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Abstract

The past decade has witnessed a consolidation and refinement of the extraordinary progress made 

in taste research. This Review describes recent advances in our understanding of taste receptors, 

taste buds, and the connections between taste buds and sensory afferent fibres. The article 

discusses new findings regarding the cellular mechanisms for detecting tastes, new data on the 

transmitters involved in taste processing and new studies that address longstanding arguments 

about taste coding.

Taste buds are the peripheral organs of gustation and are located mainly in the tongue 

epithelium, although they are also present elsewhere in the oral cavity. They sample the 

chemical makeup of foods and beverages for nutrient content, palatability and potential 

toxicity. The substantial diversity and redundancy of the molecular receptors for these 

compounds may reflect the importance of identifying nutrients and avoiding chemical 

threats from the environment. The molecular recognition of tastants, which occurs at the 

apical tips of taste bud cells, ultimately results in sensory perceptions (for example, sweet, 

salty, and so on) that guide appetite and trigger physiological processes for absorbing 

nutrients and adjusting metabolism. This Review discusses the proteins and pathways that 

taste buds use to detect stimuli, the communication and modulation that occur between their 

cells, and the nerve fibres that innervate taste buds, as well as the principles of the coding by 

which information is conveyed from the periphery to neurons in the CNS. Each of these 

areas has seen many new developments, controversies and clarifications in the past decade.

Chemosensory transduction

Taste buds are sensory end organs that are located in the oral epithelium (BOX 1). The 

receptors on the chemosensitive apical tips of taste bud cells confer specificity to gustatory 

stimuli. Taste receptors come in many types, including several classes of G protein-coupled 

receptors (GPCRs) and ion channels (FIG. 1). Some stimuli interact with receptors to 

generate second messengers, whereas in other instances, the taste stimulus itself is 

transported into the cytoplasm of taste bud cells and activates downstream events.
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Taste bud cells can be organized into three main types, in part according to their function. In 

general, bitter, sweet and umami stimuli are detected by type II cells1–3, sour stimuli are 

detected by type III cells4–6, and salty (NaCl) stimuli are detected by as-yet-undefined taste 

bud cells7. Below, we describe the mechanisms by which gustatory stimuli are transduced by 

taste buds. We remind readers that sweet and bitter, for example, are sensory perceptions; the 

compounds that elicit them are labelled with these same names as a shorthand in this 

Review, to which purists may object.

Sweet

Taste buds detect sugars (probably as an indication of carbohydrates) and other sweet stimuli 

using diverse mechanisms. The best-studied receptor for sweet stimuli is the heterodimer 

formed of two GPCRs: namely, taste receptor type 1 member 2 (T1R2) and T1R3. These 

subunits were identified by screening for mRNAs that are preferentially expressed in mouse 

taste buds8 or by genetic linkage to Sac, which is a locus known to dictate sweet-taste 

sensitivity in mice9–11. When cultured cells are co-transfected with T1R2 and T1R3, they 

respond to sucrose, fructose, artificial sweeteners and some d-amino acids that elicit a sweet 

taste12, 13.

T1R2 and T1R3 belong to family C of the GPCRs14. They each possess a long extracellular 

amino terminus that forms a venus flytrap module (VFM). T1R2 and T1R3 function as a 

heterodimer, and have multiple ligand-binding sites. Nevertheless, the purified extracellular 

domain alone of either T1R2 or T1R3 is capable of binding many sugars and sugar 

alcohols15. Modelling and experiments with chimeric and point-mutated T1R2 and T1R3 

have demonstrated that sugars and dipeptide sweeteners (for example, aspartame) bind in the 

cleft of the VFM, albeit at slightly different positions16–18. Intensely sweet proteins (for 

example, monellin and brazzein) bind in the VFM and in a cysteine-rich domain that links 

the VFM to the transmembrane region19, 20, and small-molecule sweeteners (for example, 

cyclamate) bind at residues in or near the transmembrane domains16.

Mice that lack T1R2 or T1R3 have been reported to lose all behavioural sensitivity and 

neural responses to sugars and artificial sweeteners21. However, another group has reported 

that knocking out the gene that encodes T1R3 (Tas1r3) variably affects responses to sugars 

while eliminating the detection of artificial sweeteners22. This finding suggests that T1R3-

independent mechanisms probably exist for the detection of sugars and other 

sweeteners22, 23. One postulated T1R3-independent mechanism involves glucose transporter 

type 4 (GLUT4) and sodium/glucose cotransporter 1 (SGLT1), which have been shown to 

transport glucose into sweet-sensing taste cells, leading to a transient elevation of 

intracellular ATP24. ATP that is generated by this pathway blocks ATP-inhibited K+ 

channels (KATP channels) to depolarize the membrane24. Disaccharides such as sucrose are 

hydrolysed to hexoses and can then activate this pathway25. The involvement of a Na+-

dependent transporter — that is, SGLT1 — in transducing sugars offers a plausible 

explanation for the potentiation of sweet taste by Na+ salts26.

T1R3-independent pathways for transducing sugars may also trigger physiological reflexes 

independently of sweet-taste perception. Orally applied sugar has long been known to 

produce a small but marked elevation in plasma insulin levels within minutes, long before 
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the sugar is absorbed in the gut. This cephalic-phase insulin release (CPIR) is documented in 

rodents and humans, and requires intact taste nerves27–29. CPIR requires vagal stimulation 

of the pancreas29. Insulin release from the pancreas may also be stimulated by glucagon-like 

peptide 1 (GLP1; also known as incretin), which is secreted by sweet-sensing taste bud 

cells30, 31. Sugar-induced CPIR persists in Tas1r3-knockout mice32 and is mediated through 

the action of KATP channels33. Thus, at least two distinct and parallel sugar-sensing 

mechanisms seem to be initiated in taste buds: one that signals the perception of 

carbohydrate-rich foods (that is, sweet tastes, via T1R2–T1R3) and one that deploys a 

physiological reflex of insulin secretion (via a transporter).

Starch — which is a high-molecular-weight polymer of glucose — has long been considered 

to be tasteless to humans (but see REF.34). However, rodents show a strong appetitive 

preference for solutions containing smaller polymers such as Polycose35. Intriguingly, mice 

in which Tas1r3 and Tas1r2 have been knocked out can still detect Polycose36, 37. Given the 

nutritional importance of carbohydrates in most animals, the detection of sugars by glucose 

transporters and KATP channels may reflect a parallel mechanism for ensuring caloric 

sufficiency.

