
Metformin Targets Glucose Metabolism in Triple Negative Breast 
Cancer

RS Wahdan-Alaswad, SM Edgerton, HS Salem, and AD Thor*

Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, 
Aurora, USA

Abstract

Metformin is the most widely administered anti-diabetic agent worldwide. In patients receiving 

metformin for metabolic syndrome or diabetes, it reduces the incidence and improves the survival 

of breast cancer (BC) patients. We have previously shown that metformin is particularly potent 

against triple negative breast cancer (TNBC), with a reduction of proliferation, oncogenicity and 

motility, inhibition of pro-oncogenic signaling pathways and induction of apoptosis. These BCs 

are well recognized to be highly dependent on glucose/glucosamine (metabolized through 

anaerobic glycolysis) and lipids, which are metabolized for the production of energy and cellular 

building blocks to sustain a high rate of proliferation. We have previously demonstrated that 

metformin inhibits lipid metabolism, specifically targeting fatty acid synthase (FASN), cholesterol 

biosynthesis and GM1 lipid rafts in TNBC. We also reported that glucose promotes phenotypic 

aggression and reduces metformin efficacy. We now show that metformin inhibits several key 

enzymes requisite to glucose metabolism in TNBC, providing additional insight into why 

metformin is especially toxic to this subtype of BC. Our data suggests that the use of metformin to 

target key metabolic defects in lipid and carbohydrate metabolism in cancer may be broadly 

applicable, especially against highly aggressive malignant cells.
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Introduction

Breast cancer (BC) morbidity and mortality remain stubbornly high worldwide, despite the 

fact that disease characteristics vary by geography, ethnicity, age, body mass and other 

factors. While the prognosis for BC patients is better in the US than in much of the world, 

our incidence of disease is especially high in women with obesity and type II diabetes/

metabolic syndrome. Experts anticipate that in 2018, 266,000 new invasive and 64,000 new 

in situ breast cancer (BC) cases will be diagnosed in the US [1]. The majority of these BCs 

will be hormone receptor-positive (i.e. express oestrogen (ER) and/or progesterone receptor 
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(PR)), responsive to surgery and endocrine therapy (for low risk cases), and have a good 

prognosis [2]. In contrast, the least common BC known as triple negative breast cancer 

(TNBC) lacks ER, PR and a tyrosine kinase receptor HER2, is highly aggressive and 

associated with the worst outcome [3–5].

Gender (being female) is the most potent risk factor for BC [6]. A family history of BC 

(typically involving first-degree relatives at a young age) is also an important risk factor. 

Heritable genetic alterations are associated with approximately one-tenth of all cases of BC 

[7]. Other important risk factors include age, reproductive and menstrual history, a lack of 

physical activity, obesity and type II diabetes [7]. For all women with both obesity and type 

II diabetes, the risk of BC increases by as much as 20% [8]. Less well-appreciated, 

gestational diabetes, pre-diabetes (the so-called metabolic syndrome) or a family history of 

diabetes also enhances a woman’s risk for BC [8,9]. The impact of obesity on BC risk is also 

influenced by age and ethnicity [10]. For example, obesity is not a strong risk factor for 

premenopausal Caucasian females. In older Caucasian women, however, both obesity and 

type II diabetes increase the risk of hormone receptor-positive BC significantly [11]. These 

chronic diseases are also independently associated with a worse prognosis and higher 

disease-associated mortality for these women [11,12]. In contrast, obesity is significantly 

associated with an increase in BC risk in young (premenopausal) African American (AA) 

women [13–15]. These women most often develop TNBC, a subtype that is usually resistant 

to standard chemotherapy and targeted therapeutics [11,16,17].

A historically attributed mechanism by which obesity (predominantly in a central, or 

abdominal distribution) promotes BC is the peripheral conversion of testosterone in 

adipocytes, leading to increases in circulating, bioavailable oestrogen (particularly 

problematic in post-menopausal women) [18]. More recent studies have shown that 

abdominal obesity influences BC development and outcomes through other mechanisms as 

well; including: systemic shifts in carbohydrate and fat metabolism, up regulation of pro-

carcinogenic factors such as cytokines and growth factors (like insulin and insulin-like 

growth factors), modulation of the immune system and macrophage activation, as well as 

other systemic effects reviewed in details elsewhere [19–21]. Of note, obesity is often 

associated with the development of pre-diabetes (the so-called metabolic syndrome) or type 

II diabetes. Thus, dysregulation of carbohydrate and lipid metabolism often occurs together, 

typically prior to the development of BC.

