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The ciliary protein RPGRIP1L governs autophagy independently of its
proteasome-regulating function at the ciliary base in mouse
embryonic fibroblasts
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ABSTRACT
Previously, macroautophagy/autophagy was demonstrated to be regulated inter alia by the primary cilium.
Mutations in RPGRIP1L cause ciliary dysfunctions resulting in severe human diseases summarized as
ciliopathies. Recently, we showed that RPGRIP1L deficiency leads to a decreased proteasomal activity at
the ciliary base in mice. Importantly, the drug-induced restoration of proteasomal activity does not rescue
ciliary length alterations in the absence of RPGRIP1L indicating that RPGRIP1L affects ciliary function also
via other mechanisms. Based on this knowledge, we analyzed autophagy in Rpgrip1l-negative mouse
embryos. In these embryos, autophagic activity was decreased due to an increased activation of the MTOR
complex 1 (MTORC1). Application of the MTORC1 inhibitor rapamycin rescued dysregulated MTORC1,
autophagic activity and cilia length but not proteasomal activity in Rpgrip1l-deficient mouse embryonic
fibroblasts demonstrating that RPGRIP1L seems to regulate autophagic and proteasomal activity
independently from each other.

Abbreviations: 3D-SIM: 3-dimensional-structured illumination microscopy; 3-MA: 3-methyladenine; 18a-
GA: 18a-glycyrrhetinic acid; ABT-737: 4-(4-[{4’-chloro-2-biphenyl}methyl]-1-piperazinyl)-N-[{4-([{2R}-4-
{dimethylamino}-1-{phenylsulfanyl}-2-butanyl]amino)-3-nitrophenyl} sulfonyl]benzamide; ac: acetylated;
ACT: actin; AKT1: AKT1, thymoma viral proto-oncogene 1; ATG: autophagy related; BB: basal body;
BBS4: Bardet-Biedl syndrome 4; CQ: chloroquine; COPD: chronic obstructive pulmonary disease;
detyr: detyrosinated; COP9: Constitutive photomorphogenesis 9; CTNNB1: catenin (cadherin associated
protein), beta 1; DMEM: Dulbecco’s modified Eagle’s medium; DMSO: dimethyl sulfoxide;
EDTA: ethylenediaminetetraacetic acid; EGFP: enhanced green fluorescent protein; F-ACT: actin,
filamentous; FOXO3: forkhead box O3; Gapdh: glyceraldehyde-3-phosphate dehydrogenase; GLI1: GLI-
Kruppel family member GLI1; GLI3: GLI-Kruppel family member GLI3; HIF1A: hypoxia inducible factor 1,
alpha subunit; IFT: intraflagellar transport; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta;
MEF: mouse embryonic fibroblast; MeOH: methanol; MTOR: mechanistic target of rapamycin (serine/
threonine kinase); MTORC: MTOR complex NA, numerical aperture; OFD1/orofaciodigital syndrom protein
1: OFD1, centriole and centriolar satellite protein; PBS: phosphate-buffered saline; PSMD2: proteasome
(prosome, macropain) 26S subunit, non-ATPase, 2; Ptch1: patched 1; PVDF: polyvinylidene difluoride;
RPGRIP1L: Rpgrip1-like; SAG: Smoothened agonist; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel
electrophoresis; SEM: standard error of the mean; Ser33/37/Thr41: serine 33/37 threonine 41;
Ser2448: serine 2448; Ser473: serine 473; SHH: sonic hedgehog; SFN: sulforaphane; Thr308: threonine 308;
TRITC: tetramethylrhodamine; TSC1: tuberous sclerosis 1; TUBG: tubulin, gamma; TZ: transition zone;
UPS: ubiquitin-proteasome system; USP14: ubiquitin specific peptidase 14; WNT: wingless-type MMTV
integration site family
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Introduction