Umami

Some amino acids, notably glutamate and aspartate, have a savoury taste named umami. The 

prototypic stimulus for umami is monosodium glutamate (MSG). Glutamate is abundantly 

present in meat, fish, cheese and many vegetables. When 5ʹ nucleotides, such as 5ʹ inosine 

monophosphate (IMP), are present in small amounts alongside glutamate, there is a 

synergistic augmentation of umami taste38.

Taste cells detect umami stimuli through multiple receptors. A sizeable amount of literature 

documents a role for T1R1–T1R3 heterodimers in transducing the umami taste13, 21, 39. An 

initial report using Tas1r3-knockout mice, mice that lack Tas1r1 (which encodes T1R1) and 

double Tas1r3;Tas1r1-knockout mice claimed that T1R1–T1R3 heteromers were fully 

responsible for all umami taste detection21. However, studies using an independently 

generated Tas1r3-knockout line (see above) showed that the behavioural and neural 

responses of these mice to umami compounds (MSG and IMP) were nearly normal22, 40. 

Furthermore, a second line of mice in which Tas1r1 was knocked out also demonstrated 

near-normal responses to umami compounds in taste bud cells and nerves; the only major 

change was that the nucleotide-mediated augmentation of umami taste was lost41. Thus, it 

seems that T1R1–T1R3 responds primarily to mixtures of MSG and nucleotides.

Umami taste receptors other than T1R1–T1R3 are also present in taste bud cells; these 

include N-terminal-truncated, taste-specific variants of the two metabotropic glutamate 

receptors mGluR4 (REFS42, 43) and mGluR1 (REF.44). Both of these receptors are activated 

by glutamate at concentrations that are found in foods42, 44. Nerve recordings from mice that 

lack Grm4 (which encodes mGluR4) revealed decreased responses to glutamate and IMP, 

confirming that a fraction of the afferent nerve response to MSG in wild-type mice is 

attributable to mGluR4 (REF.45).
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Bitter

Bitter taste is stimulated by an enormous variety of compounds that have diverse chemical 

structures, from simple salts to large complex molecules, many of which are toxic. Bitter-

taste receptors (T2Rs) are class A GPCRs, and have short N termini and ligand-binding sites 

in their transmembrane segments46. Unlike T1Rs, the T2Rs are generally considered to 

function as monomers, although recent evidence suggests that they may also form 

homodimers and heterodimers47. Many mammalian genomes (including the human genome) 

have 20 or more genes that encode T2Rs; by contrast, only three T1R-encoding genes have 

been identified in mammalian genomes. Subsets of T2Rs are co-expressed in any given 

bitter-sensing taste bud cell48, 49. T1Rs (which detect sweet and umami tastes) and T2Rs are 

expressed in a non-overlapping pattern50, suggesting a separation of receptor cells that 

detect appetitive versus aversive stimuli.

Individual T2Rs in humans and rodents can be narrowly tuned to one or a very few bitter 

compounds, whereas others are broadly responsive to several bitter chemicals. The breadth 

of the receptive ranges of human T2Rs has been encyclopaedically documented in a 

thorough study of heterologously expressed taste receptors51. This study showed, for 

instance, that T2R3 responds to only a single compound (out of 94 different natural and 

synthetic compounds tested), whereas T2R14 responds to at least 33 compounds. 

Conversely, a single bitter compound often can activate multiple different T2Rs51–54. For 

example, quinine activates as many as nine different human T2Rs, whereas acetaminophen 

— an analgesic — stimulates just one human T2R51. This broad and overlapping range of 

ligand sensitivities of the T2Rs assures that this family of receptors responds to an enormous 

range of bitter-tasting chemicals (BOX 2). Presumably, this redundancy evolved to ensure 

the detection of potentially toxic (bitter-tasting) chemicals and thus prevent the consumption 

of harmful foods. An evolutionary note in this context is that orthologous receptors in mice 

and humans often are responsive to very different bitter tastants54, which suggests that 

receptors have been reassigned to ecologically relevant compounds and that the gene family 

has been subjected to selective pressures55. Many T2Rs exhibit functional polymorphisms 

that result in varying abilities to taste particular compounds56, and these polymorphisms 

may underlie differences in food preference57 (BOX 3).

Effector pathways for sweet, umami and bitter taste receptors

In spite of their diversity, T1Rs and T2Rs converge on a common intracellular signalling 

pathway. These GPCRs all couple to heterotrimeric G proteins that include Gβ3 and Gγ13, 

as well as Gαgus (also known as gustducin), Gα14 and Gαi (REFS58–60). Gα subunits were 

originally proposed to activate cAMP signalling61, but the current view is that they primarily 

function to regulate Gβγ subunits. cAMP also seems to have a longer-term role by 

maintaining signalling proteins in a responsive state through protein kinase A activation62. 

When T1Rs and T2Rs are activated by tastants, Gβγ dimers are released, which stimulates 

phospholipase Cβ2 to mobilize intracellular Ca2+ (REFS1, 58). Elevated cytosolic Ca2+ 

levels lead to the opening of transient receptor potential cation channel subfamily M member 

5 (TRPM5), which is a cation-permeable channel that effectively depolarizes taste cells63–65. 

Interestingly, these same receptors and components of the same signalling pathways are also 
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found in specialized cells in other tissues, where they may detect chemical stimuli without 

eliciting ‘taste’ per se (BOX 4).

Sour

The proximate stimulus for sour taste is intracellular acidification rather than extracellular 

protons66. Organic (‘weak’) acids, such as citric acid and acetic acid, are more potent stimuli 

of sour taste than are mineral (‘strong’) acids such as HCl. This is attributed to the greater 

membrane permeability of the undissociated organic acid molecule and the subsequent 

generation of protons in the cytoplasm. By contrast, mineral acids readily dissociate in the 

extracellular solution, but most cell membranes are relatively impermeable to protons. Thus, 

citric acid and acetic acid are more potent stimuli of sour taste than is HCl when tested at a 

similar pH. The taste bud cells that depolarize and produce Ca2+ responses to acids are the 

neuron-like type III cells5, 67, 68.

Throughout the past two decades, numerous plasma membrane ion channels have been 

proposed as transducers for sour taste, including epithelial Na+ channels (ENaCs)69, 

hyperpolarization-activated cyclic nucleotide-gated channels70 and acid-sensing ion 

channels (ASICs)71. More recently, two members of the TRP superfamily of ion channels — 

polycystic kidney disease protein 1-like 3 (PKD1L3) and PKD2L1 — were proposed as the 

major transducers of sour taste4, 72. However, all of these candidates have been ruled out as 

sour taste transducers either because they lacked biophysical characteristics that were 

consistent with sour-evoked responses in taste cells, or because mice in which the candidate 

receptor-encoding genes were knocked out retained all or most of their sensitivity to sour 

tastants73, 74.