With transformation of benign breast epithelial cells to the malignant phenotype, significant 

changes in fat metabolism and intracytoplasmic fat accumulation are often observed 

(particularly in TNBC). In fact, all cancer subtypes have shown an enhanced reliance on de 
novo fatty acid biosynthesis [22], irrespective of the availability of extracellular lipid derived 

from diet or adipose storage [23,24]. This so-called ‘lipid switch’ and the importance of 

Acetyl-CoA-carboxylase alpha to the malignant phenotype of BC cells have been well 

described by others [25,26]. We have previously shown that the anti-diabetic drug metformin 

has potent action against these shifts in lipid metabolism. More specifically metformin 

targets critical components of fatty acid synthesis [27] as well as cholesterol biosynthesis, 

resulting in shifts in GM1 lipid rafts and associated receptor signaling [28]. The focus of this 

report is to provide new data regarding the effects of metformin on carbohydrate 
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metabolism, another critical component of malignant cell metabolism that is requisite for 

cancer cell survival, proliferation and progression.

Metabolic Syndrome, Breast Cancer and Dysregulation of Carbohydrate 

Metabolism in Cancer

Metabolic syndrome and type II diabetes are associated with systemic dysregulation of lipid 

and carbohydrate metabolism. These changes disrupt a broad array of cell types and put the 

patient at an increased risk of cardiovascular disease and cancer [29]. Both type II diabetes 

and metabolic syndrome are independent risk factors for BC [30–32], although the complex 

mechanism by which this occurs in the breast is not well understood. The increase in serum 

insulin/insulin resistance and insulin-like growth factor associated with these disorders is 

one likely mechanism, as they are associated with an increase in breast cancer incidence and 

a worse prognosis [33–37]. Metabolic dysregulation is also associated with an increase in 

serum glucose and other energy precursors such as fructose and glucosamine that can be 

metabolized to adenosine triphosphate (ATP) and other factors to facilitate cancer replication 

and tumor growth even in a hypoxic environment [38].

Dysregulation of carbohydrate metabolism to preferentially use aerobic glycolysis is a well-

recognized hallmark of cancer [39]. This metabolic reprogramming is achieved through a 

complex interplay of regulatory networks involving: phosphatidylinositide 3-kinase (PI3K), 

protein kinase B (Akt), mammalian target of rapamycin (mTOR), phosphatase and tensin 

homolog (PTEN), and 5′ AMP-activated protein kinase (AMPK) [40,41]. Alternative 

oncogenic mechanisms involving c-Myc [42], hypoxia-inducible factor 1-alpha (HIF1α) 

[43], epidermal growth factor receptor (EGFR), tumor protein 53 (P53) and the Met receptor 

have also been implicated in the transformative process by which cancer cells switch to 

aerobic glycolysis [44–47].

Alterations of Glucose Metabolism in Breast Cancer

In order to meet the need for increased glucose intake from extracellular sources, cancer 

cells frequently upregulate membrane associated glucose transport proteins known as 

GLUTs [48–50], as well as associated cofactors (e.g.SGLT1) that can facilitate this process 

[51]. Of the various GLUT family members, GLUT1 and GLUT3 are the most highly 

expressed in BCs [52]. GLUT1 (SLC2A1) upregulation has been frequently reported in 

studies of TNBC, where it has been associated with a worse prognosis and treatment 

resistance [53]. In a preclinical model, GLUT1 also appears to be requisite to HER2 induced 

mammary tumorigenesis [54]. Other processes associated with carbohydrate metabolism 

have also been shown to be altered in TNBC, including oxidative phosphorylation [55] and 

glycolytic flux [56]. Thus, alterations of glucose metabolism are frequent, arise from 

multiple mechanisms and drive breast carcinogenesis (see elsewhere for a more extensive 

discussion [57]).
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Glucose Metabolism and Mechanisms of Metformin Action

