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Abstract

Observed phenotypic responses to selection in the wild often differ from predictions based on 

measurements of selection and genetic variance. An overlooked hypothesis to explain this paradox 

of stasis is that a skewed phenotypic distribution affects natural selection and evolution. We show 

through mathematical modelling that, when a trait selected for an optimum phenotype has a 

skewed distribution, directional selection is detected even at evolutionary equilibrium, where it 

causes no change in the mean phenotype. When environmental effects are skewed, Lande and 

Arnold’s (1983) directional gradient is in the direction opposite to the skew. In contrast, skewed 

breeding values can displace the mean phenotype from the optimum, causing directional selection 

in the direction of the skew. These effects can be partitioned out using alternative selection 

estimates based on average derivatives of individual relative fitness, or additive genetic 

covariances between relative fitness and trait (Robertson-Price identity). We assess the validity of 

these predictions using simulations of selection estimation under moderate samples size. 

Ecologically relevant traits may commonly have skewed distributions, as we here exemplify with 

avian laying date – repeatedly described as more evolutionarily stable than expected –, so this 

skewness should be accounted for when investigating evolutionary dynamics in the wild.
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One of the most striking facts revealed by studies of evolutionary dynamics and natural 

selection on wild organisms over the past fifty years is the relative temporal stability of 

heritable phenotypes, despite the detection of directional selection with rather consistent 

direction in time (Kingsolver, 2001; Kingsolver and Pfennig, 2007; Merilä et al. 2001; 

Morrissey and Hadfield, 2011). Such absence of evolution of heritable traits under apparent 
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directional selection constitutes the so-called “paradox of stasis” at the micro-evolutionary 

scale (the macro-evolutionary paradox of stasis involves absence of long-term change 

despite the possibility of rapid evolution, Estes and Arnold 2007; Gingerich 2009).

Several non-exclusive hypotheses have been formulated to explain this paradox (Merilä et al. 

2001; Morrissey et al. 2010; Stinchcombe and Kirkpatrick, 2012; Walsh and Blows, 2009). 

For instance, the multivariate nature of phenotypes under selection may induce an over-

estimation of heritability by non-multivariate approaches (due to genetic correlations 

between traits, Hansen and Houle, 2004; Teplitsky et al. 2014), or spurious estimates of 

selection may be caused by purely environmental covariances between phenotypes and 

fitness (Rausher 1992; Morrissey et al. 2010; Bonnet et al. 2017). At present, there is no 

consensus as to the origin of this evolutionary paradox (Estes and Arnold, 2007; Haller and 

Hendry, 2013; Hansen and Houle, 2004; Kaplan, 2009; Merilä et al. 2001; Rollinson and 

Rowe, 2015), and while several processes are most probably involved, there is insufficient 

empirical evidence to conclude on their relative importance.

One phenomenon that could contribute to the paradox of stasis but has so far been largely 

neglected is skewness in phenotypic distributions. Quantitative genetics theory and statistical 

analyses mostly rest on the assumption of Gaussian distributions of phenotypes, breeding 

values, and environmental effects (e.g. Lynch and Walsh 1998; Falconer and MacKay 1996). 

This assumption is commonly made for mathematical convenience, but is also biologically 

justified when variation in a quantitative trait is determined by a large number of loci with 

infinitesimal effects (Falconer and MacKay, 1996; Fisher, 1918; Turelli and Barton, 1994), 

or by a balance between stabilizing selection and high mutation rates even at a few loci 

(Kimura, 1965; Lande, 1976b). However, phenotype distributions are not always Gaussian in 

the wild; in particular, they may be skewed (asymmetric). Formally, skewed distributions 

have a non-zero third central moment µ3, and skewness can be measured by scaling this 

moment by the standard deviation, α = µ3/σ3. As an example, in Table 1 we report 

phenotype distributions and phenotypic skewnesses for avian breeding phenology (i.e. date 

of first egg laid), a textbook example of phenotypic responses to climate change (Bradshaw 

and Holzapfel, 2008; Gienapp et al. 2014), which also includes several examples of the 

paradox of stasis in wild populations (Charmantier and Gienapp, 2014). We found a positive 

mean phenotypic skewness (across multiple years) in all seven populations of six bird 

species explored (see Table 1; skewness ranging from 0.40 in the Savanah Sparrow 

Passerculus sandwichensis to 1.37 in the Common Tern Sterna hirundo).