Confocal imaging of pH and Ca2+ has shown that organic acids permeate type III cells, 

acidify the cytoplasm and block leak K+ channels to depolarize the cell membrane67, 75. 

These leak channels have recently been identified; specifically, type III cells express an 

inwardly rectifying K+ channel, KIR2.1, which is inhibited by intracellular protons6. 

Extracellular protons, such as those contributed from mineral acids or from dissociated 

organic acids, pass through a proton conductance that seems to be concentrated to the apical 

tips of type III cells68. The molecular identity of the proton channel that is responsible for 

this proton movement remains to be established. The influx of protons through the channel 

generates a small depolarizing current, and furthermore, the accumulation of protons inside 

the cell contributes to the inhibition of KIR2.1 channels. The net result in both cases is 

depolarization of the type III sour-sensing cells such that they reach the threshold for action 

potential initiation6.

Salty

The taste of NaCl is still somewhat of an enigma. Animals and humans readily consume 

NaCl below isotonic concentrations (that is, concentrations below approximately 150 mM). 

This appetite is presumably to ensure the adequate ingestion of an essential mineral. By 

contrast, higher concentrations of NaCl are normally aversive, which presumably reflects a 

survival mechanism that protects individuals against hypernatraemia and dehydration.
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It remains unclear exactly which taste bud cells transduce NaCl and what the transduction 

mechanisms are. Some of the key observations in this context are that, in rodents, amiloride, 

a diuretic, decreases the amplitude of responses to NaCl in afferent nerve recordings76, 77 

and reduces the behavioural response (licking) to NaCl solutions77. Yet, amiloride does not 

seem to change the perception of the saltiness of NaCl in humans77, 78. In rodents, amiloride 

affects neural responses mainly to NaCl; the effect on other salts is less consistent77. The 

dampening of NaCl taste by amiloride has long been interpreted as evidence for the essential 

role of the amiloride-sensitive Na+ channel ENaC in salty taste76, 79.

Fungiform taste bud cells loaded with a Ca2+ indicator have been reported to respond to 

apically applied NaCl7. When the gene encoding the obligatory α-subunit of ENaC was 

conditionally knocked out in taste cells, neural responses and the ability of mice to respond 

behaviourally to NaCl were lost7. These data confirmed earlier interpretations that ENaC is 

necessary for salty taste detection in rodents. However, no evidence has yet directly 

demonstrated that ENaC is the principal salt receptor in humans.

In a subsequent study, the authors reported that the signals for low (preferred) concentrations 

of NaCl originated in amiloride-sensitive taste bud cells, whereas high (aversive) NaCl 

concentrations were detected by completely separate amiloride-insensitive taste bud cells80. 

They further inferred that the two cell types transmitted their signals along separate afferent 

neurons. However, Ca2+ imaging subsequently showed that the amiloride sensitivity of 

afferent neurons was similar regardless of their NaCl sensitivity81; that is, high-NaCl versus 

low-NaCl sensitivity did not covary with amiloride sensitivity81.

To date, the identity of the taste bud cells that sense NaCl is not known. Amiloride-sensitive 

Na+ currents have been reported in taste bud cells that are neither type II or type III cells, 

based on their lack of voltage-gated currents82. By contrast, a report from another group 

demonstrated that the amiloride-blocked resting conductance was most prominent in cells 

that had the characteristics of type II cells83. Neither of these studies pinpointed the ENaC-

mediated currents to cells that could be identified by type-specific molecular markers. Yet 

other reports assign amiloride-insensitive responses to NaCl to acid-sensing type III 

cells80, 84. This is an area ripe for clarification.

Fat

Dietary fats consist largely of triglycerides. Solid fats and oils differ in the length of the fatty 

acid chains of the triglyceride and the number of unsaturated positions. Most animals have a 

well-developed preference for fats. The sensations evoked by dietary fats most certainly 

include somatosensory components such as texture and viscosity. Whether fats stimulate a 

gustatory component remains debated. Rats lose their ability to detect and identify certain 

fats if the innervation of their taste buds is interrupted85 which supports a role for taste buds 

in sensing fats. The principle argument against fat as a taste quality is that triglycerides have 

not been shown to stimulate taste cells. However, oral lipase activity in rodents rapidly and 

effectively digests fats into free fatty acids in the immediate environment of taste buds86. 

Fatty acids themselves are effective taste stimuli (see below). In humans also, oral lipase 

activity is detectable but only at low levels87, 88, leaving its role in fat detection unresolved. 

There may not be a singular fat taste quality, as dietary free fatty acids evoke multiple 
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orosensations — including ‘fatty’ and ‘irritating’ — depending on chain length and 

concentration89.

One of the earliest studies on fat taste reported that certain polyunsaturated fatty acids act 

directly on K+ channels, resulting in the prolonged depolarization of taste bud cells90. More 

recently, receptor-mediated mechanisms have been documented, including roles for a 

transporter for fats, CD36 (also known as platelet glycoprotein 4)91, 92, and two GPCRs, 

GPR40 and GPR120 (also known as free fatty acid receptors 1 and 4, respectively)93, 94. 

CD36 was reported to be localized to the apical tips of some taste bud cells92 and to elicit 

elevations in intracellular Ca2+ levels when stimulated by fatty acids96. How the transporter 

couples to Ca2+ signalling is not yet known. Intriguingly, oral stimulation of CD36 by 

certain fatty acids elevates pancreatic secretions92 — which is suggestive of a ‘cephalic 

phase response’, preparing the gut for digesting lipids. GPR120 is expressed in a subset of 

rodent type II cells and, when activated, mobilizes Ca2+, as is the case for T1R and T2R 

activation97. GPR120 seems to be distributed and function similarly in human taste buds89. 

In mice, knocking out the gene that encodes CD36, GPR40 or GPR120 results in partial 

deficits in fat taste92, 94.

In short, fat taste is complex, and no particular transduction mechanism has been 

unambiguously identified. Indeed, several transducer proteins may interact to generate the 

taste of fat.

Aside from the basic taste qualities discussed above — sweet, bitter, salty, sour and perhaps 

fatty — additional tastes have been described (BOX 5).