We previously reported that glucose promotes phenotypic cancer aggression and reduces the 

efficacy of metformin in all molecular subtypes of BC [58]. We have shown that the 

mechanisms of metformin action vary by molecular subtype of the disease [58–61], and that 

TNBCs are especially sensitive to its anti-cancer effects. More specifically, metformin 

blocks cellular proliferation, reduces oncogenicity, targets stem cells, slows motility, and 

induces apoptosis in TNBC [58–61]. More recently we have studied the effects of metformin 

on mammary tumors that arise in obese vs. lean rats as well as obese overfed mice. Each of 

these models was used to investigate the role of metabolic dysregulation associated with 

obesity and carbohydrate dysregulation on mammary tumor development, progression and 

metformin efficacy [54,62,63]. Using these and other in vitro models, we seek to define 

mechanisms of metformin action at the subcellular level.

Metformin reduces insulin resistance, promotes glucose and lipid homeostasis, particularly 

in liver and skeletal muscle. The most widely recognized mechanism of metformin action is 

through inhibition of the mammalian target of rapamycin complex I (mTORC1) in both 

AMPK-dependent and independent processes [64]. Less is known about its effects on benign 

or malignant breast epithelial cells. We have shown that metformin attenuates a number of 

specific oncogenic signaling pathways in BC not widely studied in other organ systems, 

including: STAT3 [64], transforming growth factor-β (TGF-β) mediated activation of 

Smad2/Smad3 and ID1 [65], and the organic cation transporter (OCT1) [62]. We have also 

reported diverse targets of metformin to disrupt the aberrant lipid metabolism in BC cells. It 

attenuates de novo fatty acid synthesis through down-regulation of fatty acid synthase 

(FASN), via up-regulation of the microRNA 193b [27]. Metformin also inhibits 26 steps in 

the cholesterol synthesis pathway; resulting in a reduction of GM1 lipid raft generation and 

stability, as well as EGFR signaling [28].

Metformin Attenuates Key Genes involved in Glucose Metabolism in TNBC

We have previously shown that glucose promotes BC aggression and reduces metformin 

efficacy in vitro [58]. Using a carcinogen-induced rodent model of mammary tumorigenesis, 

we have also reported that overfed obese animals with the equivalent of metabolic syndrome 

(defined by elevated serum glucose) showed a 50% increase in glucose uptake by their 

mammary tumor cells, associated with enhanced proliferation and metabolic 

“reprogramming” similar to what was observed in human BC cells in vitro[63].

Furthermore, we have shown that metformin had significant antitumor effects in this rodent 

model. These findings suggest a basis for the epidemiological and data indicating that in 

patients with metabolic syndrome or type II diabetes, metformin treatment reduces cancer 

incidence and improves survival for patients that develop the disease (in stark contrast to 

other anti-cancer agents including insulin that increases BC risk) [34–36]. We postulate that 

metformin is especially potent against TNBC because of its enhanced dependence on 

glucose (mediated through SLC2A1) and glutamine (mediated through SLC6A14) and its 

markedly aberrant mitochondrial respiration [45].
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Given that one of the primary metabolic changes observed in BC tumorigenesis is a marked 

increase in catabolic glucose metabolism, and metformin’s ability to disrupt these shifts, we 

sought to identify direct targets of the drug amongst glucose transporters and key enzymes 

of the glycolytic pathway. In brief, TNBC cells MDA-MB-468 and MDA-MB-231 were 

grown in either 17 mM or 5 mM glucose, with or without metformin. Purified mRNA was 

used for gene expression profiling [27, 58]. Data is shown in Figure 1. Metformin 

significantly down-regulated a number of glucose transporter proteins including: GLUT1 

(SLC2A1), GLUT10 (SLC2A10), GLUT12 (SLC2A12), GLUT14 (SLC6A14), and 

Glucose-6-Phosphate transporter (SLC37A4) in MDA-MB-468 TNBC cells. Of these, 

GLUT1’s down-regulation by metformin is likely to have the most translational value in 

patients with TNBC, as it has been shown to be the predominant glucose transporter in this 

molecular subtype, and its expression has been associated with a worse survival. Metformin 

was shown to upregulate only one glucose transporter, GLUT12.