Several non-exclusive processes may lead to a skewed phenotypic distribution, including: i) 

a sustained directional displacement of the adaptive optimum in time (Jones et al. 2012), 

such as the advancement of phenology with global warming (e.g. Visser et al. 2010); ii) 

migration between two populations with different adaptive optima (Débarre et al. 2015); iii) 

a skewed stabilizing fitness function (Urban et al. 2013).When phenotype distribution is 

skewed, it is sometimes possible to transform the trait to a scale that makes it close to 

Gaussian, for instance by log transformation, as is commonly done for morphological traits, 

notably when investigating allometry (e.g. Pélabon et al. 2013; Bolstad et al. 2015). 

However, transformation is not always recommended, as it may violate the natural scale 

allowing trait comparison, or lead to wrong biological interpretations (Houle et al. 2011). 
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For some traits with specific non-normal distributions (e.g. Poisson), the response to 

selection may be analysed using the generalized linear model framework (de Villemereuil et 

al. 2016), but this is not applicable to traits with arbitrary distributions.

Previous theoretical work has explored the general response to selection of non-Gaussian 

traits (Burger, 1991; Turelli and Barton, 1990, 1994), and shown that a skewed distribution 

of breeding values can modify the expected response to selection. However, these studies did 

not consider a skewed distribution of environmental effects, and more generally did not 

address how phenotypic skewness affects empirical estimates of natural selection. We here 

investigate how skewed phenotype distributions affect natural selection and its estimation in 

wild populations. Specifically, we aim to understand whether the genetic versus 

environmental origin of phenotypic skewness has different effects on measurements of 

selection, and how these effects are captured by different metrics that reflect different 

strategies for quantifying selection. Our theoretical analysis, combined with simulations of 

empirical estimation with limited sample size, indicate that phenotypic skewness may have 

substantial effects on measurements of selection, and that the direction and magnitude of 

these effects depend on whether they concern the heritable or environmental components of 

phenotypic variation.

Model

Generalized Response to Selection

We focus on a quantitative trait, for which the phenotypic value z can be partitioned as

z = g + e (1)

with g the breeding value contributing to parent-offspring resemblance – and hence to 

responses to selection – and e a residual component of variation (with mean 0) caused by 

environmental variation and developmental noise, as well as by non-additive genetic effects. 

Contrary to classical quantitative genetics (e.g. Lynch and Walsh 1998; Falconer and 

MacKay 1996), we do not assume that all components of the phenotype (z, g, and e) are 

normally distributed. In particular, we allow for non-zero third central moment µ3, and hence 

for skewness. The response to selection for a trait with arbitrary distribution of breeding 

values has been investigated by several authors (Burger, 1991; Turelli and Barton, 1990, 

1994), who have shown that, up to third order,

Δ z = σg
2∂ln(W)

∂z + μ3g
∂ln(W)

∂σg
2 , (2)

where µ3g is the genetic third central moment. The first term in the right-hand side of eq. (2) 

is the product of the directional selection gradient (defined as the derivative of log-mean 

fitness relative to the mean trait, see Table 2) by the additive genetic variance, as appears in 

the selection response of Gaussian traits (Lande, 1976a). In contrast, the second term only 

exists when the breeding value distribution is asymmetric, as it depends on µ3g. The related 
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component of selection is the partial derivative of natural logarithm mean fitness with 

respect to genetic variance.

Equilibrium Mismatch with Optimum

Here we are interested in modelling an evolutionary equilibrium caused by stabilizing 

selection, as often invoked to explain stasis in the long run (Arnold et al. 2001; Estes and 

Arnold, 2007; Hansen, 1997; Hansen and Houle, 2004). We model stabilizing selection 

using a quadratic function, where the absolute fitness W(z) of an individual with phenotype 

z is

W z = Wmax 1 − z − θ 2

2ω2 (3)

with Wmax the maximal fitness values for an optimal phenotype θ, and ω the width of the 

fitness peak (stabilizing selection is stronger for smaller ω). This function is such that fitness 

declines with increasing distance between phenotype z and optimal values θ. A quadratic 

function is chosen here for mathematical convenience and because it is a good 

approximation to any form of stabilizing selection under weak directional and quadratic 

selections, i.e when the mean phenotype is close to the optimum and the phenotypic variance 

is smaller than the squared peak width.

