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Abstract

Liver CT perfusion (CTP) is used in the detection, staging, and treatment response analysis of 

hepatic diseases. Unfortunately, CTP radiation exposures is significant, limiting more widespread 

use. Traditional CTP data processing reconstructs individual temporal samples, ignoring a large 

amount of shared anatomical information between temporal samples, suggesting opportunities for 

improved data processing. We adopt a prior-image-based reconstruction approach called 

Reconstruction of Difference (RoD) to enable low-exposure CTP acquisition. RoD differs from 

many algorithms by directly estimating the attenuation changes between the current patient state 

and a prior CT volume. We propose to use a high-fidelity unenhanced baseline CT image to 

integrate prior anatomical knowledge into subsequent data reconstructions. Using simulation 

studies based on a 4D digital anthropomorphic phantom with realistic time-attenuation curves, we 

compare RoD with conventional filtered-backprojection, penalized-likelihood estimation, and 

prior image penalized-likelihood estimation. We evaluate each method in comparisons of 

reconstructions at individual time points, accuracy of estimated time-attenuation curves, and in an 

analysis of common perfusion metric maps including hepatic arterial perfusion, hepatic portal 

perfusion, perfusion index, and time-to-peak. Results suggest that RoD enables significant 
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exposure reductions, outperforming standard and more sophisticated model-based reconstruction, 

making RoD a potentially important tool to enable low-dose liver CTP.

Index Terms

Prior-Image-based Reconstruction; Perfusion Analysis; Dynamic CT; Sequential CT

I. Introduction

CT perfusion (CTP) is a functional imaging modality that measures the tissue blood-flow 

parameters through sequential CT scanning of the same tissue or organ over the time. 

Typically, an iodinated contrast agent is administered and projection images are acquired 

before, during, and after injection of contrast to track temporal changes in CT attenuation. 

With the availability of wide-area detectors (e.g. 256 slices or more), CT can cover whole 

organs which has facilitated CTP in a variety of applications including head and neck, liver, 

lung and colorectal imaging [1]. CTP has shown remarkable results in diagnosing malignant 

and non-malignant parotid lesions [2] and in assessing tumor vascularity changes that result 

from chemotherapy and radiation therapy [3].

Liver CT perfusion provides valuable information on blood flow dynamics in the assessment 

of liver damage or severity of hepatic fibrosis in patients with chronic liver disease [4], in the 

evaluation of therapeutic effectiveness for liver cancer [5], and in the assessment of hepatic 

perfusion changes after surgical and radiological interventions [6], [7]. Recent studies also 

revealed promising results of using CTP as a viable biomarker for of hepatocellular 

carcinoma (HCC) tumor and pancreatic lesion detection and analysis [8], [9].

Despite the clinical utility of the CTP, the radiation dose associated with sequential scanning 

is a major concern that has limited more widespread adoption in both clinical and research 

applications [10], [11]. CTP studies involve many repeat acquisitions (e.g., often ~20 time 

points) representing a significant radiation exposure. Several methods have been proposed to 

reduce exposures including customization of scanning parameters (e.g., tube current or 

voltage) to the size of the patient and variation of exposure throughout the temporal 

evolution [12]–[15]. However, lowering x-ray exposure, inevitably reduces the quality of the 

CT images and can introduce errors including noise and streak artifacts which, in turn, 

decreases the accuracy of the perfusion metrics limiting clinical utility.

Model-based iterative reconstruction (MBIR) techniques have been introduced as a potential 

solution to improve the trade-off between radiation exposure and image quality. Recent 

studies on body CT scanning have demonstrated that such advanced processing methods can 

maintain image quality at lower exposures, thereby enabling lower effective dose to the 

patient [16], [17]. Negi et al. [18] investigated iterative image reconstruction methods and 

hepatic CTP analysis where they found that adaptive iterative dose reduction (AIDR) 

reduced the image noise while maintaining hepatic perfusion parameters values.

Such MBIR approaches significantly improve the dose-image quality trade-off through 

statistical modeling of the measurement data (i.e., effectively downweighting measurements 
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with poor signal-to-noise and upweighting measurements with good signal-to-noise) as well 

as sophisticated image regularization (e.g., applying constraints or penalties that enforce 

smoothing with edge-preservation). However, most reconstruction methods tend to be 

applied in isolation, neglecting the large amount of shared information between scans.