In this experiment, we also showed that metformin attenuated the expression of a number of 

important genes involved in glucose metabolism. Over 20 genes were shown to be down-

regulated, see Table 1 and Figure 1 (metformin target genes in red). At both low and high 

concentrations of glucose in the culture media (data from 17mM glucose not shown but 

similar), metformin down-regulated G6PD and triose phosphate isomerase (TPI), a key 

enzyme that participates in converting glyceraldehyde-3-P to dihydroxyacetone phosphate. 

Additionally, metformin targeted phosphoglycerate kinase 1 (PGK), phosphoglucomutase 1 

(PGM), enolase 1 (alpha) ENO, pyruvate kinase muscle 2 (PKM2), and lactate 

dehydrogenase A (LDHA). Of note, metformin enhanced transcription of 

phosphoglucomutase 5 (PGM5), phosphoglucomutase 5 pseudogene 2 (PGM5P2), aldo-keto 

reductase family 1 Member B10 (AKR1B10), aldo-keto reductase family 1 member C2 

(AKR1C2), and pyruvate dehydrogenase kinase 4 (PDK4).

Metformin also inhibited lactose dehydrogenase (LDH). LDH functions downstream of 

hexokinase (HK), phosphofructokinse (PFK), and pyruvate kinase (PK). LDHA is a key 

enzyme that catalyzes the conversion of pyruvate to lactate. Metformin also decreased 

LDHA, which according to knock-down studies in BC cell lines, may reduce proliferative 

rates by switching cellular mitochondria to oxidative phosphorylation [66]. Additionally, 

metformin treatment inhibited pyruvate dehydrogenase kinase (PDK), which facilitates the 

conversion of pyruvate to acetyl Co-A.

We postulate that these major shifts in glucose transport and glycolysis are a major 

mechanism by which metformin reduces growth, oncogenesis, induces apoptosis and may 

enhance sensitivity to other chemotherapeutic agents. While we have little data from our lab 

that suggests the latter, data from others provides a rationale for this view. Reduction of 

LDH by genetic manipulation or the chemical inhibitor oxamate have reversed of taxol-

resistance and induced apoptosis in BC cells [66].

Material and Methods

Cell line treatment and gene profile array were previously described [27,58].
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Gene expression microarray

Microarray analysis of MDA-MB-468 cells cultured in media with 5 mM glucose in the 

presence or absence of 10 mM metformin. mRNA from treated cells was purified and 

analyzed using Affymetrix Human Gene 1.0 ST Array platform. Genes differentially down-

regulated by metformin are highlighted in red. A biological triplicate experimental design 

was used to determine standard error.

Statistics

Statistical considerations and calculations of metformin-mediated inhibition of cholesterol 

pathway genes were performed using Graph Pad Prism 7 software. Statistical analysis of the 

experimental data was performed using a 2-sided Student t-test. Significance was set at a 

P<0.05 values. Gene array samples are representative of biological replicates.

Conclusions

Metformin is the only anti-diabetic agent with anti-cancer activity, whereas other agents 

used in patients with this disease or metabolic syndromes have been shown to increase 

cancer incidence and reduce cancer-associated survival. Metformin has broad effects on 

multiple targets of the dysregulated lipid and carbohydrate metabolism associated with BC, 

and more specifically, TNBC. In this report, we demonstrate that metformin specifically 

reduces the expression of key glucose transporters in TNBC, including GLUT1. We also 

show that it reduces transcription of key enzymes in the glycolytic pathway that are critical 

for cancer replication and survival. Because of the increasing prevalence of obesity, the 

relationships between excess body weight and cancer development and the underlying 

biological mechanisms need to be further investigated to prevent and treat BC in the future.
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Figure 1. 
Metformin Attenuates Key Genes involved in Glucose Metabolism in TNBC.
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Table 1

Metformin attenuated the expression of a number of important genes involved in glucose metabolism. Over 20 

genes were shown to be down-regulated.

Gene Assignment Gene Symbol Ref Seq
Fold-Change 
(G5 Met vs. 