With this fitness function, the mean fitness of individuals with breeding values g, averaged 

over all possible phenotypic values accounting for environmental effects e, is

W g = Wmax 1 −
σe

2

2ω2 − g − θ 2

2ω2 (4)

Hence with this fitness function, environmental effects affect the fitness of individuals with 

breeding value g only through their variance, but not their higher moments, including the 

environmental third order moment µ3e. Averaging W̃(g) over the distribution of breeding 

values g in the population, the mean fitness in the population is

W = Wmax 1 −
σz

2

2ω2 − z − θ 2

2ω2 , (5)

where σz
2 = σg

2 + σe
2 is the total phenotypic variance of the population, and ḡ = z̄. Here again, 

the population mean fitness depends on the mean and variance of the phenotype, but not on 

the third central moment (or any higher moment) of the phenotypic distribution.

From eq. (5), the directional selection gradient appearing in eq. (2) (as derivative of mean 

fitness relative to mean phenotype, Table 2 and Lande 1976a) is
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∂ln W
∂z = − S z − θ , (6)

where

S = ω2 −
σz

2 + z − θ 2

2

−1

. (7a)

The parameter S is positive under weak stabilizing and directional selection 

(ω2 >
σz

2 + (z − θ)2

2 ), as required in the first place by the use of a quadratic fitness function. Eq. 

(6) shows that directional selection acts as a restoring force towards the optimum (i.e. is in 

opposite direction to the deviation from the optimum z̄ – θ), with a strength S that increases 

when the fitness peak is narrower (small ω), as shown by Lande (1976a). Furthermore, if the 

squared deviation from the optimum (z̄ – θ)2 is much smaller than phenotypic variance σz
2

(directional selection weaker than stabilizing selection), then

S ≈ 1

ω2 −
σz

2

2

, (7b)

such that directional selection is proportional to the deviation of the mean phenotype from 

the optimum in this model (since S no longer depends on z̄ – θ).

The selection gradient on genetic variance appearing in eq. (2) is, from eq. (5),

∂ln(W)
∂σg

2 = − S/2. (8)

This gradient is negative when selection is stabilizing (because stabilizing selection reduces 

genetic variance). Then combining eq. (6) and (8) with eq. (2), the response to selection 

under skewed phenotypic distribution and quadratic stabilizing selection is

Δ z = − S z − θ σg
2 +

μ3g
2 . (9)

Note that eq. (9) is exact, such that no higher-order term exists in the response to selection 

with this fitness function (Burger 1991). Assuming that the genetic variance and third central 

moment are maintained at an equilibrium between selection and other evolutionary forces 

including mutation, recombination, and possibly migration (see Introduction), the 
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evolutionary equilibrium for the mean phenotype is obtained by setting ∆z̄ = 0 in eq. (9), 

leading to an equilibrium deviation from the optimum

z − θ eq = −
μ3g

2σg
2 . (10)

Hence, at the evolutionary equilibrium, when breeding values are skewed, the mean 

phenotype is not at the adaptive optimum. The distance between the mean phenotype and the 

optimum increases with the skewness of breeding values (eq. 10). Importantly, even though 

there is a difference between the mean phenotype and the optimum, there is no response to 

selection since the population is at equilibrium.

Equilibrium Selection Gradient

Empirical estimates of directional selection gradients from finite population samples are 

generally not based on the relationship between population mean fitness and mean 

phenotype (as used above), but instead use regression of individual fitness on individual 

phenotype. For normally distributed traits, the linear version of the Ordinary Least-Square 

(OLS) regression of relative fitness (i.e. individual fitness divided by mean fitness) on 

individual phenotype directly yields the slope of the natural log-mean fitness function (∂ln 
(W̄)/∂ z̄), that is, the selection gradient used to predict the response to selection (Lande, 

1976a; Lande and Arnold, 1983, and see Table 2). This is no longer true when phenotype 

distributions are non-Gaussian, notably when they are skewed (as discussed in the Appendix 

of Lande and Arnold 1983, where a special rescaling of traits is introduced to correct for the 

effect of skewness). For instance, with a quadratic fitness function as modelled in eq. (3), 

and using the fact that, from eqs (1), (3) and (7), 

W /W − 1 = S/2 σz
2 − 2 z − θ z − z − z − z 2 , the selection gradient estimated by the OLS 

method is

βOLS = σz
−2E (z − z)(W

W
− 1) = − S (z − θ) +

μ3z

2σz
2 , (11)

where E[] denotes an expectation over the phenotypic distribution. Note that the gradient in 

eq. (11) includes a contribution from phenotypic skewness (through the third central moment 

