemophilus (Tanner et al. 2011), supporting 
the idea that, as in periodontitis, a complex consortium formed 
by multiple microorganisms act collectively to initiate and 
expand the disease (Simón-Soro and Mira 2014).

In a metatranscriptomic study that focused on the active 
bacterial communities in caries lesions by pyrosequencing of 
16S rRNA, Simón-Soro et al. (2014) found that active caries 
lesions contained between 70 and 400 metabolically active spe-
cies of bacteria. They discovered that noncavitated (“white 
spot” lesions), open dentin, or enamel-dentin caries presented 
different active communities. While members of the genera 
Streptococcus and Veillonella were highly active in all 3 types 
of caries, Lactobacillus spp. were highly active only in the 
enamel-dentin caries sites. Enamel-dentin caries, also known 
as hidden caries, is a phenomenon that leads to formation of 
highly mineralized, strengthened enamel surfaces, under which 
the loss of mineral may progress gradually and the carious lesion 
might extend into dentin without a clinically visible crack at the 
enamel surface. Interestingly, among members of the genus 
Streptococcus, S. sanguinis was the most active species in all 3 
kinds of lesions, while S. mutans was active only in noncavitated 

and open dentin lesions, indicating an association of S. mutans 
with open lesions rather than unexposed, hidden caries, in 
agreement with the idea that oxygen availability is a crucial 
factor in the interspecies competition between S. mutans and S. 
sanguinis in the oral biofilm (Kreth et al. 2008).

When looking at community-wide expression profiles of 
dental plaque samples from dental caries, Peterson et al. (2014) 
found that transcripts of the community were produced by a 
limited number of species. Again, S. sanguinis was the most 
active member of the community with 16% of the transcripts, 
followed by Streptococcus mitis (10%), Veillonella parvula 
(9%), Capnocytophaga sp. (9%), Streptococcus oralis (8%), 
Streptococcus spp. (7%), Gemella haemolysans (5%), Strepto- 
coccus gordonii (4%), and Neisseria sp. (3%). Despite inter-
personal variation at the level of specific genes, distinct  
patterns of expression emerged in terms of functional catego-
ries. A large number of activities were associated with oxida-
tive stress, with high expression of proteins that metabolize 
superoxides and peroxides (superoxide dismutase, peroxire-
doxins, and ferroxidase; Peterson et al. 2013).

May et al. (2016) recently performed an analysis of already-
existing metatranscriptomic libraries to identify functional dif-
ferences between health and caries. They determined that 
deregulated metabolic subnetworks were indeed significantly 
different. The disease-associated parts of the caries subnetwork 

Figure 3.  Overview of a general bioinformatic work flow for metatranscriptome analysis. 
Common steps in the bioinformatic analysis of microbial transcriptomes: quality control of the 
sequences obtained by next-generation sequencing, alignment against the genomes of interest, 
phylogenetic assignment of the transcripts and metagenome, differential expression analysis and 
gene set or pathway enrichment analysis based on the obtained differentially expressed genes. 
In purple are software packages widely used for metatranscriptome analysis. HMP, Human 
Microbiome Project; HOMD, Human Oral Microbiome Database; LEfSe, linear discriminant 
analysis effect size.
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included 9 KEGG Orthology groups (KOs) from the pathways 
of the phosphotransferase system and fructose and mannose 
metabolism. Among them are sugar phosphotransferases 
involved in the beta-glucoside metabolism, which are critical 
elements in the process of colonization (Loo et al. 2003; Kiliç 
et al. 2004). Another set of disease-associated pathways was a 
pathway that converts sorbitol to fructose 6-phosphate. Unlike 
many other oral species, S. mutans can metabolize sorbitol as a 
carbon source (Janda and Kuramitsu 1978; Rölla et al. 1981). 
In contrast, only 1 KO was downregulated in disease in the 
same pathway. This KO converts fructose to fructose 6-phos-
phate, suggesting that while in health fructose may be the pri-
mary carbon source, in dental caries sorbitol might be used as 
an additional source of carbon (May et al. 2016). Interestingly, 
these results seem to contradict previous laboratory studies 
where sorbitol inhibited sugar metabolism of S. mutans 
(Takahashi-Abbe et al. 2001). These contradictory results may 
reflect the different physiologies of S. mutans, when living as 
part of a complex microbiome as opposed to being grown iso-
lated under laboratory conditions.