G5)
P-Value

GLUCOSE TRANSPORTERS

Solute Carrier Family 2 Member 1 (Facilitated Glucose Transporter) SLC2A1 NM_006516 −1.71564 1.88E-05

Solute Carrier Family 2 Member 10 (Facilitated Glucose Transporter) SLC2A10 NM_030777 −1.8308 0.000166115

Solute Carrier Family 6 Member 14 (Amino Acid Transporter) SLC6A14 NM_007231 −2.44598 2.17E-06

Solute Carrier Family 37 Member 4 (Glucose-6-Phosphate 
Transporter) SLC37A4 NM_001164277 −2.38101 4.34E-06

Solute Carrier Family 2 Member 12 (Facilitated Glucose Transporter) SLC2A12 NM_145176 1.5 4.25E-05

GLUCOSE METABOLISM

Glycolysis

Enolase 1 (alpha) ENO1 NM_001428 −1.5703 7.57E-07

Glucose-6-Phosphate Isomerase GPI NM_000175 −1.64235 1.76E-05

Phosphofructokinase, Liver PFKL NR_024108 −1.51114 2.73E-05

Phosphoglycerate Kinase 1 PGK1 NM_000291 −2.49786 7.32E-08

Phosphoglucomutase 1 PGM1 NM_002633 −1.55441 6.65E-05

Triosephosphate Isomerase 1 TPI1 NM_000365 −1.52868 0.001659

Glucose-6-Phosphatase Catalytic Subunit 3 G6PC3 NM_138387 −2.05414 6.25E-05

6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 PFKFB4 NM_004567 −2.2822 1.12E-06

Transketolase TKT NM_001135055 1.52762 3.90E-05

Pyruvate Kinase, Muscle PKM2 NM_182470 −1.72714 4.15E-06

Lactate Dehydrogenase A LDHA NM_005566 −1.86317 1.22E-08

Phosphoglucomutase 5 PGM5 NM_021965 1.51945 0.001669

Phosphoglucomutase 5 Pseudogene 2 PGM5P2 NR_002836 1.7348 0.000269

Aldo-Keto Reductase Family 1 Member B10 AKR1B10 NM_020299 2.9025 1.08E-06

Aldo-Keto Reductase Family 1 Member C2 AKR1C2 NM_001354 2.63487 1.44E-06

Pyruvate Dehydrogenase Kinase 3 PDK3 NM_005391 −2.41605 1.79E-05

Pyruvate Dehydrogenase Kinase 4 PDK4 NM_002612 4.13308 2.07E-06

Pyruvate Dehyrogenase Phosphatase Catalytic Subunit 1 PDP1 NM_001161778 2.83315 5.78E-06

Prenyl (Decaprenyl) Diphosphate Synthase Subunit 1 PDSS1 NM_014317 −2.09161 8.58E-05

Phosphoglycerate Mutase 1 (Brain) PGAM1 NM_002629 −2.54865 5.42E-07

Phosphoglycerate Mutase Family Member 4 PGAM4 NM_001029891 −2.26653 2.89E-06

UDP-Glucose 6-Dehydrogenase UGDH NM_003359 −2.0062 3.93E-05

Gluconeogenesis

Pyruvate Carboxylase PC NM_001040716 −2.39828 7.29E-06

Tricarboxylic Acid Cycle (TCA)

ATP Citrate Lyase ACLY NM_001096 −4.25837 2.97E-10
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Gene Assignment Gene Symbol Ref Seq
Fold-Change 
(G5 Met vs. 

G5)
P-Value

Aconitase 1 ACO1 NM_002197 −1.56798 0.001286

Dihydrolipoamide S-Acetyltransferase DLAT NM_001931 −1.76732 1.98E-07

Isocitrate Dehydrogenase 2 (NADP+) IDH2 NM_002168 −1.75573 6.09E-06

Oxoglutarate (Alpha-Ketoglutarate) Dehydrogenase (Lipoamide) OGDH NM_002541 −1.78156 0.000117

Pyruvate Dehydrogenase (Lipoamide) PDHA1 NM_000284 −1.61653 1.82E-05

Succinate Dehydrogenase Complex Subunit A (Flavoprotein) SDHA NM_004168 −1.64205 2.66E-05

Succinate Dehydrogenase Complex Subunit C (Integral Membrane 
Protein) SDHC NM_003001 −1.59586 5.46E-05
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