Neurotransmitters and modulators

At least five neurotransmitters have been identified in taste buds. Their release and possible 

roles in taste have been examined in detail, and are discussed below. In addition, several 

peptides that function as hormones or neuromodulators interact with the taste system by 

influencing the sensitivity or the output of taste buds. As the topic of the role of peptides in 

taste has been reviewed recently98, we focus here on small-molecule transmitters.

ATP

Early suggestions that ATP is a transmitter for taste buds were based on immunostaining for 

P2X purinoceptors in nerves associated with taste buds in rat tongues99. A role for this 

transmitter in taste signalling was validated in a study showing that sheets of lingual 

epithelium containing taste buds secreted ATP when stimulated with bitter tastants100. 

Furthermore, when the genes that encode the purinoceptors P2X2 and P2X3 were knocked 

out, mice became taste-blind to sweet, salty, bitter and umami100.

Later studies showed, however, that in these knockout mice, the evoked release of ATP also 

was markedly diminished, somewhat weakening the argument that these receptors are the 

exclusive postsynaptic targets on sensory afferent fibres101. Nevertheless, most evidence 

supports the essential role of P2X2 and P2X3 as principal players in taste transmission. 

Experiments that used cellular biosensor cells to detect transmitter release have 
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demonstrated the tastant-evoked release of ATP from individual type II cells102, 103. ATP 

release is greatly reinforced and amplified by autocrine feedback via the P2X and P2Y 

receptors expressed by type II cells101, 104 (see below), which accounts for the loss of ATP 

secretion when the genes that encode P2X2 and P2X3 are knocked out.

Type II taste receptor cells secrete transmitters onto afferent fibres through an atypical, non-

vesicular mechanism that involves large-pore membrane channels, which were initially 

proposed to include pannexin 1 (which is encoded by Panx1)102 or connexins103. The 

identity of the ATP-release channel was subsequently revised to calcium homeostasis 

modulator protein 1 (CALHM1)105. A feature that made pannexin 1 channels particularly 

attractive as potential ATP-release channels was their gating by the combined action of 

depolarization and intracellular Ca2+ (REFS102, 106), both of which occur simultaneously in 

taste cells during tastant-induced stimulation. Conversely, a confounding feature of 

CALHM1 channels as the conduit for ATP release is their requirement for an 

unphysiologically low level of extracellular Ca2+ for gating105, 107. Nevertheless, the finding 

that Panx1-knockout mice showed continued secretion of ATP and taste afferent 

transmission108, 109, combined with the observation that Calhm1-knockout mice exhibit taste 

deficits105, 110, firmly swayed the balance towards CALHM1 channels as the ATP-release 

channels that function in taste cells.

The high concentration of intracellular ATP (in the millimolar range) drives efflux through 

CALHM1 channels when they are opened by taste-evoked action potentials105. Even in the 

absence of synaptic clefts between type II cells and afferent fibres, ATP secreted into the 

confined extracellular spaces reaches sufficient concentrations to stimulate P2X receptors on 

nearby afferent fibres100. Interestingly, large ‘atypical’ mitochondria are located directly 

below the plasma membrane of type II cells near sites where innervating afferent fibres pass 

in close apposition111. These mitochondria are optimally positioned as potential sources of 

presynaptic ATP for afferent transmission.

Mechanisms for removing extracellular ATP and thus terminating taste-evoked synaptic 

transmission include the degradation of ATP by the ectoATPase on the surface of type I 

cells112, 113 and by an ectonucleotidase on type III cells114. The by-products of ATP 

breakdown, ADP and adenosine, contribute positive autocrine feedback by activating P2Y 

and A2 adenosine receptors, respectively, on type II cells104, 114. ATP also amplifies its own 

release by activating P2X receptors on type II cells101, 104. When this autocrine feedback is 

disrupted, an insufficient amount of ATP is secreted to activate nerves. ATP secreted from 

type II cells also acts as a paracrine stimulus for type III cells, leading to 5-

hydroxytryptamine (5-HT; also known as serotonin) release from the latter cells102 (see 

below).

5-HT

The first taste neurotransmitter for which taste-evoked release was demonstrated 

experimentally was 5-HT115. Studies using cellular biosensors identified type III cells as the 

source of stimulus-secreted 5-HT. This was consistent with the long-established finding that 

these cells synthesize 5-HT and store it in synaptic vesicles116–118. Several distinct stimuli, 

including KCl-induced depolarization and sour tastants, elicit 5-HT release from type III 
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cells in a depolarization-dependent and Ca2+-dependent manner119. Patch-clamp recordings 

from type III cells have demonstrated depolarization-induced vesicular exocytosis, 

presumably of the 5-HT-containing vesicles contained in these cells120.

Type III taste bud cells also secrete 5-HT in response to the paracrine release of ATP from 

type II cells (see below). Curiously, 5-HT released from type III cells is mediated by two 

separate mechanisms115 that involve either the mobilization of intracellular Ca2+ stores 

following ATP stimulation104, or Ca2+ influx triggered by sour taste stimuli or KCl-induced 

depolarization119, 120.

One function of 5-HT in taste buds seems to be to inhibit ATP secretion from type II cells104 

(but see REF.121), providing negative feedback to taste excitation. Synaptically released 5-

HT also excites sensory afferent fibres at well-defined synapses122, 123.

GABA

The inhibitory transmitter GABA is synthesized by, stored in and released from type III 

cells119, 124, 125. Correspondingly, type II taste cells express GABA type A receptors 

(GABAARs) and GABABRs receptors125. GABA seems to act within the taste bud to 

inhibit ATP release from type II cells119. Furthermore, sensory afferent neurons and their 

peripheral, taste bud-innervating processes express GABAARs125. Indeed, nearly every 

gustatory sensory neuron expresses GABAARs in addition to P2X2 and P2X3 receptors for 

the aforementioned purinergic signalling from taste bud cells126. Intriguingly, GABAARs 

seem to be limited to the neuronal soma and peripheral processes; the central processes of 

these neurons lack these receptors126. GABA inhibits the activation of gustatory ganglion 

neurons in vitro127. However, although it is inferred that GABA secreted in the periphery 

modulates afferent responses, this has not yet been demonstrated.

Acetylcholine and noradrenaline

In addition to secreting ATP, type II cells also secrete acetylcholine (ACh), as suggested by 

early findings that taste buds are rich in acetylcholinesterase128, 129. ACh release seems to 

function as an autocrine mechanism for increasing type II cell release of ATP, either by the 

selfsame type II cell or by the spread of ACh released from adjacent type II cells. Biosensor 

cell assays have also established that type III cells can uptake and re-release 

noradrenaline117, 130; the function of noradrenaline in taste remains unclear.