Primary cilia are microtubule-based compartments found on
almost every eukaryotic cell. They function as the cell’s antenna
receiving and transducing signals from the environment and
consist in a simplified form of the basal body (BB), the axo-
neme and the transition zone (TZ). While the BB anchors the
cilium in the cell, and the axoneme is a microtubule-based scaf-
fold for the ciliary projection out of the cell’s surface, the TZ is

in control of ciliary protein import and export. Defects in cili-
ary protein composition have been linked to severe human
pathologies summarized as ciliopathies with symptoms ranging
from mental retardation to cystic kidneys and skeletal malfor-
mations [1-4]. The wide range of symptoms can be traced back
to the dysregulation of cilia-mediated signaling pathways such
as the SHH (sonic hedgehog) pathway. These pathways control
cellular processes, e.g. proliferation, cell migration, differentia-
tion or apoptosis [5].
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In 2013, 2 studies revealed an association between primary
cilia and autophagy. Tang et al. showed that clearance of
OFD1/orofaciodigital syndrome protein 1 (OFD1, centriole
and centriolar satellite protein), a protein located at the BB, is
dependent on autophagy [6], while Pampliega et al. demon-
strated a functional interaction between cilia and autophagy in
which cilia-mediated SHH signaling is able to promote auto-
phagic activity [7]. Furthermore, autophagy is regulated in a
negative manner by the MTOR (mechanistic target of rapamy-
cin [serine/threonine kinase]) signaling pathway. This highly
conserved pathway is characterized by the serine-threonine
kinase MTOR, which forms 2 different complexes, MTORC1/
MTOR complex 1 and MTORC2/MTOR complex 2, depending
upon its interaction partners. Whereas MTORC1 is the regulat-
ing complex for autophagy and protein synthesis, it is suggested
that MTORC2 is involved in microtubule organization [8,9].
The activation of the MTOR protein in complex 1 is realized by
its phosphorylation at Ser2448 [10,11]. MTORC1 activity can
be influenced by several factors: The known main regulator of
the MTORC1 is a heterodimeric protein complex consisting of
TSC1 (tuberous sclerosis 1) and TSC2. Interaction of these pro-
teins leads to a strong suppression of MTORC1 activity [12].
Another factor that modulates MTORC1 activity is AKT1
(AKT serine/threonine kinase 1). As with MTORC1, AKT1 is a
well-known signaling node in vertebrate signal transduction
[13]. AKT1 is activated by phosphorylation at Thr308 and sub-
sequently at Ser473 [14-17]. Activated AKT1 modulates
MTORC1 signaling in different ways: On the one hand, sev-
eral studies indicate that AKT1 is able to phosphorylate
TSC2 and thereby activate the TSC1/2 complex [18-20]. On
the other hand, studies reveal that MTORC1 can be phos-
phorylated directly at the Ser2448 residue via AKT1 [21].
In its activated form, MTORC1 inhibits autophagy via pre-
venting the formation of autophagosomes, while it increases
protein synthesis [22-27].

Rpgrip1l/Ftm/Mks5/Nphp8 (Rpgrip1-like) encodes a protein
that is localized at the ciliary transition zone [28] and Rpgrip1l-
deficient mouse embryos die, at the latest, around birth display-
ing a severe ciliopathy phenotype [29,30]. Moreover, mutations
in RPGRIP1L are found in patients suffering from deadly cilio-
pathies like the Meckel-Gruber or Joubert Syndrome [30-32].
Recently, we described that RPGRIP1L regulates proteasomal
activity at primary cilia and thereby controls cilia-mediated
SHH signaling [28].

In our current study, we report that RPGRIP1L addition-
ally controls autophagy and that RPGRIP1L seems to regu-
late both predominant protein degradation processes of
eukaryotes independently from each other. We demonstrate
that RPGRIP1L positively governs autophagic activity via
regulating autophagy initiation by controlling MTOR signal-
ing. Moreover, we suggest that RPGRIP1L might govern
later steps of autophagy by a yet unknown mechanism. Our
data highlight impaired autophagy as one factor that con-
tributes to or even causes deadly ciliopathies and suggest
autophagy as a potential therapeutic target for the treatment
of ciliopathies. Given that RPGRIP1L regulates both
autophagy and proteasomal activity at the ciliary base, a
combined treatment of ciliopathies caused by mutations in
RPGRIP1L should be taken into consideration.