In contrast, prior-image-based reconstruction (PIBR) approaches have been introduced that 

explicitly incorporate patient-specific anatomical information found in previously acquired 

scans. Such information is arguably much stronger than traditional assumptions of image 

smoothness and should allow for further reductions of noise and artifacts over conventional 

MBIR regularization. Prior-image-constrained compressed sensing (PICCS) is one well-

known PIBR approach that has been used to integrate high quality prior information to 

reconstruct tomographic volumes from under-sampled projection data [19]. PICCS has also 

demonstrated success in small animal CTP [20]. The prior image registration penalized-

likelihood estimation (PIRPLE) method [21] combines both patient-specific prior 

information and statistical modeling within an objective function that seeks both 

reconstruction of the tomographic volume as well as registration of the prior image. A 

variant of this approach with deformable registration, dPIRPLE [22] has also been presented 

and applied to the clinical scenario of low-dose lung nodule screening, demonstrating the 

capability for dramatic reductions in exposure. More recently, Pourmorteza et al. [23] 

proposed a novel PIBR method called Reconstruction of Difference (RoD). This technique 

borrows an idea from 2D digital subtraction angiography where it is not the current 

anatomical state that is of greatest interest, but the change in state from a previous time 

point. That is, rather than attempting to estimate the current tomographic image volume, 

only the difference between the current anatomical state and a prior state is estimated. In the 

context of CTP, one can focus on reconstructing only the contrast enhancement itself. 

Previous work [23] has suggested that such processing can limit structured noise and can 

allow smaller reconstruction volumes focused only on the region-of-change (as opposed to 

the entire patient volume).

In this paper, we investigate the feasibility of applying the RoD technique for liver CT 

perfusion. Specifically, this work studies the ability to reconstruct difference images between 

a high-quality unenhanced baseline image (the prior image) and subsequent contrast-

enhanced images which are acquired in a low dose setting. The work presented here is a 

more complete presentation of the preliminary work presented in [24] and includes 

expanded investigations on optimal regularization, sensitivity to exposure levels, and an 

additional perfusion metric. Similarly, this work includes investigations and comparisons to 

another prior image based reconstruction technique (PIPLE). Assessments were based in 

simulation studies where ground truth is known. A realistic 4D digital liver phantom was 

adopted using time-attenuation curves (TAC) based on dynamics derived from a rabbit 

animal model with both healthy and cancerous tissues. RoD was compared to traditional 

analytic and MBIR approaches across a range of simulated exposures to assess the potential 

for dose reduction. Reconstruction methods were evaluated on their ability to accurately 

reconstruct TACs as well as specific hepatic perfusion metrics including hepatic arterial 

perfusion (HAP), hepatic portal perfusion (HPP), perfusion index (PI) and time-to-peak 

(TTP).
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II. Methods

A. Overview of the Proposed RoD Methodology

The proposed data processing chain for CTP image reconstruction using the RoD technique 

is shown in Figure 1. A key feature of this approach is the use of a high-fidelity unenhanced 

baseline image as a prior image (μp) in the reconstruction of subsequent sequentially 

measured CT data (y) during and after contrast administration. The RoD approach directly 

reconstructs a difference image (μΔ) representing the contrast enhancement of the liver and 

other tissues in each time point (tn) relative to the baseline reconstruction. Representations of 

the current anatomy (μ) may be formed by adding the prior image to the difference estimate. 

From these estimates, time-attenuation curves and common liver CTP metrics like hepatic 

arterial perfusion (HAP), hepatic portal perfusion (HPP), perfusion index (PI), and time-to-

peak (TTP) can be computed.

The following sections detail CTP data generation using a dynamic digital liver phantom, 

the RoD objective function and reconstruction methods for comparison, as well as perfusion 

metric analysis and evaluation methods.

B. Anatomical Model for Liver CT Perfusion

Simulation studies require a realistic anatomical model to evaluate the potential for dose 

reduction. This model serves as the ground truth for algorithm comparisons as well as data 

generation. The following subsections outline the process used to develop a realistic 4D liver 

perfusion phantom.

1) Time-Attenuation Curves from an Animal Model—For this work, we obtained 

realistic TACs from an animal model. Specifically, an adult male New Zealand white rabbit 

(3.5 kg) was selected for the study. The animal was implanted with a VX2 tumor in the left 

lobe of the liver using previously documented procedures [25], [26] and allowed to grow for 

13-15 days prior to CTP imaging. The rabbit was sedated using ketamine (20 mg/kg) and 

xylazine (8 mg/kg) via intramuscular injection. CTP studies were acquired using an 

Aquilion ONE (Toshiba, Japan) 320-slice CT scanner with a 22-cm field-of-view and x-ray 

technique of 120 kVp and 80 mA. Contrast agent (1.5 ml/kg, 320 I/ml Visipaque, GE 

Healthcare, Princeton, NJ) was administered at 1 ml/second via a marginal ear vein followed 

by a 7-ml saline flush at 1 ml/second.