Microbial Metatranscriptome  
of Subgingival Plaque in Chronic 
Periodontitis
As in the case of dental caries, only recently has metatranscrip-
tomic analysis been applied to study the functional activities 
associated with periodontal disease (Duran-Pinedo et al. 2014; 
Jorth et al. 2014; Duran-Pinedo et al. 2015; Szafrański et al. 
2015; Yost et al. 2015). However, with even a limited number 
of studies, we have started to obtain some general conclusions 
associated with the functional profiles of the microbiome in 
health and disease. The first conclusion is that despite high 
interpatient variability in microbiome composition, the disease-
associated communities displayed conserved functional activi-
ties, while the health-associated communities exhibited a more 
diverse range of those functional activities (Duran-Pinedo  
et al. 2014; Jorth et al. 2014). As a corollary of this observa-
tion, although the activities associated with periodontitis are 
conserved, the species linked to those activities are different 
among patients (Duran-Pinedo et al. 2014; Jorth et al. 2014; 
Yost et al. 2015). These results suggest that rather than focus-
ing on the activity of a specific pathogen or pathogens, we 
should consider changes in the behavior of the community as a 
whole if we want to explain those observations. One recent 
hypothesis that tries to explain the role of some prominent 
members of the community in disease is that specific low-
abundance microbial pathogens could act as keystone patho-
gens and modulate the composition and behavior of the oral 
community (Darveau 2009; Hajishengallis et al. 2012). The 
periodontopathogen P. gingivalis has been proposed as a key-
stone pathogen in periodontal disease via host modulation 
(Hajishengallis et al. 2012). It does so through the expression 
of the virulence factor gingipain, which cleaves the comple-
ment component 5 (C5), generating high levels of C5a and 

acting as a highly inflammatory peptide (Hajishengallis et al. 
2012). Jorth et al. (2014) observed that Fusobacterium nuclea-
tum was the only species degrading lysine to butyrate in all 
patients, and they proposed that production of butyrate may 
contribute to the stability of the community by preventing the 
proliferation of human gingival fibroblasts. However, Szafrański 
et al. (2015) observed that expression of genes for the synthesis 
of butyrate occurred under all conditions, not only during  
disease. Moreover, their study determined that 4 additional 
species with alternative pathways contributed to butyrate syn-
thesis. Therefore, they concluded that the proinflammatory 
role of F. nucleatum might not be related to butyrate biosynthe-
sis. Another exciting aspect of the ecology of periodontitis is 
that it results in changes not only in community composition 
but also in functional dysbiosis. Jorth et al. (2014) showed that 
the proportions of F. nucleatum did not significantly change 
between healthy and periodontitis samples, but its metabolism 
was utterly different under those 2 conditions. Unexpectedly, 
in a separate study, Duran-Pinedo et al. (2014) observed that 
the majority of virulence factors upregulated in subjects  
with periodontitis came from organisms not considered major 
periodontal pathogens (Fig. 4), in agreement with the idea of 
the “pathogenic microbial community” (Berezow and Darveau 
2011) or “the community as pathogen” (Relman 2012), which 
postulates that the integrated actions of the components of the 
microbial community would result in disease.

In terms of functional changes during disease, the overall pic-
ture of metabolic activities showed that Gene Ontology (GO) 
biological processes related to flagellar motility, peptide trans-
port, iron acquisition, and beta-lactam degradation were over-
represented in disease, as was biosynthesis of the lipid A 
component of endotoxins from Gram-negative bacteria (Fig. 
5a). GO biological processes underrepresented in disease 
included potassium transport and polysaccharide biosynthesis 
(Fig. 5b). In agreement with those observations, Szafrański  
et al. (2015) found that flagellin and transcripts assigned to che-
motaxis, iron acquisition, antimicrobial resistance, secretion, 
and iron transport were significantly more abundant and could 
be directly linked to pathogenesis. Interestingly, a metatranscrip-
tome analysis of caries samples also found transcripts encoding 
for resistance to antibiotics, including transcripts encoding the 
acriflavine resistance complex (Peterson et al. 2014).