Results

Recently, we showed that Rpgrip1l-deficient mouse embryos
suffer from a decreased proteasomal activity specifically at the
base of primary cilia leading to a dysregulation in cellular sig-
naling pathways such as the canonical WNT (wingless-type
MMTV integration site family) or SHH pathway [28].
Although treatment with the well-known proteasome activator
sulforaphane (SFN) rescues proteasomal activity at the base of
Rpgrip1l-negative cilia, ciliary length is not restored indicating
that at least one other factor is responsible for the ciliary dys-
function caused by RPGRIP1L deficiency [28]. It is known that
autophagy is able to compensate a reduced proteasomal activity
[33,34]. However, the strong mutant phenotype of Rpgrip1l-
negative mouse embryos suggests that there is no compensa-
tion. Consequently, we analyzed autophagic activity in wild-
type and Rpgrip1l-deficient mouse embryonic fibroblasts
(MEFs) via measuring the quantities of autophagosomes.

MEFs were serum starved for 24 h to induce ciliogenesis and
autophagy, and then immunostained for ATG5 (autophagy-
related 5) and MAP1LC3B (microtubule-associated protein 1
light chain 3 beta), which represent well-known marker pro-
teins for the quantification of autophagosomes; we determined
the amount of autophagosomes by quantifying the ATG5 and
MAP1LC3B-positive signals [35]. Both the number of autopha-
gosomes and the autophagosomal ratio (autophagosomal area
per cell area) were significantly decreased in Rpgrip1l-negative
MEFs (Figure 1A-Aii and Figure 1B-Bii). By performing west-
ern blot analyses with protein lysates obtained from MEFs after
24-h serum starvation, we demonstrated that RPGRIP1L defi-
ciency results in a decreased amount of MAP1LC3B-II
(Figure 1C), which is the form of MAP1LC3B that is recruited
to phagophore (the autophagosome precursor) membranes.
Because MAP1LC3B-II is not only closely correlated with
the number of autophagosomes but is also finally degraded
in the autolysosomal lumen, we performed an autophagic
flux assay with MEFs which were serum starved for 24 h
(Figure 1D) [36,37]. In this assay, we inhibited both fusion
of autophagosomes with lysosomes and lysosomal protein
degradation by using chloroquine (CQ) and measured the
amount of MAP1LC3B-II. After incubation in CQ for 6 h,
MAP1LC3B-II accumulated in wild-type MEFs but not in
rpgrip1l¡/¡ MEFs (Figure 1D) implicating a reduced auto-
phagic flux in the absence of RPGRIP1L.