Following a 6-sec delay, CT data was acquired at 2-sec intervals for 25 seconds, followed by 

3-second intervals for 42 seconds. Each scan took 0.5 seconds for a total of 17.5 seconds of 

scan time (CTDIvol = 164.7 mGy). CT reconstruction was performed using AIDR 3D 

(Toshiba Medical Systems, Japan) with 0.349 mm voxels. To compensate for breathing 

motion, CT dataset were registered using Body Registration (Toshiba Medical Systems, 

Tochigi, Japan).

Regions-of-interest (ROI) were identified within the aorta, portal vein, spleen, healthy liver 

tissue, and the liver tumor. Attenuation was averaged over the region to form raw TAC 

samples. A smoothing spline function [27], [28] was used to fit the liver perfusion TACs to 

reduce noise in the estimates. The resulting TACs for each region are shown in Figure 2.
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2) Data Acquisition Protocol—The TACs in Figure 2 were used to generate simulated 

data via simple sampling of each curve. For simulation studies the temporal sampling 

followed a similar protocol as that used in the animal model with denser sampling at the 

beginning of the sequence. Specifically, an initial non-enhanced scan is acquired at t=0 when 

contrast injection starts. Subsequent scanning follows after a 4-second delay with 7 scans 

over 12 seconds, followed by a 6-second delay; then 10 scans over 28 seconds, a 5-second 

delay, and finally 5 scans over 16 seconds. These temporal samples are illustrated in Figure 

3.

3) 4D Dynamic Digital Liver Phantom—To assess performance in human CTP, a digital 

anthropomorphic phantom was generated. This phantom was based on a segmented physical 

phantom where different tissues types have been labeled. The TACs described in previous 

subsections were mapped onto different tissue types. Specifically, the healthy liver TAC was 

mapped onto the segmented liver, the aorta TAC was mapped onto the aorta, and two 

simulated spherical tumors was created using the tumor TAC. The first tumor (marked red in 

Figure 4) was homogeneous with a sharp edge profile while the second one (marked green 

in Figure 4) has flat interior profile with a smooth edge based on a Gaussian profile. Both 

lesions have the same full-width half-maximum of 3.2 mm. The 4D digital phantom is 

shown in Figure 4 for several time points. The images show the entire abdominal area 

including liver as well as zoomed ROIs around the simulated spherical homogeneous and 

Gaussian lesions. The variable enhancement of the liver, tumor, and aorta is illustrated in 

axial images. Constant attenuation regions (bone, other soft-tissues) were set equal to the 

attenuation values in the original physical phantom data.

C. Forward Model for Data Generation

We adopt a simple monoenergetic forward model for our experiments. The mean 

measurements in this transmission tomography model are written:

yi = I0 exp( − [Aμ(t)]i), (1)

where I0 denotes a scalar value associated with a uniform bare-beam fluence, measured in 

(x-ray) photons. We presume that measurements, yi, are independent and Poisson distributed 

(e.g., readout noise is negligible and noise is dominated by x-ray shot noise). Thus, the 

exposure level in the data is given by I0. The vector μ(t) denotes the vector of attenuation 

coefficients in the anatomical volume at a given time point. (In subsequent equations we 

drop the dependence on t for simplicity and since we presume that attenuation values are 

constant over the scan and reconstructions only involve estimation of the current single-

time-point image volume, or a difference volume). The projection operation is denoted by A 
and [Aμ]i is the line integral associated with the ith measurement. To MODEL partial volume 

effects in the data generation model, we have an intentional mismatch where the phantom 

volume is sampled at 2x the reconstruction voxel size, and linear projections (A) are also 

computed at 2x the sampling of the detector pixel size (with subsequent downsampling post-

exponentiation to match the pixel size). All data simulations used a common CT geometry 

Seyyedi et al. Page 5

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



summarized in Table I and projection data were formed with a separable footprints projector 

[29].

D. Reconstruction Methods

Four different reconstruction methods are applied to the data. These methods are outlined in 

the following subsections.

1) Feldkamp–Davis–Kress Reconstruction—For a baseline analytic reconstruction 

we used the Feldkamp–Davis–Kress (FDK) algorithm [30] which is a commonly used 

method for direct CT reconstruction. Data was prepared using ideal gain correction, 

logarithmic transformation, and thresholding of the data at 10−4. The reconstruction used a 

ramp filter apodized with a raised cosine function [31] with a cutoff frequency of 0.8 times 

Nyquist. This cutoff frequency was chosen to optimize FBP performance in terms of root 

mean-squared error (RMSE) in the reconstructed images.