µ3z). This shows that, if the phenotype distribution is skewed due to skewness in 

environmental effects distribution (i.e. µ3g = 0 but µ3e ≠ 0, leading to µ3z ≠ 0), the selection 

gradient β̂OLS estimated by the Lande and Arnold (1983) method does not vanish when the 

mean phenotype is at the optimum (i.e. even if z̄ = θ at equilibrium because µ3g = 0). This 

occurs because the asymmetry in the phenotype distribution causes individuals to lie farther 

on one side of the optimum than on the other side, resulting in a non-zero directional 

gradient, when the fitness function is symmetric around the optimum (Fig. 1a). Note also the 

striking similarity between the response to selection in eq. (9) and the measured selection 

gradient using OLS method in eq. (11). The difference is that the former depends on the 
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additive genetic variance and third central moment, while the latter depends on the 

phenotypic moments.

Eq. (11) can be used to predict the response to selection that would be estimated from a 

selection gradient estimated by OLS method, which is simply Δ zOLS = βOLSσg
2 . Comparison 

with the actual response to selection in eq. (9) shows that

Δ zOLS − Δ z = − s
2(h2μ3z − μ3g) . (12)

Hence, the error made by ignoring phenotypic skewness when computing the response to 

selection as ∆z̄OLS is all the more important as the third central moment of breeding values 

µ3g differs from the phenotypic third central moment µ3z multiplied by the heritability h2. 

Finally, at evolutionary equilibrium, the selection gradient estimated by the OLS method 

according to Lande and Arnold (1983) is

βOLS, eq = − s
2

μ3z

σz
2 −

μ3g

σg
2 . (13)

Eq. (13) shows that even at evolutionary equilibrium, where the mean phenotype no longer 

evolves in response to selection, the selection gradient measured by the OLS method (that is, 

using the classic Lande and Arnold (1983) approach) on a character with skewed phenotypic 

distribution is likely to be non-zero. The sign of the measured selection gradient depends on 

the origin of the phenotypic skewness: at evolutionary equilibrium, with environmental 

skewness, the selection gradient is of the opposite sign to the phenotypic skewness (Fig. 1a), 

while with genetic skewness, the selection gradient is of the same sign as phenotypic 

skewness (Fig. 1b). This occurs because phenotypic skewness affects the selection gradient 

by itself, but skewness of breeding values also affects the response to selection, displacing 

the mean phenotype from the optimum in the opposite direction.

Alternative Measurements of Selection

When phenotype distributions are skewed, the response to selection may still be correctly 

predicted empirically by using methods that do not assume normality. For instance, the 

Robertson–Price identity (Price, 1970; Robertson, 1966, 1968) states that the response to 

selection equals the additive genetic covariance between a trait z and relative fitness w, 

regardless of the phenotype distribution, that is, ∆z̄ = σa(z,w). Expanding terms in the 

covariance, using W̃(g)/W̄ (from eqs. (4) and (5)) as the additive genetic relative fitness 

associated with genotypes with breeding value g, after some simple algebra we recover the 

correct response to selection in eq. (9).

A complementary approach would be to use a method that directly computes the theoretical 

selection gradients based on mean fitness. This strategy, originally introduced by Janzen and 

Stern (1998) for the specific case of logistic regression in viability selection, has recently 

Bonamour et al. Page 7

Evolution. Author manuscript; available in PMC 2018 May 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



been extended by Morrissey and Sakrejda (2013), who advocated its use in general, and 

proposed a framework based on Generalized Additive Model (Wood, 2006, GAM, R 

package mgcv, function gam) to directly estimate the theoretical selection gradient that 

appears in eq. (2). More precisely, this method estimates the individual fitness landscape 

(relationship between individual traits and relative fitness), and uses it to compute the 

Average Derivative of Individual Relative Fitness (i.e. the mean slope of the individual 

fitness landscape, ADIRF method hereafter), which is equivalent to the derivative of mean 

fitness for the linear selection gradient (for the quadratic selection gradient, a correction term 

is added, Lande and Arnold, 1983 and Table 2). This is implemented as gam.gradient in the 

gsg R package by Morrissey and Sakrejda (2013).