To evaluate whether the effect of RPGRIP1L on autophagy is
cilia-dependent, we performed another autophagic flux assay
with MEFs that were serum starved for only 6 h. After serum
starvation for 6 h, 10.4% of the wild-type MEFs possessed cilia
(Figure S1A). After serum starvation for 24 h, 72.1% of the
wild-type MEFs displayed cilia. None of the Rpgrip1l-deficient
MEFs showed cilia after serum starvation for 6 h, while 15.9%
of the rpgrip1l¡/¡ MEFs carried cilia after serum starvation for
24 h (Figure S1A). Similar to the autophagic flux assay per-
formed with MEFs that underwent serum starvation for 24 h,
the autophagic flux was reduced in MEFs that were serum
starved for 6 h (Figure 1E). Consequently, the presence or
absence of cilia does not seem to be the decisive event that leads
to the reduced autophagic flux in rpgrip1l¡/¡ MEFs. It might be
rather the difference in the number of cilia between wild-type
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Figure 1. RPGRIP1L deficiency results in a decreased autophagic activity. (A to Aii) Immunofluorescence staining of ATG5 in wild-type and Rpgrip1l-negative MEFs. Cells
were visualized by marking F-ACT (Phalloidin 488, green), and cells as well as cell nuclei were visualized by marking TUBG (blue). ATG5-positive autophagosomes were
stained in red (n = 3). Scale bar: 5 mm. Either the number of ATG5-positive vesicles (Ai) or the ratio between the area of ATG5-positive vesicles and the total cell area (Aii)
were quantified. The amount and the area of ATG5-positive vesicles per cell are significantly reduced. (B to Bii) Immunofluorescence staining on MEFs isolated from wild-
type and Rpgrip1l-negative mouse embryos. Cells were visualized by marking F-ACT (Phalloidin 488, green) and cells as well as cell nuclei were visualized by marking
TUBG (blue). Autophagosomes were stained by visualizing MAP1LC3B (red) (n = 4). Scale bar: 5 mm. Either the number of MAP1LC3B-positive vesicles (Bi) or the ratio
between the area of MAP1LC3B-positive vesicles and the total cell area (Bii) were quantified. The amount and the area of MAP1LC3B-positive vesicles per cell are signifi-
cantly reduced. (C) Western blot analysis of MAP1LC3B-II in MEFs (n = 3). The amount of MAP1LC3B-II is reduced in Rpgrip1l-negative MEFs. (D) Autophagic flux assay per-
formed on MEFs serum starved for 24 h including 6-h CQ treatment (n = 4). Inhibition of lysosomal fusion via CQ-treatment leads to an accumulation of MAP1LC3B-II in
wild-type but not in Rpgrip1l-deficient MEFs. (E) Autophagic flux assay performed on MEFs serum starved and CQ treated for 6 h (n = 8). Inhibition of lysosomal fusion via
CQ treatment leads to an accumulation of MAP1LC3B-II in wild-type but not in Rpgrip1l-deficient MEFs. (F) Immunofluorescence-based measurement of OFD1 as an auto-
phagic substrate at the base of wild-type and Rpgrip1l-deficient MEFs. The axoneme was stained with Ac-TUBA (green), the basal body with TUBG (blue) and OFD1 was
stained in red (n = 3). Scale bar: 2.5 mm in the overview and 1 mm in the insets. The amount of OFD1 is significantly increased at the base of rpgrip1l¡/¡ MEFs. (G) Immu-
nofluorescence-based quantification of the BBS4 amount at the base of wild-type and rpgrip1l¡/¡ MEFs (n = 6). The axoneme was marked with Ac-TUBA (green), the basal
body with TUBG (blue), and BBS4 was stained in red. Scale bar: 1 mm. The amount of BBS4 found at the base of Rpgrip1l-deficient cilia is significantly decreased. (A to G)
Asterisks indicate statistically significant differences. p.d.u., procedure defined unit.
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and Rpgrip1l-deficient MEFs under both conditions (6 h and
24 h serum starvation), respectively.

Remarkably, the MAP1LC3B-II amount of Rpgrip1l-nega-
tive MEFs in comparison to that of wild-type MEFs without
CQ treatment was different after serum starvation for 6 h com-
pared with that for 24 h. After serum starvation for 24 h, the
amount of MAP1LC3B-II was decreased in rpgrip1l¡/¡ MEFs
(Figure 1B-D). After serum starvation for 6 h, the amount was
increased in rpgrip1l¡/¡ MEFs (Figure 1E and Figure S1B).
Because the autophagic flux was reduced in the absence of
RPGRIP1L after serum starvation for 6 h and 24 h, this result
was surprising. In order to validate this finding, we performed
immunofluorescence studies in MEFs that were serum starved
for 6 h by immunostaining of MAP1LC3B-II. In these MEFs,
the autophagosomal ratio was increased (Figure S1C) verifying
the data of the western blot studies. Interestingly, the
MAP1LC3B signals were mainly localized in the nuclei of wild-
type and Rpgrip1l-deficient MEFs that were serum starved for
6 h (Figure S1C), whereas these signals were predominantly
found in the cytoplasm in wild-type and Rpgrip1l-negative
MEFs which were exposed to serum starvation for 24 h
(Figure 1B).

To assess what kind of MAP1LC3B situation occurs in vivo,
we used cryosections of wild-type and Rpgrip1l-deficient limb
buds as a well-established in vivo model for analyzing functional
mechanisms in terms of cilia research[28,38-41]. The quantifica-
tion of MAP1LC3B-positive signals in Rpgrip1l-negative limb
bud cells revealed a significant reduction of autophagosomes by
about half (Figure S2A-Aii) confirming the cell culture data
obtained from experiments with MEFs that underwent serum
starvation for 24 h. Because the situation in which a high num-
ber of cilia is present seems to be more natural than a situation
in which only a few cilia are existing, we used MEFs that were
serum starved for 24 h in all following experiments.