2) Penalized-Likelihood (PL) Reconstruction—To investigate performance using a 

well-known MBIR approach we adopted a penalized-likelihood estimator [32]. The 

objective function for this reconstruction may be written as

ϕ(μ; y) = − L(μ; y) + β μ , (2)

where L represents the log-likelihood function which is derived using the Poisson likelihood 

assumption and a data model matching (1). The second term in (2) is a traditional edge-

preserving roughness penalty term. The operator Ψ denotes a local pairwise voxel difference 

operator and, in this work, we will choose to implement ||·|| using a Huber cost function [33]. 

The regularization parameter β controls the balance between the data fidelity and roughness 

penalty controlling the noise-resolution trade-off. The optimization problem can be written 

as

μ = arg min
μ ∈ ℝ

Nμ
ϕ(μ; y) . (3)

We solve this objective iteratively using the separable quadratic surrogates approach [34] 

using 100 iterations and 10 subsets.

3) Prior Image Penalized-Likelihood Estimation (PIPLE)—To investigate 

performance using a prior image based MBIR approach we implemented a PIPLE as 

described in [21] which has the following objective function

ϕ(μ; y) = − L(μ; y) + βR Ψμ + βP μ − μp , (4)

with the same log-likelihood function and traditional roughness penalty as (2). The third 

term is a prior image penalty with μp denoting the prior image. The parameters βR and βP 
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denote the relative strengths of the roughness and prior image penalty respectively. The 

optimization has the same form as (3) and is solved using the separable quadratic surrogates 

(SPS) algorithm [33]. For PIPLE, 100 iterations and 10 subsets were used.

4) Reconstruction of Difference—The Reconstruction of Difference (RoD) algorithm 

[23] is summarized briefly as follows. Rather than reconstruct the current anatomy (μ), RoD 

aims to reconstruct the difference between the current anatomical volume and a prior image 

volume. In the case of CT perfusion imaging, RoD can be employed to reconstruct the 

contrast change – that is, the difference image volume (μΔ) – between the unenhanced 

baseline, or prior image (μp), and an enhanced image volume (μ) at a later time point. 

Specifically, we may write

μ = μp + μΔ . (5)

Substituting (4) in forward model (1), one can rewrite the mean measurements model as

y = [I0exp( − Aμp)] ⋅ exp( − Aμp) = g ⋅ exp( − AμΔ) . (6)

where L represents the log-likelihood function which is derived using the Poisson likelihood 

assumption. The Poisson assumption is commonly applied and is based on measurement 

noise being dominated by x-ray quantum noise. Note that this new forward model can be 

rewritten in the second equality with the gain term g. This gain is mathematically equivalent 

to (1) where the scalar I0 has been replaced with element-by-element multiplication by the 

vector g and, and μ has been replaced by μΔ. Because of the similar form, it is 

straightforward to write a new objective and algorithm based on this difference model. 

Specifically, using a likelihood-based objective function for difference image, μΔ, we may 

write:

ϕ(μΔ; y, μp) = − L(μΔ; y, μp) + βR ΨμΔ + βM μΔ . (7)

Again, the log-likelihood function has the same basic form but with the difference model of 

(6). The second term is analogous to the standard roughness penalty in (2) except it is 

applied to the difference image. The third regularization term is a magnitude penalty on μΔ, 

which discourages too much change between the current anatomy and the prior image. In 

effect, this is the term that controls (via βM) the degree of prior information integrated into 

the reconstruction. In the original formulation in [23] both penalties were presented as 1-

norms. This is important, particularly for the third term which discourages change but 

permits sparse changes when a 1-norm is applied. However, in practice both penalties are 

computed using the Huber penalty (which maintains a differentiable objective function and a 

common iterative solver to the penalized-likelihood approach). The optimization of the 

objective is written simply as
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μΔ = arg min
μΔ ∈ ℝ

Nμ
ϕ(μΔ; y, μp) (8)

and like the other MBIR methods is solved using the separable quadratic surrogates (SPS) 

algorithm [34]. For RoD, 100 iterations and 10 subsets were used.