One of the advantages of using metatranscriptome analysis 
is that we can also zoom into specific members of the microbi-
ome to assess their activities. The “red complex,” which 
appears later in biofilm development, comprises 3 species that 
are considered the primary periodontal pathogens: P. gingiva-
lis, Treponema denticola, and Tannerella forsythia (Socransky 
et al. 1998). Despite a good understanding of the association 
between red complex species and periodontitis, we have only 
limited information on the in situ activity of these organisms. 
In a study of microbial metatranscriptome on chronic peri-
odontitis, the 3 members of the red complex showed high 
expression of metalloproteases, peptidases, and genes associ-
ated with motility and invasion. Additionally, proteins involved 
in iron metabolism represented a significant fraction of  



Metatranscriptome of the Oral Microbiome	 497

upregulated putative virulence factors in these periodontal 
pathogens (Duran-Pinedo et al. 2014).

Microbial Metatranscriptome  
in Periodontitis Progression
One still unanswered question regarding periodontal disease is 
why in some cases teeth with clinical symptoms of periodonti-
tis progress to tooth loss and in other cases remain stable 
despite the lack of treatment (Goodson et al. 1982). Most effort 
regarding this question has focused on identifying markers that 
would distinguish between active and nonactive sites. While 
there have been many studies associating markers that might 
distinguish between active and inactive sites—including bacte-
rial profiles (Byrne et al. 2009; Charalampakis et al. 2013), 
genetic markers (Heitz-Mayfield 2005; Ricci et al. 2011), pro-
tein activities (Eley and Cox 1996), cytokines (Khalaf et al. 
2014), and clinical markers (Charalampakis et al. 2013)—none 
of these associations shed light on the mechanisms of progres-
sion. Periodontal disease progresses through periods of acute 
exacerbation (activity), followed by periods of remission 
(Socransky et al. 1984; Haffajee and Socransky 1986). 
Goodson et al. (1982) found that among untreated patients 
whose attachment levels were measured every month for 1 y, 
5.7% of the sites became significantly deeper, while 11.5% 
became markedly shallower during that period. Among sites 
with increased pocket depth, approximately half showed spon-
taneous recovery to their original depth, and half exhibited 
cyclic deepening, followed by spontaneous recovery to their 
initial depth (Goodson et al. 1982). Patterns of “exacerbation” 
and “remission” were also described by others (Jeffcoat and 
Reddy 1991; Clerehugh et al. 1995). It has been postulated that 

changes in the composition of subgingival biofilms could 
explain these periods of disease activity. In fact, a few studies 
found differences in the levels of subgingival species when 
comparing progressing and nonprogressing sites through cul-
tural approaches (Dzink et al. 1988) and molecular approaches 
(Tanner et al. 2007; Teles et al. 2008; Byrne et al. 2009). These 
studies also demonstrated a considerable overlap in the compo-
sition of the microbial communities associated with progress-
ing and nonprogressing lesions, suggesting that the difference 
in the periodontal status of the sites could not be explained 
solely by the reported differences in the subgingival microbial 
composition.

Yost et al. (2015) compared metatranscriptomic profiles of 
subgingival plaque from active and inactive sites in patients 
with chronic periodontitis, trying to identify functional signa-
tures that could explain the initial stages of dysbiosis. In this 
study, the microbiome of the progressing sites was already dys-
biotic at the initiation of the study. When the baselines of active 
versus nonactive sites were compared, the differences in the 
composition of the active communities were more significant 
than they were when active communities were compared at 
baseline and after progression (Yost et al. 2015). In the base-
line of progressing sites, GO enrichment analysis showed an 
overrepresentation of terms related to cell motility, transport 
(iron, potassium, chloride, citrate, and amino acids transport), 
lipid A and peptidoglycan biosynthesis, and protein kinase 
C-activating G protein–coupled receptor signaling pathway, as 
well as synthesis of aromatic compounds (Fig. 5c). However, 
in the baseline samples from nonprogressing sites, there was an 
overrepresentation of GO terms related to tricarboxylic acid 
cycle, metal ion transport, phosphoenolpyruvate-dependent 
sugar phosphotransferase system, and protein secretion (Fig. 