Previously, it was reported that the ciliary protein OFD1
(OFD1, centriole and centriolar satellite protein) is cleared
from the basal body via autophagy making it an autophagic
substrate [6]. To test whether autophagic activity is decreased
in the abscence of RPGRIP1L, we quantified fluorescence inten-
sities of OFD1 directly at the base of primary cilia in wild-type
and Rpgrip1l-deficient MEFs as well as limb bud cells. OFD1
accumulated at the ciliary base of cells that lack RPGRIP1L
(Figure 1F and S2B). Another protein influenced by autophagy
is BBS4 (Bardet-Biedl syndrome 4). The ciliary recruitment of
BBS4 is dependent on autophagy [6]. In rpgrip1l¡/¡ MEFs
and limb bud cells, the amount of BBS4 at the ciliary base is
reduced, thereby arguing for a decreased autophagy-mediated
ciliary localization of this protein (Figure 1G and
Figure S2C). All these data demonstrate that RPGRIP1L defi-
ciency impairs autophagy. Combining these data with those
from our previous study, we conclude that RPGRIP1L posi-
tively controls proteasomal activity at the ciliary base and
autophagic activity [28].

Former studies revealed that autophagy is negatively regu-
lated by MTORC1 signaling [42]. Remarkably, cells that lack
the ciliary protein IFT88 (intraflagellar transport 88) and do
not form cilia have a higher activity of MTORC1 and a higher
protein synthesis [43]. In search of how RPGRIP1L controls
autophagy, we analyzed the amount of phosphorylated and

thereby activated MTORC1. Indicative for its activity is the
phosphorylation at Ser2448[10,11]. The amount of phospho-
(Ser2448)-MTOR was increased in Rpgrip1l-deficient MEFs
(Figure 2A) indicating that RPGRIP1L deficiency affects
MTOR activation and thereby MTOR signaling. In this context,
we investigated other downstream effects of MTORC1 signal-
ing. In addition to the negative regulation of autophagy,
MTORC1 stimulates protein synthesis [44-47]. In this context,
a former report revealed that autophagy regulates the volume
of kidney cells [43]. Previously, it was shown that the size of a
cell correlates with its protein synthesis. The bigger the cell, the
more proteins are produced in this cell [48]. In Rpgrip1l-defi-
cient limb buds, cells are larger than those of their wild-type lit-
termates (Figure 2B). Based on these cell size quantifications,
we conclude that protein synthesis is increased by RPGRIP1L
deficiency reflecting the situation of elevated MTORC1
signaling.

Another downstream target of MTORC1 signaling is HIF1A
(hypoxia inducible factor 1 alpha subunit), which is positively
regulated by MTORC1 [49]. In Rpgrip1l-negative MEFs, the
expression of Hif1a was elevated (Figure 2C). Taken together,
these data let us assume that RPGRIP1L regulates autophagic
activity via MTORC1. To demonstrate whether RPGRIP1L
controls autophagy indeed by regulating MTOR signaling, we
used rapamycin. The macrolide rapamycin is a well-known
inhibitor of MTORC1 [50-56]. It was shown that rapamycin is
specifically suppressing MTORC1, while MTORC2 is relatively
unaffected[8,9]. Treatment of Rpgrip1l-negative MEFs with
rapamycin was performed to test if a downregulation of MTOR
signaling results in an elevation of autophagic activity. This
treatment resulted in a reduction of the OFD1 amount at the
ciliary base in Rpgrip1l-deficient MEFs (Figure 2D) implying a
rescue of autophagic activity caused by rapamycin treatment.
Consequently, RPGRIP1L regulates autophagy by governing
MTOR signaling.