The number of iterations for RoD, PIPLE and PL was chosen in a convergence study which 

suggested that the image changes after 100 iterations were insignificant (specifically 

changes between iterations were less than 0.1 HU). The number of subsets (ten) were 

selected empirically as a good tradeoff between reconstruction speed and small 

reconstruction errors in the converged images. All reconstruction methods and related 

routines were written in Matlab (The Mathworks, Natick, MA) with external calls to 

projectors/back-projectors written in C/C++ using CUDA libraries to accelerate 

computations through the use of graphical processing units (GPUs).

E. Hepatic Perfusion Analysis

In addition to direct investigations on the accuracy of TACs produced by various methods, 

we investigate the ability to accurately estimate commonly used perfusion metrics. Those 

metrics are described briefly here. Because of the liver has two vascular inputs (e.g., unlike 

brain perfusion), hepatic CT perfusion analysis is more challenging than the perfusion 

parameters calculation for the other tissues. This dual input model is illustrated in Figure 5. 

In this work, we use dual-input maximum slope method (SM) to calculate the perfusion 

parameters as previously described by Miles et al. [35], [36]. The principle of the SM is 

quite simple which makes it very attractive for separate evaluation of dual liver blood supply 

components, i.e. hepatic arterial perfusion (HAP) and hepatic portal perfusion (HPP).

HAP and HPP maps have been calculated for each individual pixel by determining the peak 

gradient of the hepatic TAC acquired respectively before (arterial phase) and after (portal 

phase) the peak splenic attenuation for that pixel and dividing it by the peak aortic and the 

peak portal vein attenuation respectively. The artery and portal veins however, have been 

simulated based on the same values from real TAC data from rabbit scans and average value 

of their ROIs have been used to find the peak values.

As the portal perfusion is presumed to be negligible during the arterial phase [35], the HAP 

can be calculated using,

HAP =
Fa
V =

dCl(t)
dtmax

Ca(t)max
, (9)

and HPP, was calculated using,
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HPP =
Fp
V =

dCl(t)
dtmax

Cp(t)max
, (10)

where Fa and Fp denote the arterial and portal flows, V refers to the liver volume and Ca(t), 

Cp(t) and Cl(t) refer to the concentration in artery, portal vein and liver respectively (Cl(t) = 

Ca(t) + Cp(t)).

The arterial fraction, or hepatic perfusion index (PI; %), was determined as follows,

PI = HAP + HPP
HAP . (11)

The perfusion index is commonly used since it is less sensitive to some biases present in the 

HAP and HPP estimates. Note that in Figure 2, the tumor enhances more in the arterial 

phase than healthy tissue providing an important diagnostic cue.

Lastly, we also compute the time-to-peak (TTP) by identifying the maximum value in the 

TAC and recording the time to achieve that value since the injection. The TTP metric has 

previously been used in stroke imaging [37], but may also provide an additional diagnostic 

test for identification of lesions in the liver. Note the short TTP for the lesion in the Figure 2 

data.

III. Experiments

A number of experiments were conducted to investigate the performance and optimization of 

the RoD approach as applied to CTP data. These studies are enumerated in the following 

subsections.

For all investigations using RoD, the prior image was the baseline at t = 0, acquired using an 

I0 = 105 (photons per pixel) and reconstructed using PL with an optimized regularization 

strength (β). For all MBIR methods, the operator, Ψ, computed differences along the 

principal axes (6 neighbors total).

A. Regularization Investigation

While PL reconstruction is widely used in CT, we are unaware of previous attempts to 

optimize regularization as a function of time throughout a contrast-enhanced study. To study 

general trends in optimal penalty strength for PL, we performed an exhaustive 1D search to 

find the optimal regularization parameter β by comparing the root-mean-square error 

(RMSE) between the original image and the PL reconstructed image. We repeat this search 

for each time point. A similar 2D optimization is performed for PIPLE and RoD approaches. 

As in [21], βR and βP are both varied for PIPLE regularization optimization and for RoD, βR 

and βM are varied. The incident fluence was fixed to I0 = 103 for all experiments. RMSE 
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was calculated in a 50×50 voxel ROI including the lesion and liver tissue around it (as 

illustrated in Figure 4).

B. Incident Fluence Investigation

To study the effect of noise on the various reconstruction strategies, we simulated different 

levels of Poisson noise for measurements with fluence ranging from I0 = 5×102 to 105 

(photons per pixel). For this study, we focus on the t = 21 seconds’ case – an important 

region near the splenic peak with moderate contrast between the tumor and healthy tissue. 

The optimal PL, PIPLE and RoD regularization parameters were determined individually for 

each fluence level using the exhaustive searches as described in section III.A. Qualitative 

comparisons of tumor reconstruction as well as RMSE values as a function of fluence are 

reported for each reconstruction approach.