These alternative measurements of selection can be used in combination, in order to partition 

out the contribution of phenotypic skewness to selection and the response to selection. For 

instance, the part of the observed phenotypic selection attributable to skewness in 

phenotypes is provided by the difference between the selection gradients estimated by the 

OLS and ADIRF methods,

βOLS − βADIRF = − s
2

μ3z

σz
2 (14)

Similarly, the part of the response to the selection attributable to skewness in breeding values 

is provided by the difference between the Robertson-Price identity and the response to 

selection predicted with the ADIRF method,

Δ zR − P − Δ zADIRF = σa z, w − σg
2βADIRF = − s

2 μ3g . (15)

Eq. (15) holds even when the population is not at evolutionary equilibrium, but at 

equilibrium this term exactly cancels out the selective effect of the mismatch between z ̄ and 

θ (eq. 10). Note also that the component of the selection response in eq. (15) depends on the 

genetic third central moment µ3g, but not on heritability.

Simulation of selection estimation

To assess the relevance of these theoretical predictions for empirical estimates of selection 

with moderate sample sizes, we simulated data sets of skewed phenotypic distributions and 

associated fitness based on an adaptive landscape with a fitness optimum.

Simulation Procedure

All simulations were performed in the R environment (R 3.2.4 version). Each individual 

phenotype was the sum of a breeding value and an environmental effect. Because skewness 

in phenotype distribution can have genetic or environmental origins, simulations were 

performed under two scenarios: i) skewed breeding values but normally distributed 
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environmental effects; and ii) normally distributed breeding values but skewed 

environmental effects.

To explore a range of parameter values, we used a distribution that allows modifying 

skewness while controlling for mean and variance. We chose the Gamma distribution Г(k,h) 

with shape and scale parameters k and h respectively, because its skewness is simply α = 2
k .

We made use of the properties relating the shape and scale parameters of a Gamma to its 

mean µ = kh and variance σ2 = kh2. Specifically, we chose the scale parameter as h = σ
k

with σ the standard-deviation of the distribution, such that changing k changed skewness 

without changing the variance. Finally, adding –kh to the variable (leading to a displaced 

Gamma distribution) allowed controlling for the mean.

In each simulation, the breeding value and environmental effect of each individual were 

drawn from distributions with the required moments. In particular, the distribution of 

environmental effects had mean zero in all simulations. The distribution of breeding values 

had mean zero in simulations with skewed environmental effects, while in simulations with 

skewed breeding values, the mean was displaced from the optimum according to eq. (10). 

We used distributions with several theoretical values of skewness in breeding values or 

environmental effects: α = 0, 0.5, 1, 2, 3, 4 or 5. We only considered positive skewness, but 

all results can be transposed to negative phenotypic skewness, simply with opposite signs. 

When skewness was caused by the environmental effects, the latter had an expected variance 

σe
2 = 1, and we tested several variances of breeding values: σg

2 = 1, 1/2, 1/5 or 0, leading to 

heritabilities h2 =
σg

2

σg
2 + σe

2 = 1
2 , 1

3 , 1
6 or 0, respectively. Conversely, when skewness was due to 

breeding values, the genetic variance was set to σg
2 = 1, and the environmental variance 

varied: σe
2 = 0, 1, 2 or 5, leading to heritability h2 = 1, 1

2 , 1
3 or 1

6  respectively. Because the 

phenotype distribution is a mixture between the distributions of breeding values and 

environmental effects (one of which is Gaussian by assumption), its skewness is necessarily 

smaller (in absolute value) than the skewness of breeding values or environmental effects, 

and increases with increasing (respectively, decreasing) heritability (Fig. S1).

Selection was implemented using the quadratic fitness function in eq. (3), with optimum θ = 

0, fitness maximum Wmax = 10 and peak width ω = 5. These values were chosen to be 

consistent with recent estimates for laying date in a wild great tit population (Chevin et al. 

2015), so fitness W corresponded to the expected number of offspring per female 

reproductive event (i.e. selection on reproductive success). The actual offspring number for a 

female with phenotype z was randomly drawn from a Poisson distribution with mean W(z), 

thus accounting for demographic stochasticity. Relative fitness was obtained by dividing 

absolute realized fitness (number of offspring) by the mean fitness in the population.