To examine how RPGRIP1L affects MTORC1, we focused
on the events that lie upstream of MTORC1 action. To analyze
a possible effect of RPGRIP1L on the TSC1/2 complex, we
quantified the amount of TSC1 and phosphorylated TSC2. The
amount of both TSC proteins was unaltered in Rpgrip1l-defi-
cient MEFs (Figure 3A and B). Moreover, we investigated the
amount of phospho-(Ser473)-AKT1 and found it to be elevated
in whole cell lysates upon RPGRIP1L deficiency (Figure 3C).
Former studies reported the presence of AKT1 and activated
(phosphorylated at Ser473) AKT1 at cilia. In 3T3-L1 preadipo-
cytes, AKT1 is present in the entire cilium [57]. After phos-
phorylation of AKT1 at Ser473, the localization changes and
phospho-(Ser473)-AKT1 is detected at the basal body[57,58].
In immortalized fibroblasts (NIH3T3 cells), phospho-(Ser473)-
AKT1 localizes at the ciliary base [59]. Because we obtained all
in vitro data of this study in MEFs, the localization of phospho-
(Ser473)-AKT1 was checked in these cells. By using super-
resolution microscopy, we detected phospho-(Ser473)-AKT1
spread over the entire cilia of wild-type MEFs (Figure 3D).
Next, we quantified the amount of phospho-(Ser473)-AKT1 at
cilia of Rpgrip1l-negative MEFs. In the absence of RPGRIP1L,
phospho-(Ser473)-AKT1 was significantly elevated (Figure 3E).
Interestingly, we found the active form of MTOR, phospho-
(Ser2448)-MTOR, at the base of primary cilia in wild-type
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MEFs (Figure 3F) making it likely that phospho-(Ser473)-
AKT1 phosphorylates MTOR at primary cilia. In line with this
assumption, RPGRIP1L deficiency resulted in an increased
amount of phospho-(Ser2448)-MTOR at the ciliary base
(Figure 3G). In summary, we propose that RPGRIP1L regulates
autophagic activity by governing the amount of phospho-
(Ser473)-AKT1 at the primary cilium.

In a previous study, Pampliega et al. monitored autophagic
flux in ift20¡/¡/intraflagellar transport 20¡/¡ and ift88¡/¡

MEFs and found it to be decreased [7]. Interestingly, this
decreased autophagic flux could not be elevated via application
of rapamycin. The authors showed that deficiency of the ciliary
proteins IFT20 and IFT88 results in an abnormal SHH signal-
ing, which in turn leads to a dysregulation in autophagy and
can be compensated via overexpression of GLI1 [7]. In our
case, rapamycin is able to compensate for the decreased auto-
phagic activity in Rpgrip1l-negative MEFs (Figure 2D). In for-
mer reports, we demonstrated a downregulation of SHH
signaling in embryonic limbs [29], neural tubes [29] and
embryonic hearts [60]. In our current study, we revealed a
decreased expression of the SHH target gene Ptch1 (patched 1)
in SAG (Smoothened agonist)-treated rpgrip1l¡/¡ MEFs
(Figure 3H). Consequently, the question arises whether

RPGRIP1L regulates autophagic activity exclusively via govern-
ing MTOR signaling or whether this regulation is additionally
realized by controlling SHH signaling. To address this issue, we
overexpressed GLI1 (Figure S2D) and quantified the number of
autophagosomes by marking ATG5 in whole cells as well as the
amount of BBS4 at the ciliary base of wild-type and rpgrip1l¡/¡

MEFs. The amount of both ATG5 and BBS4 was significantly
increased in transfected wild-type MEFs (Figure 3I and J) con-
firming the finding of Pampliega and colleagues [7]. However,
their amount was unaltered in GLI1-overexpressing Rpgrip1l-
negative MEFs (Figure 3I and J) demonstrating that RPGRIP1L
regulates autophagy independently of SHH signaling.