C. Comparison of TACs and Perfusion Maps

To study perfusion accuracy for each approach two studies were conducted: 1) an analysis of 

TAC accuracy and 2) a study of perfusion metric accuracy. For the first TACs are reproduced 

for each reconstruction approach by averaging over healthy and tumor ROIs (shown in 

Figure 6). Errors are computed for each time point. For the second study, the four different 

perfusion metrics identified previously are computed to form perfusion maps for each 

approach. RMSE is also computed for healthy liver and tumor ROI.

To consider the effects of noise, five different noise realizations were generated and 

reconstructed for all comparisons. Standard deviations over noise realizations were 

computed for each time point to place error bars on TAC estimate curves, their 

corresponding RMSE plots, and to the RMSE plots for the perfusion maps.

IV. Results

A. Regularization Investigation

PL was used to reconstruct the simulated images using various regularization parameters β 
swept linearly (in exponent) from 100.5 to 104 at 100.5 increments. The regularization 

parameter that resulted in the lowest RMSE was chosen as the optimal setting. Across all 

time points β = 101.5 resulted in the best RMSE. This suggests an optimization for each time 

point is not strictly required for PL.

An illustration of the 2D (βR, βM) RoD optimization is shown for I0 = 103 and t = 21 (s) in 

Figure 7. Both the RMSE and a zoomed ROI of the reconstructed difference images are 

shown as a function of both regularization parameters. The best image quality in terms of 

RMSE has been achieved by setting βR = 10 and βM = 10. As shown in Figure 7(B), noise 

increases for lower βR values while parameter values larger than 101.5 significantly blurred 

the difference image. Similarly, larger values of βM decreases noise; however, values larger 

than 103 discourage change so much that the difference images become zero. While this 

optimization was performed with an explicit 2D search the structure of the error in Figure 

7(A) suggests (as observed in [21] that a directed 1D search could be applied).
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Repeating the optimal parameter search for all time points, one finds a varying optimal 

regularization strength as a function of time. These optima are shown in Figure 8(A). Note 

that the optimal value of βR is decreases for increasing contrast between tumor and healthy 

liver tissue. Similarly, we see the opposite relationship for βM – increasing contrast between 

the tumor and healthy tissue corresponds to lower optimal βM values. This suggests that 

traditional regularization works better for high contrast regions and prior-image-based 

regularization is more important in low contrast regions. A similar optimization was 

conducted for PIPLE the time-varying optima for this approach are shown in Figure 8(B). 

Note that the optimal value of βR is decreases for increasing the contrast while βP is lower 

for increased contrast between the tumor and surrounding healthy tissue (similar to RoD).

A. Incident Fluence Investigation

Figure 9(A) and 9(B) show the comparison of reconstructed images using FDK, PL, PIPLE 

and RoD reconstruction techniques near the splenic peak (t = 21 seconds) in the temporal 

series respectively for homogeneous and Gaussian tumors. The performance of all three 

methods deteriorated as the incident fluence decreased to I0 = 5×102, however RoD 

performed better consistently. FDK had relatively poor visualization of the lesion at all but 

the highest fluence levels. The I0 = 103 represents a challenging case for all methods; 

however, RoD is able to perform significantly better than both PL and FDK. These 

qualitative assessments are echoed in the RMSE values shown in Figure 9(C) and 9(D). The 

rank ordering of methods is consistent across all fluence levels with RoD outperforming PL, 

PIPLE and FDK, and FDK performing worst. The error bars in Figure 9(C) and 9(D) for 

different noise realizations shows that the rank order performance has not changed and 

performance differences are greater than the error bars.

B. Comparison of TACs and Perfusion Maps

Figure 10(A) and 10(B) show individual reconstruction of the homogeneous and Gaussian 

tumors ROIs across all time points using each reconstruction method for I0 = 103, as well as 

the corresponding ground truth images. Qualitative comparison of reconstructed images 

shows that RoD and PIPLE yielded better image quality across the entire range, even in low 

contrast regions. In contrast FDK exhibits strong noise across all points. PL performs better 

but appears to have increased blur as compared with RoD and PIPLE. TACs associated with 

these reconstructions are shown in Figure 10(C), (D) and (E) for the homogeneous, Gaussian 

tumor and healthy liver tissues, respectively. RMSE plots associated with these estimates are 

shown in Figure 10(F), (G) and (H). Stochastic fluctuations observed in the TACs are 

strongest for FDK and are mitigated by MBIR methods. The best results are found of RoD 

which has the lowest RMSE across all time points. This includes an improved RMSE over 

the other prior image method, PIPLE. Errors are generally higher in the tumor ROI (which 

was averaged over fewer voxels). Similarly, one might expect the healthy liver ROI to have 

lower RMSE since it is in a more homogeneous region.