Cell–cell communication

A view of cell–cell interactions within taste buds has developed that suggests that signal 

processing in the peripheral organs of taste is more complex than was previously thought.

Sweet, bitter and umami compounds directly stimulate type II taste bud cells, and this is 

consistent with the expression patterns of the taste GPCRs for these compounds. The ATP 

that is released from type II cells during tastant-induced stimulation activates sensory 

afferent fibres, as described above, but ATP also excites adjacent type III cells via their P2Y 

receptors102, 104. Thus, in addition to being directly activated by acidic (sour) taste stimuli, 

type III cells also respond — albeit indirectly — to sweet, bitter and umami tastants131, 132.
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The stimulation of type III cells by ATP induces them to secrete 5-HT and GABA, which in 

turn inhibit ATP release from type II cells. 5-HT and GABA provide negative feedback onto 

type II cells during tastant-induced activation104, 119, 121, 133. Details of how the release of 5-

HT and GABA is balanced, what specific conditions stimulate 5-HT and/or GABA release, 

and the eventual impact of inhibitory transmitters on the taste afferent signal have yet to be 

explored.

Another form of cell–cell communication may exist between taste buds. The activation of 

one taste bud has been reported to inhibit surrounding taste buds, although the mechanism of 

inhibition was not determined in these studies134–136. Glutamate, presumably released from 

the collateral branches of afferent axons during tastant-induced stimulation, was recently 

shown to selectively activate type III cells137, 138. As the activation of type III cells induces 

the release of 5-HT and GABA, the glutamate-evoked release of inhibitory transmitters may 

explain the inhibition by axon collaterals137. However, species differences in axon branching 

and patterns of innervation139 limit a clear elucidation of this inhibitory mechanism.

The autocrine, paracrine and synaptic circuits that are present in taste buds are detailed in 

REF.140 and summarized in BOX 1.

Taste coding

How information from taste buds is transmitted to the CNS (specifically to neurons in the 

nucleus of the solitary tract) and, in particular, how signals discriminating sweet, sour, salty, 

bitter, umami and possibly other tastes are encoded are thorny questions. There has been 

more than 75 years of heated debate over these issues. At one extreme is the labelled-line 

coding model, which states that individual taste bud cells exclusively identify a unique taste 

quality (for example, sweet taste) and synapse with afferent fibres that are dedicated to that 

quality141, 142. Moreover, the central projections of the afferent neurons are ‘labelled’ by that 

same taste quality and synapse with dedicated hindbrain neurons that relay the information 

for that one quality to higher brain centres, thereby establishing a ‘labelled line’ of 

transmitted information.

An early suggestion of labelled-line coding in the periphery came from single-unit 

recordings in rodents, which showed that individual fibres respond best to one taste quality 

(for example, “NaCl-best”), although activity was also elicited by tastants of other 

qualities143. Studies on a number of other types of mammal have shown that sweet-

responsive fibres are particularly well-tuned to sugars and artificial sweeteners144.

The expression patterns of taste receptors in taste buds lend strong evidence for taste quality 

distinction at the level of taste cells. T2Rs, which detect bitter stimuli, are not found in cells 

that express T1Rs, which detect sweet or umami stimuli12. Moreover, sour-sensing cells are 

a separate cell type from both T1R-expressing and TR2-expressing cells4, 5. Furthermore, 

the genetic ablation of only type III cells results in the selective loss of sour taste, as 

observed both at the behavioural level and in afferent recordings4. In addition, the expression 

of a modified opioid receptor — receptor activated solely by a synthetic ligand (RASSL) — 

in T1R-expressing cells drives behavioural preference for a compound that normally has no 
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taste: namely, the synthetic opioid spiradoline21. Conversely, the expression of RASSL in 

T2R-expressing cells resulted in an aversion to spiradoline145. The implication is that sweet 

and bitter ‘labels’ are resident in particular cells; activating the afferent fibres that innervate 

these cells would thus result in stereotypical responses, consistent with labelled-line coding.

An alternative model for how taste is encoded in the periphery states that information is 

transmitted by combinatorial activity in multiple peripheral afferent fibres81, 146, 147 (FIG. 

2). According to this model, ensembles of dissimilar afferent fibres are activated by a taste 

stimulus. The overall combination of fibres activated encodes the taste quality, such as 

sweet. Indeed, such combinatorial coding has long been established for colour vision and 

characterizes odour recognition in the olfactory system148.

Strong evidence for the combinatorial coding of peripheral taste comes from several lines of 

experimentation. First, taste buds contain both narrowly tuned cells and more broadly 

responsive ones. Specifically, separate populations of type II cells respond mainly to a single 

taste quality (for example, sweet or bitter). By contrast, type III taste bud cells respond 

directly to sour stimuli and indirectly (via cell–cell communication) to multiple taste 

stimuli131, 132. Second, there are decades of electrophysiological recordings from individual 

sensory neurons that innervate taste buds in animals ranging from rodents to primates. Many 

of these recordings have revealed the existence of highly tuned neurons — which are also 

referred to as ‘specialists’ — that respond overwhelmingly only to stimuli of one taste 

quality143, 144, 149–153. However, these same recordings also reveal neurons — called 

‘generalists’ — that respond to two or more different taste qualities. The relative proportions 

of such specialist and generalist neurons vary substantially depending on the species, the 

choice of stimuli presented and the concentration of the stimulus. Often, one taste stimulus 

is most efficacious for a given neuron (for example, “sucrose-best” (REF.143)), but even that 

property is not always fixed. Specifically, increasing the concentration of tastant-containing 

solutions (that is, increasing the stimulus strength) converts seemingly narrowly tuned 

neurons into broadly responsive ones, and neurons with one best stimulus at low 

concentration acquire a different ‘best stimulus’ at higher concentrations81. These 

observations are inconsistent with the fixed, labelled-line model of taste coding.

A third possibility is that taste qualities are encoded by different temporal patterns of activity 

in gustatory neurons. Although temporal coding has been implicated in brainstem and 

cortical gustatory centres154–157, there is no evidence that information in peripheral sensory 

neurons is encoded by spike timing. Indeed, an early study showed that stimulating human 

taste buds with a train of electrical pulses evoked a taste sensation that did not change when 

the stimulus rate was altered158. However, this study did not test different patterns of 

electrical stimulation.