Figure 4.  Ranked species by the number of upregulated putative virulence factors in the metatranscriptome. Putative virulence factors were identified 
by alignment of the protein sequences from the different genomes against the Virulence Factors of Pathogenic Bacteria Database. The numbers in the 
graph are the absolute number of hits for the different species of the upregulated putative virulence factors identified. In red are the members of the 
“red complex.” In orange are members of the “orange complex.” (A) Comparison of health vs. severe periodontitis. (B) Comparison of baseline vs. 
progressing sites in periodontitis progression (adapted from Yost et al. 2015). (C) Comparison of baseline nonprogressing vs. baseline progressing in 
periodontitis progression. (Adapted from Duran-Pinedo et al. 2014 and Yost et al. 2015.)



498	 Journal of Dental Research 97(5) 

Figure 5.  Gene Ontology (GO) enrichment analysis in severe periodontitis and periodontitis progression. Enriched terms obtained with goseq were 
summarized and visualized as a scatter plot via REVIGO. Summarized GO terms related to biological processes in (A) severe periodontitis (adapted 
from Duran-Pinedo et al. 2014) and (B) health (adapted from Duran-Pinedo et al. 2014). GO enrichment analysis comparison of baselines from 
progressing and nonprogressing sites: Summarized GO terms related to biological processes in baselines of (C) progressing and (D) nonprogressing 
sites (adapted from Yost et al. 2015). In red are activities that have been associated with pathogenesis in periodontitis. Circle size is proportional to 
the frequency of the GO term, whereas color indicates the log10 P value (red higher, blue lower).
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5d). Interestingly, histidine biosynthesis was overrepresented 
at the initial stages of the progressing sites (Fig. 5c), while 
Jorth et al. (2014) found that histidine catabolism was upregu-
lated in the disease sites of their study.

One of the key altered metabolic activities in periodontitis 
and its progression seems to be potassium ion transport (Duran-
Pinedo et al. 2014; Yost et al. 2015). Its importance was con-
firmed by demonstrating that potassium levels increased the 
virulence of the oral community as a whole, while altering the 
immune response of gingival epithelium, increasing the pro-
duction of TNF-α, and reducing the expression of IL-6 and the 
antimicrobial peptide human β-defensin 3 (Yost et al. 2017).

Conclusions and Future Directions
We present recent studies that focused on the metatranscriptome 
of the oral community. These studies are the starting point for the 
identification of critical environmental signals that modify the 
behavior of the community from commensal to dysbiotic. These 
studies give insight into how microbial communities behave—
information that was unimaginable only a few years ago. In the 
case of caries, sugar metabolism was identified as a central ele-
ment that distinguishes health and disease, but new observations 
were made, such as the potential use of sorbitol as an additional 
source of carbon by S. mutans in dental caries. In the case of 
periodontal disease, the fact that levels of extracellular potassium 
are an important signal in disease is just one among other dysbi-
otic signals identified by metatranscriptome analysis.

Longitudinal studies are needed to identify the real markers 
of the initial stages of the disease. There are no studies yet on 
the transcriptome of the fungal fraction of the oral microbiome, 
which could be an important element influencing the dynamics 
of the whole microbial community. Thus far, the study of oral 
metatranscriptomics has been restricted to only 2 diseases: car-
ies and periodontal disease. Naturally, other oral diseases will 
lengthen the list of conditions that should be studied. Moreover, 
the metatranscriptome does not necessarily represent the final 
metabolic products generated by the microbial community. 
Improvements in proteomics and metabolomics should allow 
us to determine the origin of proteins and metabolites produced 
by the microbiome under different conditions. Finally, inte-
grating the expression profiles of the host with the patterns 
from the microbiome should be one of the directions to take. 
The immune response plays a crucial role in the outcome of the 
progression of the disease. Thus, understanding how the host 
interacts with the microbiome is essential to have a complete 
picture of health and disease.
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