Figure 11(A) shows the calculated perfusion maps including HAP, HPP, PI and TTP maps 

for different reconstruction techniques at an incident fluence of I0 = 103. Reconstruction 

results are shown for the central slice, however similar results were achieved out of plane 

(suggesting cone-beam artifacts do not play a significant role). Consistent with previous 
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results FDK exhibits increased noise as compared with other approaches. PL performs better 

but increased blue in the PI map reduces conspicuity of the tumor. Similarly, the tumor does 

not appear in the TTP map. PIPLE performs better than both FDK and PL, however the 

intensity of tumor region in the PI map is still lower than RoD and TTP map also shows a 

noisy appearance for the liver tissue. RoD outperforms the other methods with better tumor 

PI contrast and a conspicuous tumor apparent in the TTP map. PL and RoD appear to 

perform comparably for the HAP and HPP maps. RMSE comparisons for these perfusion 

maps are presented in Figure 11(B), (C) and (D) for the healthy liver, homogeneous and 

Gaussian tumor ROIs. Again, the quantitative results reinforce the qualitative observations 

with improved performance using RoD. The differences are greatest for PI and in the tumor 

ROI. Similar performance of PL, PIPLE and RoD in the tumor ROI is also noted.

V. DISCUSSION

In this paper, a novel scheme for acquiring and processing sequential CTP data was 

developed using the Reconstruction of Difference algorithm. In particular, an initial high-

quality baseline reconstruction of the unenhanced anatomy was used to improve the image 

quality of subsequent reconstructions of low-exposure contrast-enhance CT data. Both RoD 

and PIPLE outperform traditional approaches by adding more information to the problem in 

the form of an additional regularization penalty that includes the prior image. It is interesting 

to note that RoD showed better performance than PIPLE, which suggests that the direct 

reconstruction of the perfusion enhancement is an advantage. That is, regularization of the 

parameters of interest (i.e., the contrast difference) allows for better perfusion estimates. The 

improved performance was demonstrated across a range of exposures for individual time-

point reconstructions, for time-attenuation curve estimates, and in the computation of 

common perfusion metric maps.

The experimental conditions used a high-quality baseline (unenhanced) image volume 

acquired at a fluence of 105 photons per detector element (which is a clinically relevant 

exposure in our experience). Using RoD suggests that this exposure could be dropped to 103 

photons and retain useful perfusion images instead of repeating the 105 photon exposure 

over 20 times. In the low-exposure RoD case, the dose would be dominated by the initial 

baseline scan representing a substantial dose reduction. Naturally, this analysis is incomplete 

since readout noise and other effects are not taken into account. However, these preliminary 

results suggest the underlying methodology is a potentially powerful approach that can be 

applied in sequential data reconstruction like CT perfusion. Moreover, such methods may 

enable techniques like liver CTP which have not found widespread clinical use due to 

radiation dose concerns.

One practical challenge lies in RoD parameter optimization. While this investigation focused 

on optimal regularization with known truth, optimal prospective regularization design for 

prior-image methods is an ongoing research area [38], [39].

While the studies in this work suggest an opportunity for significant dose reduction, a 

number of simplifications were used in simulation physical and anatomical models. For 

example, beam hardening, scattered radiation, and readout noise effects were ignored in this 
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work. However, all reconstruction algorithms must contend with these effects, and 

corrections tend to increase noise. In related work, we have successfully integrated beam 

hardening and scatter corrections into iterative reconstruction [40], [41] including cross-

modality RoD where prior image CT and follow-up CBCT have different physical 

characteristics [42]. Thus, it is possible to include additional effects into all of these 

methods. While MBIR methods are an effective way to deal with increased noise, we would 

expect a decrease in performance of all methods with scatter and beam hardening, though 

the rank ordering of methods should remain the same.