Taste coding in central taste pathways is beyond the scope of this Review and has been 

comprehensively reviewed elsewhere159–161. It suffices to say, however, that the three 

models — labelled-line coding, combinatorial processing and temporal patterning — 

continue to be raised as explanations of how taste is encoded in higher brain centres, 

including the primary gustatory cortex.
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Conclusions

Until recently, many researchers thought that questions underlying the cellular and 

molecular mechanisms of the basic taste qualities had been settled. This Review explains 

that although we indeed understand many of the receptors and transmitters that are involved 

in detecting sweet, sour, salty, bitter and umami tastes, major gaps in our knowledge remain. 

Issues awaiting resolution include the molecular identity of additional signalling pathways 

for detecting umami and sweet tastes; the cells involved in detecting salty tastes; whether 

‘fatty’ is a basic taste; the role of cell–cell communication in taste buds; and, more broadly, 

how distinct taste qualities are encoded in sensory afferent fibres and beyond following their 

initial detection in the taste bud.
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Glossary

Intracellular acidification
The increased concentration of cytosolic hydrogen ions, which corresponds to a decrease in 

cytoplasmic pH. Intracellular acidification can result from metabolic processes, the 

dissociation of organic (weak) acids, or the influx of protons through channels or 

transporters.

Taste coding
The computational system by which trains of action potentials in sensory cells convey 

information about the quality, concentration and other features of a sensory stimulus.
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Box 1

Taste buds and their distinct cell types

Taste buds are clusters of columnar sensory cells that are embedded in the stratified 

epithelium of the tongue, palate and epiglottis. In mammals, each taste bud is a compact 

cluster of cells that resembles a garlic bulb, with 50–100 elongated cells extending from 

the base of the cluster to its apex and a few undifferentiated postmitotic cells at the base 

of the cluster. A classification scheme that integrates ultrastructural features and patterns 

of gene expression with cell function generally recognizes three cell types (in order of 

their relative abundance): type I, type II and type III cells (see the figure, part a; note that 

taste buds include many more cells than those that are depicted in the figure).

Type I cells comprise approximately half the total number of cells in a taste bud. They 

have narrow, irregularly shaped nuclei, are electron-dense and have wing-like 

cytoplasmic extensions that ensheath other taste bud cells162, 163. Type I cells seem to 

have glia-like functions. They express enzymes and transporters that are required to 

eliminate extracellular neurotransmitters112, 113, 164 and ion channels that are associated 

with the redistribution and spatial buffering of K+ (REF.165). Few other details are known 

about their function. Indeed, type I cells may be quite heterogeneous in terms of their 

gene expression patterns and their functions.

Approximately one-third of the cells in a taste bud are type II cells. These cells are larger 

in diameter than type I cells, have sizable spherical nuclei, and function as chemosensory 

receptors for sugars, amino acids and/or bitter stimuli as they express taste G protein-

coupled receptors (GPCRs) and their downstream effectors. Most type II cells express 

one class of taste GPCR — namely, taste receptor type 1 (T1R) or T2R — and 

correspondingly respond only to one taste quality (for example, sweet or bitter, but not 

both)131, 132. It should be noted that T1R1, T1R2 and T1R3 are often co-expressed in 

taste bud cells, and, accordingly, responses to both sweet and umami stimuli can be 

detected in the same cells41, 114. The type II cells in a taste bud can differ in their 

expression of taste GPCRs such that each taste bud can respond to multiple taste stimuli.

Taste buds respond to more than one taste stimulus because they contain multiple type II 

cells of different specificities. Type III taste cells are the least numerous; they represent 
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2–20% of the cells in a taste bud, and their incidence varies regionally in the oral 

epithelium. For instance, taste buds on the anterior tongue (fungiform taste buds) often 

contain no more than a single type III cell, whereas taste buds in the posterior tongue may 

contain as many as ten. These cells display slender profiles and oblong nuclei. They do 

not express taste GPCRs but do contain the machinery required to detect sour taste4, 5, 68. 

Type III cells have ultrastructurally recognizable synapses162 with features such as clear 

and dense-cored vesicles, SNARE (soluble N-ethylmaleimide-sensitive factor attachment 

protein receptor) proteins and densities in which the membranes of the taste cell oppose 

nerve fibres166, 167. By contrast, type II cells lack synaptic vesicles and communicate 

with closely apposed afferent fibres via non-vesicular transmitter release (see the main 

text).

In addition to the taste receptors, there are also receptors for ATP that mediate 

transmission from type II cells to nerves and autocrine feedback onto type II cells (1); 

receptors for ATP, serotonin and GABA that are responsible for cell–cell communication 

between type II and type III cells (2); and finally, receptors for serotonergic (feedforward) 

transmission and glutamatergic (feedback) transmission between type III cells and 

gustatory afferent fibres (3) (see the figure, part b).

Taste cells within taste buds are separated from the mucosal surface, blood supply and 

surrounding epithelium by a selective barrier that includes enzymatic components 

(extracellular ATPases), physical components (the zonula occludens) and molecular 

components (claudins, chondroitin sulfate and other glycosaminoglycans)112, 168–171. 

The barrier probably regulates which small molecules (for example, drugs, trophic 

factors, hormones and neuropeptides) can penetrate into the taste bud from the mucosal, 

serosal or vascular environments to influence the function of its constituent cells.
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Box 2

The discrimination of bitter tastes

Taste receptor type 2 (T2R) family members comprise a large group of taste G protein-

coupled receptors (GPCRs) that detect bitter compounds; there are more than 40 T2R 

family members in rodents and 25 functional genes in humans. When the family was first 

described, T2Rs were reported to be expressed in an all-or-none manner in individual 

cells50 or in a more combinatorial pattern48. If all T2Rs are expressed together in every 

bitter-sensing cell, the implication is that bitter is a homogeneous, singular taste 

quality50. Alternatively, if bitter-sensing cells express various combinations of T2Rs, it 

might be possible to discriminate bitter compounds48.

Evidence has accumulated for both of these possibilities. Ca imaging of mouse taste buds 

and single-unit recordings from peripheral axons in rats have revealed that taste bud cells 

and neurons do in fact discriminate among several bitter-tasting compounds, with some 

responding to denatonium, others responding to quinine or cycloheximide, and yet others 

responding to two or more of these compounds172, 173.