Directional and quadratic selection gradients were estimated in each simulation using the 

two methods described in the Model section: i) the classical OLS method of Lande and 

Arnold (1983), and ii) the ADIRF method, as implemented in the gsg R package by 
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Morrissey and Sakrejda (2013). All selection gradients were standardized by variance – by 

multiplication by standard deviation or by variance, for directional or quadratic gradient 

respectively – in order to compare our results across parameter values, and with empirical 

studies. For every set of parameters, 100 replicates were performed and selection estimates 

obtained with both methods of estimation. We also estimated the expected response to 

selection using the Robertson-Price identity (Robertson, 1968). For this purpose, we 

estimated the additive genetic values of fitness by calculating the mean expected fitness 

associated with each bin of breeding values of width 0.1. Note that knowing the exact 

breeding values of fitness and traits in our simulations allows for a much more accurate 

estimation of the Robertson-Price identity than would be possible in the wild, where these 

have to be estimated. We investigated two sample sizes frequently typically found in the 

literature: 200 (e.g. annual selection estimation, such as Reed et al. 2009) and 1000 

individuals (e.g. long-term studies, such as Pelletier et al. 2007). However, because results 

were qualitatively similar, only results for the largest sample size (1000 individuals) are 

presented here.

Skewed Environmental Effects

When positive phenotypic skewness is only due to skewed environmental effects, the OLS 

method detects negative directional selection (Fig. 2a), that is, selection in the opposite 

direction to the skew, as predicted by our analytical developments. The strength of selection 

estimated by βÔLS increases with skewness in environmental effects, but decreases with 

increasing heritability (Fig. 2a). Directional selection gradients are detected with high power 

for moderate and high skewness (Fig. S2a). In contrast, the ADIRF method detects little or 

no directional selection (Fig. 2b and Fig. S2b for the power analysis), as expected because 

the mean phenotype is at the adaptive optimum in this case (since µ3g = 0), so the ADIRF 

estimation should be close to zero (eq. 6). The part of selection detected by the OLS method 

that is attributable to phenotypic skewness (β̂OLS – βÂDIRF, eq. 14) is thus negative, with a 

magnitude that increases with increased skewness of environmental effects and decreased 

heritability (Fig. 2c), similar to βÔLS. Estimates of quadratic selection are negative, as 

expected because of stabilizing selection, weakly sensitive to the skewness in environmental 

effects (Fig. S3), and quadratic selection is detected with high power (Fig. S4).

Skewed Breeding Values

When phenotypic skewness is caused by skewed breeding values, both the OLS method and 

the ADIRF estimate positive selection gradients, that is, selection in the same direction as 

the phenotypic skew. This effect, which increases in magnitude when genetic skewness 

increases, is well predicted by our theoretical analysis (dashed lines in Fig. 3), and occurs 

because skewed breeding values cause a mismatch (z̄ – θ) between the mean phenotype and 

the optimum at evolutionary equilibrium (eqs. 10-11). Selection is efficiently detected, 

including for magnitudes of skewness comparable to our estimates from wild populations 

(Table 1), and relatively small heritability (Fig. S5). Selection gradients estimated by the 

OLS method are smaller than those estimated using ADIRF (Fig. 3a,b), as a consequence of 

the contribution of phenotypic skewness to OLS gradients, in the direction opposite to the 

phenotypic skew. Indeed, the difference between the OLS and ADIRF estimates of 

directional selection are similar to that under environmental skewness (compare Fig. 2c and 
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3c). However, under skewed breeding value distribution, this component increases in 

absolute value with increasing heritability (Fig. 3c), since this causes larger phenotypic 

skewness (for a given skewness in breeding values).

The contribution of skewness in breeding values to the response to selection, as quantified 

by the difference between the Robertson-Price identity and the response to selection 

predicted by the ADIRF estimation (∆z̄R–P – ∆z̄ADIRF), is negative (i.e. opposite to the 

genetic skew), and increases in magnitude with increasing genetic skewness (Fig. 4). Note 

that at evolutionary equilibrium, this effect precisely cancels out the deviation of the mean 

phenotype from the optimum, and is in the opposite direction to the measured selection 

gradient in Fig. 3. As expected, the contribution of genetic skewness to the response to 

selection is well predicted by our model. Finally, the quadratic selection gradient depends 

little on skewness of breeding values distribution (Fig. S6), and is also significantly detected 

(Fig. S7).

Discussion and Conclusion

We show that skewness in phenotype distributions for a trait under selection for an optimum 

phenotype can have substantial impacts on natural selection and its estimation in the wild. 