The anatomical model used in this study was also simplified – e.g., a homogeneous liver 

without detailed vasculature. Such differences could have an impact on performance in 

clinical data (e.g. complicating the identification of regions of interest for the perfusion 

metric calculations). Thus, the limitations of these simulation studies must ultimately be 

addressed in ongoing and future work which seeks to perform similar comparisons in animal 

and human studies. Patient motion will be an important factor to consider in clinical data 

acquisitions. We have previously investigated deformable registration techniques and 

successfully integrated them into prior-image-based reconstruction [22]. Registration was 

found to be important for successful integration of prior information. Registration 

modifications have previously been embed in the RoD pipeline [23], though additional 

modifications specific to liver perfusion are likely needed. In particular, registration to very 

low exposure data will present challenges due to noise, and an alternating reconstruction and 

registration approach [22] may be needed to obtain good registration.
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Figure 1. 
Overview of the proposed data acquisition, reconstruction and processing chain for liver CT 

perfusion using RoD. A high-quality baseline image based on a normal exposure acquisition 

and penalized-likelihood reconstruction serves as a prior image for subsequent RoD 

processing. Low dose tomographic data is acquired for a series of time points following 

injection of a contrast agent and differences image volumes are formed using RoD for each 

time point in the series. Estimates of the current anatomy may be obtained by adding the 

difference images to the prior image, permitting standard methods to be applied to generate 

perfusion maps including hepatic arterial perfusion (HAP), hepatic portal perfusion (HPP), 

perfusion index (PI), and time-to-peak (TTP).
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Figure 2. 
Time-attenuation curves from the contrast-enhanced rabbit abdominal study. Regions of 

interest covered the standard locations used to derive perfusion metrics and included five 

tissue types: the aorta, portal vein, spleen, healthy liver tissue, and a liver tumor.
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Figure 3. 
Acquisition protocol used for CT perfusion studies.
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Figure 4. 
4D Digital liver phantom designed for CT perfusion studies. Middle row illustrates the entire 

abdominal area including liver, first row and third row include the zoomed regions around a 

simulated homogeneous lesion and a Gaussian lesion respectively for several time points.
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Figure 5. 
Dual input liver perfusion model. Ca(t), Cp(t) and Cl(t) denote the concentration in artery, 

portal vein, and liver with Cl(t) = Ca(t) + Cp(t).
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Figure 6. 
ROIs for TAC and perfusion RMSE calculation. The ROI for the homogeneous and 

Gaussian tumors are marked in dotted red (left) and dotted blue (right) respectively and 

other circles show healthy liver tissue with green.
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Figure 7. 
Results of regularization investigation for RoD with I0 = 103 and t = 21 s. (A) Regional 

RMSE (mm−1) as a function of penalty coefficients βR and βM evaluated using a 100.5 

interval. (B) A zoomed ROI showing difference reconstructions μΔ associated with each 

regularization parameter pair. The red box denotes the optimal βR and βM values.
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Figure 8. 
Optimal penalty coefficients, (A) for RoD, βR and βM, and (B) for PIPLE, βR and βP, as a 

function of time for incident fluence I0 = 103.
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Figure 9. 
Comparison of reconstructions with incident fluence ranging from 5ran2 to 105 at t = 21 (s). 

(A) Homogeneous tumor ROI of the reconstructed volume using FDK, PL, PIPLE and RoD 

for different incident fluence values, and (B) Gaussian tumor ROI of the reconstructed 

volume using FDK, PL, PIPLE and RoD for different incident fluence values, (C) 

corresponding RMSE plots of FDK, PL, PIPLE and RoD for homogeneous tumor, and (D) 

corresponding RMSE plots of FDK, PL, PIPLE and RoD for Gaussian tumor.
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Figure 10. 
(A) Comparison of homogeneous tumor ROI and (B) Gaussian tumor ROI for FDK, PL, 

PIPLE and RoD reconstructions for incident fluence I0 = 103 and TAC estimates from FDK, 

PL, PIPLE and RoD reconstructions for incident fluence I0 = 103, (C) TAC estimates for the 

homogeneous tumor ROI, (D) TAC estimates for the Gaussian tumor ROI (E) TAC plot 

resulting from averages over healthy liver tissue ROIs. (F) RMSE plot for TAC shown in (C) 

and (G) RMSE plot for TAC shown in (D) and (H) RMSE plot for TAC shown in (E).
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Figure 11. 
(A) HAP, HPP, PI and TTP maps for FDK, PL, PIPLE and RoD reconstruction methods 

compared to ground truth for incident Fluence I0 = 103. RMSE comparisons for the 

perfusion maps for (B) healthy liver, (C) homogeneous tumor and, (D) Gaussian tumor ROIs 

are also shown. The units for HAP and HPP is ml/min/100 ml and for TPP is seconds
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TABLE I

Simulation parameters

Quantity Value

Rotation Angle 360 degrees

Volume Size 512×512×64

Voxel Size 0.4 mm

Number of Projections 360

Source-to-Axis Distance 1000 mm

Source-to-Detector Distance 500 mm

Detector Pixel Size 1 mm × 1mm
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