Recent studies that have systematically used numerous probe combinations on human 

taste buds have shown that chemosensory taste bud cells co-express overlapping subsets 

of 4–11 T2Rs and not the entire family49. In principle, this variation in co-expression 

could form the basis for the neural and perceptual discrimination of various bitter 

compounds. However, it is currently not known whether each T2R is expressed in a 

predictable combination with others or is expressed randomly. The former may be a 

prerequisite for discrimination. Although central neurons have been shown in some 

instances to discriminate among bitter compounds, this may involve additional receptor 

mechanisms and pathways157, 174, 175. Whether animals and humans are capable of 

behaviourally distinguishing bitter-tasting compounds is unresolved, and there is 

evidence both for175 and against176, 177 the discrimination of such compounds.
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Box 3

Brussels sprouts and broccoli: the genetics of taste preference

Variation in the genes that encode taste receptors probably generates different taste 

sensitivities among individuals. A well-known example involves the taste of 

phenylthiocarbamide (PTC) or related compounds. Individuals find PTC extremely bitter, 

moderately bitter or nearly tasteless (that is, they cannot detect the presence of PTC). 

These phenotypes were first reported nearly a century ago as an example of simple 

Mendelian inheritance with a dominant taster allele and a recessive non-taster allele178. 

The locus (TAS2R38, which encodes taste receptor type 2 member 38 (T2R38)) and 

underlying alleles were only recently identified179. Genetic analyses of human 

populations in Africa, Asia and Europe suggest that PTC-taster and non-taster alleles of 

TAS2R38 have been maintained by natural selection across more than 100,000 years of 

human evolution180. Similarly, an allele of the human gene TAS2R16 — which confers 

sensitivity to several β-glucopyranosides found in nature (for example, those in bitter 

almonds, bearberry and manioc) — has been subjected to positive selection pressure 

across human evolution181, 182.

The PTC-taster allele of TAS2R38 encodes a receptor that detects a range of natural 

bitter compounds, some of which are toxic and others of which are beneficial. This 

finding supports the interpretation that both alleles are preserved in human populations 

on the basis of varied human diets and environments. For instance, heterozygous 

individuals find anthocyanin-containing cruciferous vegetables (such as Brussels sprouts 

and broccoli) less bitter than do those who inherited two PTC-taster alleles. 

Consequently, homozygous ‘tasters’ tend to reject these vegetables and may thus avoid 

the hypothyroidism that results from consuming large quantities of anthocyanin 

compounds when dietary iodine is deficient. Curiously, polymorphisms in some human 

T2R-encoding genes are associated with variation in the perceived bitterness of ethanol 

and other stimuli that are usually considered to activate trigeminal fibres rather than taste 

buds183.

The anticancer benefit of phytochemicals present in cruciferous vegetables has motivated 

researchers to investigate whether there might be a relationship between certain bitter-

taste receptor-encoding alleles, diet selection, and the incidence of colorectal cancer and 

other cancers. Most studies have failed to find an association between cancer incidence 

and polymorphisms in TAS2R14 (REF.184), TAS2R16 and TAS2R50 (REF.185). 

However, for TAS2R38, one laboratory has reported an association between a particular 

TAS2R38 haplotype and colorectal cancer risk186, although another group failed to detect 

such an association185.

The human T1R-encoding genes (which encode sweet or umami receptors) show great 

variability across human populations187. However, there are relatively few reports on 

taste phenotypes that are directly associated with these genetic alterations. A 

polymorphism in a non-coding region upstream of TAS1R3 was associated with a greater 

perceived intensity of sweetness that apparently resulted from increased transcription188. 

At least one polymorphism of TAS1R2 was reported to be associated with the increased 
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intake of carbohydrates and elevated blood triglyceride levels in certain 

populations189, 190. Polymorphisms in TAS1R2 and TAS1R3 have also been associated 

with the risk of dental caries in children191. Furthermore, the ability of individuals to 

detect umami varies across populations and was shown to be associated with variation in 

TAS1R3 (REF.192).

Although genotype–phenotype associations are becoming apparent, functional studies on 

the receptors expressed by identified variants have yet to provide a molecular basis for 

the many observed variations in human taste and diet. Indeed, although taste receptor 

genetics may play a part in food selection, additional factors influence the complex 

human behaviours involved in this process.
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Box 4

Extraoral taste receptors

Taste G protein-coupled receptors (GPCRs) are not limited to the oral cavity or to sensing 

ingested foods and beverages. Instead, members of the large taste receptor type 2 (T2R) 

family, and the smaller T1R family, are found in several tissues and organs throughout the 

body95, 193, 194 (see the table). The function of many of these extraoral taste GPCRs 

remains incompletely explored.

Extraoral taste receptors that have been studied the most extensively and for which we 

have a better understanding of function include those in the gut and airways. Elegant 

studies have described a functional role for T2Rs (bitter-taste receptors) and their 

downstream signalling partners in the ciliated cells of the airway epithelium195, 196. 

These studies showed that bitter compounds elicit the secretion of bactericidal nitric 

oxide and stimulate ciliary beating, promoting the clearance of bacteria and noxious 

compounds from the airways. One particular bitter-taste receptor that is localized to 

airway epithelium, T2R38 (which is encoded by TAS2R38), is activated by acyl-

homoserine lactone, which is a quorum-sensing molecule that is secreted by Gram-

negative bacteria. Polymorphisms in TAS2R38 are linked to susceptibility to respiratory 

and chronic rhinosinusitis in humans, which emphasizes the importance of this bitter-

taste receptor in the upper airways197, 198.

The nasal respiratory epithelium also includes another type of cell that expresses T2R: 

solitary chemosensory cells (SCCs). These chemosensory cells make synaptic contact 

with and release acetylcholine onto trigeminal sensory afferent fibres, thereby initiating a 

protective apnoea reflex199, 200. T2Rs on SCCs respond to quorum-sensing molecules 

and other bacterial secretions196, 201. The resulting Ca2+ signal seems to spread via gap 

junctions to surrounding respiratory epithelial cells, triggering an innate immune 

response that includes the secretion of antibacterial peptides198.

Tissue Taste GPCRs Refs

Airway ciliated cells T2Rs 195

Airway smooth muscle T2Rs 207

Airway SCCs T1Rs and T2Rs 194, 197

Brain: multiple regions T1Rs and T2Rs 208, 209

Choroid plexus T1Rs and T2Rs 210

Heart T1Rs and T2Rs 211

Intestine T1Rs and T2Rs 202, 204, 212

Keratinocytes T2Rs 213

Kidney T1Rs 214

Liver: bile ducts T1Rs 215

Leukocytes T1Rs and T2Rs 214, 216, 217

Pancreatic islets of Langerhans T1Rs 218

Stomach T2Rs 202
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Tissue Taste GPCRs Refs

Testis T1Rs and T2Rs 214, 219, 220

Thyroid gland T2Rs 221

It is intriguing that the same SCCs that express bitter-taste receptors that sense microbial 

secretions also have T1R sweet-taste receptors198. Glucose in the mucus is thought to be 

the stimulus for these receptors. Downstream effectors of the T1Rs tonically inhibit the 

T2R-mediated pathway in the same SCC. A high titre of bacteria in the airway mucus 

lowers glucose levels, releasing the T2R pathway from inhibition and promoting the 

antibacterial response. High glucose levels in the airway mucus of patients with diabetes 

may keep this protective pathway chronically suppressed198.