With skewed environmental effects, the OLS method (i.e. the classic Lande and Arnold 

(1983) method) detects directional selection (in the opposite direction to the skew), even 

when the mean phenotype is at the optimum. In contrast, if phenotypic skewness is due, at 

least in part, to a skewed distribution of breeding values, the mean phenotype is displaced 

from the optimum at evolutionary equilibrium, because the curvature of the fitness function 

contributes to evolution of the mean phenotype when breeding values are skewed (Burger, 

1991; Turelli and Barton, 1990, 1994). This displacement from the optimum contributes an 

additional term to the estimated directional selection, in the direction of the skew. In both 

cases (genetic or environmental skew), because the population is at equilibrium, there is no 
response to selection (i.e. the mean phenotype of the population does not evolve). Hence, 

selection would be detected on a heritable trait, but without any evolutionary response, so 

skewness in environmental effects (using OLS regression as in the Lande and Arnold (1983) 

method), and/or breeding values would contribute to the paradox of stasis.

According to classic meta-analyses (Hoekstra et al. 2001; Kingsolver et al. 2001; Kingsolver 

and Pfennig, 2007), estimates of standardized directional selection gradients are 

exponentially distributed with mean magnitude 0.23, which was recently re-evaluated to 

about 0.1 in a re-analysis of the same dataset by Morrissey (2016), taking into account 

standard-error of estimates. Hence, estimated directional selection gradients in natural 

populations are of the same order of magnitude as directional selection generated by genetic 

or environmental skewness in our analysis (Fig. 2a,b and 3a,b). However, genetic 

(respectively, environmental) skewness can only contribute to an observed paradox of stasis 

when directional selection and genetic (respectively, environmental) skewness are of the 

same sign (respectively, of opposite signs).

For laying date, negative directional selection is generally detected in wild populations (i.e. 

selection for earlier breeding, e.g. Sheldon et al. 2003; Porlier et al. 2012), while mean 
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skewness tends to be positive (Table 1). If phenotypic skewness of laying date is due to a 

skewed genetic values distribution, a positive (rather than negative) selection gradient will 

ensue at evolutionary equilibrium, so correcting for this effect would accentuate (rather than 

alleviate) the paradox of stasis. Conversely, if phenotypic skewness is mostly due to skewed 

environmental effects, it will contribute negatively to the selection gradient commonly 

estimated using Ordinary Least Square regression (OLS, i.e. Lande and Arnold 1983), such 

that correcting for this effect would alleviate the paradox of stasis. However, the strength of 

selection would only slightly decrease: for a skewness of environmental effects of 1.5 – as 

can be observed in wild populations, Table 1 – the strength of selection estimated by the 

OLS method would be around 0.03 (Fig. 2a,c), which is lower than the average estimate of 

selection gradients from meta-analyses (Kingsolver et al. 2001, Morrissey 2016).

Phenotypic distributions are a mixture of genetic and environmental effects, and it is 

empirically difficult to attribute phenotypic skewness to any of these sources using current 

quantitative genetic methods. Indeed, quantitative genetic methods, such as the ‘animal 

model’ that is commonly used for natural populations (Kruuk, 2004), were designed to 

partition phenotypic variance into various genetic and non-genetic components, under the 

assumption of normally distributed traits (i.e. without skewness). It is unclear whether such 

methods can accurately partition genetic from non-genetic components of higher moments 

(such as the third central moment, contributing to skewness) for traits with non-Gaussian 

distributions. Nevertheless, phenotypic skewness and heritability could already be 

informative about the origin of the skew. For heritabilities of 1/3 or less (as often reported 

for phenological traits), a phenotypic distribution with skewness α = 1 (as seen in some wild 

populations, see Table 1), if of genetic origin only, requires a skewness of breeding values 

distribution of about 10 (Fig. S1). This kind of distribution is probably unlikely in nature, 

and such a trait would perhaps not even be analysed using quantitative genetics, because of 

the extreme prevalence of genotypes with phenotypes near the mode. It is thus more likely 

that phenotypic skewness results from environmental effects, or a mixture of genetic and 

environmental skewness. This implies that skewness of laying date is more probably of 

environmental origin, and would thus have a contribution (albeit modest) to the paradox of 

stasis for this trait. A related crucial point is that when heritability is low, a strong skewness 

of breeding values can result in vanishingly weak skewness of phenotypic distribution (Fig. 

S1). Hence, even when skewness is essentially undetectable at the phenotypic level, the 

population mean phenotype can be displaced from the adaptive optimum at evolutionary 

equilibrium, thereby generating directional selection.

We have shown that taking into account the skewness in the distributions of phenotypic 

components of quantitative traits can help understand evolutionary dynamics in the wild, and 

could partially alleviate the paradox of stasis in some cases. Because the OLS method by 

Lande and Arnold (1983), when applied in its classic form, does not necessarily predict the 

correct response to selection for characters with a skewed distribution (as indeed highlighted 

by Lande and Arnold (1983), who proposed a possible correction in their Appendix), we 

encourage the use of a combination of approaches, including the Robertson-Price identity 

and methods based on derivatives of mean fitness derived from the individual fitness 

function, when investigating natural selection on skewed phenotypic traits.

Bonamour et al. Page 12

Evolution. Author manuscript; available in PMC 2018 May 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Influence of phenotypic skewness on estimates of directional selection. The histograms 

show phenotype distributions under skewed environmental effects (a) (skewness αe = 2, 

heritability h2 = 0.1), or skewed breeding values (b) (skewness αg = 2, heritability h2 = 0.9). 

The dotted line represents the optimum phenotype θ for the stabilizing fitness function (solid 

curve, eq. (3)). The dashed line shows the mean phenotype. The solid straight line has a 

slope equal to the directional gradient estimated by OLS regression (as in Lande and Arnold 

(1983)).
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Figure 2. 
Estimated directional selection gradients with skewed environmental effects. Standardized 

directional selection gradient (mean ± se) estimated by the OLS method (a) or the ADIRF 

method (b), and the contribution of phenotypic skewness to estimated selection with the 

OLS method (c), are represented against the skewness of environmental effects, for variable 

heritabilities (h2 = 1
2 ; 1

3 ; 1
6 or 0 from black to light grey). Dotted lines show predictions from 

the model, eq. (13) for (a), 6-7 for (b), and (14) for (c).
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Figure 3. 
Estimated directional selection gradients with skewed breeding values. Standardized 

directional selection gradient (mean ± se) estimated by the OLS method (a) or the ADIRF 

method (b), and the contribution of phenotypic skewness to estimated selection (c), are 

represented against the skewness of breeding values, for variable heritabilities 

(h2 = 1; 1
2 ; 1

3 or 1
6  from black to light grey). Dotted lines show, eq. (13) for (a), 6-7 for (b), 

and (14) for (c).
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Figure 4. 
Contribution of skewed breeding values to the selection response. The difference between 

the response to selection predicted by the Robertson-Price identity versus using the selection 

gradient estimated by the ADIRF method is shown for simulations (mean ± se), together 

with the theoretical prediction in eq. (15) in dashed lines, for the same simulations as used in 

Fig. 3.
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Table 2

Definitions of selection gradients. We here summarize alternative ways to conceptualize selection gradients, 

respectively as derivatives of (log) mean fitness with respect to mean phenotype (theoretical perspective, from 

Lande’s extension of Wright’s mean fitness landscape to quantitative traits), as average derivatives of 

individual relative fitness with respect to individual phenotype, or as Ordinary Least-Square (OLS) regression 

slopes of individual relative fitness on individual phenotype. For directional selection, these expressions are all 

equivalent if the trait is normally distributed. Furthermore, the response to selection by the mean phenotype is 

proportional to these directional gradients only for a normally distributed trait.

Derivative of mean fitness Average Derivative of 
Individual Relative Fitness 

(ADIRF)

Regression slope (OLS)

Directional selection
(Selection on trait mean)

∂lnW
∂z = 1

W
∂W
∂z = β 1

W
E ∂W

∂z = β 1
W

Cov(z, W)
σz

2

(= β when z is Gaussian)

Stabilizing/disruptive 
selection

(Selection on trait variance)

∂2lnW

∂z2 = 1
W

∂2W

∂z2 − 1
W

∂W
∂z

2
= γ − β2 1

W
E ∂2W

∂z2 = γ 1
W

Cov((z − z)2, W)
σz

4

(= γ when z is Gaussian)

Evolution. Author manuscript; available in PMC 2018 May 18.


	Abstract
	Model
	Generalized Response to Selection
	Equilibrium Mismatch with Optimum
	Equilibrium Selection Gradient
	Alternative Measurements of Selection

	Simulation of selection estimation
	Simulation Procedure
	Skewed Environmental Effects
	Skewed Breeding Values

	Discussion and Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2