T1Rs and T2Rs are also expressed in the gastric a quantitative analysis of expression 

levels and cell types using a knock-in fluorescent reporter demonstrated that only a very 

limited number of T2Rs may be expressed. Moreover, the T2Rs are not expressed in 

enteroendocrine cells, as was originally suggested202, 203, but in goblet cells 

mechanisms204. Individual cells express some but not all components of the canonical 

taste signalling cascade205. The implication of this is that ingested nutrients and non-

nutrient chemicals (such as glucose, peptides, amino acids, bitter compounds, fats and, 

possibly, the fermentation products of gut microbiota) stimulate taste receptors on gut 

cells to elicit various defence mechanisms and/or the secretion of appetite-regulating 

hormones98, 203, 204. Chemicals in the gastrointestinal lumen may also provoke SCCs to 

release transmitters — possibly acetylcholine206 — that act in a paracrine manner on 

neighbouring enteroendocrine cells.
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Box 5

Less-studied tastes

Aside from the well-studied taste qualities (sweet, bitter, umami, sour and salty), food 

evokes additional sensory perceptions. One such sensation is chemesthesis. The 

pungency of chilli peppers, ginger, horseradish and black peppers is elicited by several 

unrelated compounds, including the vanilloids capsaicin and zingerone, the organosulfur 

compound allyl isothiocyanate, and the alkaloid piperine, respectively. These compounds 

are known to directly activate transient receptor potential cation channels (TRPs) — 

including TRPV1 and TRPA1 (REFS222–225) — that are expressed in nociceptors, 

causing irritation and/or pain. Hence, the pungency of peppers has been assumed to 

represent the activation of trigeminal nociceptors in the oral epithelium, which makes 

pungency not a taste modality per se (for example, see REF.226). However, subsets of 

neurons in the gustatory sensory ganglia have also been reported to express TRPA1 and 

TRPV1 (REF.227), and to display capsaicin-activated cation currents228. Thus, it remains 

to be established whether pungency is a specialized perception that originates solely from 

oral somatosensory (trigeminal) neurons or whether there is a genuine taste component as 

well. Trigeminal afferents — many of which terminate in close proximity to, if not 

actually within, taste buds — might release peptides that influence taste cell sensitivity, 

such as substance P or calcitonin gene-related peptide (CGRP)229–233. Another intriguing 

possibility is that capsaicin and other pungent stimuli activate keratinocytes, which then 

secrete neuroactive compounds to stimulate trigeminal or gustatory sensory afferent 

fibres, or both234, 235.

A less tangible food-related sensation that was reported more recently is ‘kokumi’, which 

is described as thickness, longevity and mouthfeel (REF.236). Glutathione, and related 

dipeptides and tripeptides, are the principal kokumi stimuli. On their own they are nearly 

tasteless, but, when they are combined with sucrose, NaCl, monosodium glutamate or 

more complex solutions (for example, broth), these compounds elicit kokumi sensations 

without altering the primary taste (for example, sweet and umami)237, 238. Extracellular 

Ca2+-sensing receptor (CaSR) — a G protein-coupled receptor that was originally 

identified in the parathyroid glands and is a key player in the body’s Ca2+ homeostasis — 

is expressed in subsets of taste bud cells and is a possible transducer for kokumi 

stimuli239. CaSR is reported to be allosterically modulated by sucrose and several other 

natural and synthetic sweeteners240, and this modulation may account for the interaction 

between kokumi compounds and other taste stimuli.

Another little-studied aspect of taste is the ability to detect certain nutrients that are 

deficient in the diet. For instance, humans normally report that Ca2+ salts have an 

unpleasant taste that includes bitterness and sourness241, and rodents show little taste 

preference for Ca2+ salts242. However, rodents greatly increase their intake of solutions 

containing Ca2+ salts if their diet is deficient in Ca2+ (REF.242). Curiously, Ca2+ appetite 

in mice243 and humans244 is associated with taste receptor type 1 member 3 (T1R3), 

which underlies sweet and umami tastes, rather than with CaSR. It remains unclear 

whether Ca2+ produces a consciously perceived taste that drives appetite.
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Figure 1. Membrane proteins that transduce taste
Type 2 taste receptors (T2Rs; bitter-taste receptors) are G protein-coupled receptors 

(GPCRs) that have short amino termini and may function as monomers (not shown) or 

dimers. T1Rs (sweet-taste and umami receptors) are also GPCRs, but they have long N 

termini that contain bilobed (venus flytrap) domains and function as dimers that use T1R3 as 

an obligate subunit. T1R1–T1R3 is an umami receptor, and T1R2–T1R3 is a sweet-taste 

receptor. All these taste GPCRs use a common transduction pathway that includes a Gβγ-

activated phospholipase C (PLCβ2) and transient receptor potential cation channel 

subfamily M member 5 (TRPM5). The epithelial Na channel (ENaC) has three subunits and 

is thought to transduce salty taste in rodents. Glucose transporter type 4 (GLUT4) — which 

has 12 membrane-spanning segments — transports glucose by facilitative diffusion, whereas 

sodium/glucose cotransporter 1 (SGLT1) is Na dependent. One or both of these transporters 

are hypothesized to be part of an alternative glucose-sensing pathway that is similar to the 

one used in pancreatic β cells.
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Figure 2. The combinatorial model of taste coding
Individual type II taste bud cells are mostly tuned to one taste quality (for example, bitter, 

sweet or salty): that is, they are ‘specialists’ (umami has been omitted for clarity). The type 

III cells sense sour tastes and also respond secondarily to other taste stimuli via cell-to-cell 

(paracrine) communication within the taste bud (represented by the arrows between the taste 

bud cells). Thus, type III cells can be termed ‘generalists’. Some afferent ganglion neurons 

receive input from taste cells that respond to a single taste quality and hence would be 

specialist neurons. Other afferent ganglion neurons receive input from many taste cells or 

from type III cells and thus are multiply sensitive ‘generalist’ neurons. Moving to the CNS, 

sensory ganglion cells converge on hindbrain neurons in the nucleus of the solitary tract.
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