Previously, we reported that RPGRIP1L affects SHH signal-
ing at the level of GLI3 processing by regulating proteasomal
activity at the ciliary base. In rpgrip1l¡/¡ MEFs, the activity of
the proteasome at the ciliary base is decreased [28]. Conse-
quently, the restoration of this proteasomal activity in the
absence of RPGRIP1L should alter autophagic activity if
RPGRIP1L regulates autophagy via SHH signaling. We treated
Rpgrip1l-negative MEFs with SFN and with 18a-glycyrrhetinic
acid (18a-GA), 2 well-known activators of proteasomal activity
[61,62]. Previously, we showed that the treatment with SFN
decreases the ciliary amount of proteasomal substrates in wild-

Figure 2. RPGRIP1L deficiency leads to upregulated MTORC1 signaling. (A) Western blot studies for phospho-(Ser2448)-MTOR in MEFs (n = 3). The amount of phospho-
(Ser2448)-MTOR is increased in total cell lysates of Rpgrip1l-negative MEFs. Nonphosphorylated MTOR was used for normalization, while ACT served as a loading control.
(B) Immunofluorescence-based measurement of cell size of wild-type and rpgrip1l¡/¡ limb bud cells. The cells were visualized with TRITC-Phalloidin marking F-ACT to monitor
the cell size (in both cases: n = 4). For better visualization the same cells were depicted without and with cell size indication (yellow dotted lines). The cell size of rpgrip1l¡/¡

limb bud cells is significantly increased. (C) Semiquantitative PCR analysis for Hif1a, a target of MTORC1 signaling (n = 3). The expression of Hif1a is almost doubled in
Rpgrip1l-deficient MEFs. For better visualization of the DNA bands, the gel electrophoresis photo was color inverted. (D) Immunofluorescence-based measurement of the
OFD1 amount at the base of wild-type and Rpgrip1l-negative MEFs treated with either DMSO (control) or rapamycin. The axoneme was stained with Ac-TUBA (green), the
basal body with TUBG (blue), and OFD1 was stained in red (n = 4). Scale bar: 1 mm. Rapamycin treatment resulted in a significant reduction of the OFD1 amount at the ciliary
base in both genotypes. (A to D) Asterisks indicate statistically significant differences. (D) The most important significant differences are written in bold.
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Figure 3. RPGRIP1L deficiency regulates autophagy not by governing SHH signaling but by controlling AKT1 signaling. (A) Western blot studies for TSC1 (n = 3). The
amount of TSC1 is unchanged in Rpgrip1l-deficient MEFs compared to their wild-type littermates. ACT served as a loading control. (B) Western blot studies for phospho-
(Ser939)-TSC2. Nonphosphorylated TSC2 was used for normalization, while ACT served as a loading control (n = 3). The amount of phospho-(Ser939)-TSC2 is unaltered
comparing wild-type and Rpgrip1l-deficient MEFs. Non-phosphorylated TSC2 was used for normalization, and ACT serves as a loading control. (C) Western blot studies for
phospho-(Ser473)-AKT1. Non-phosphorylated AKT1 was used for normalization, while ACT served as a loading control (n = 3). The amount of phospho-(Ser473)-AKT1 is
significantly elevated in rpgrip1l¡/¡ MEFs. (D) Immunofluorescence studies in wild-type MEFs. Pictures were obtained using 3D-SIM. The ciliary axoneme was stained with
Ac-TUBA (green), the basal body with TUBG (blue). Phospho-(Ser473)-AKT1 was stained in red and is located at the primary cilium of wild-type MEFs. Scale bar: 1 mm. (E)
Immunofluorescence-based quantification of phospho-(Ser473)-AKT1 at wild-type and Rpgrip1l-deficient cilia in MEFs. The axoneme was stained with Ac-TUBA (green),
the basal body with TUBG (blue) and phospho-(Ser473)-AKT1 was stained in red (n = 3). Scale bar: 1 mm. The amount of phospho-(Ser473)-AKT1 is significantly increased
at the cilia of rpgrip1l¡/¡ MEFs. (F) Immunofluorescence studies in wild-type MEFs. Pictures were obtained using 3D-SIM. The ciliary axoneme was stained with Ac-TUBA
(green), the basal body with TUBG (blue). Phospho-(Ser2448)-MTOR was stained in red and is located at the base of primary cilia of wild-type MEFs. Scale bar: 1 mm. (G)
Immunofluorescence-based measurement of phospho-(Ser2448)-MTOR at wild-type and Rpgrip1l-deficient cilia in MEFs. The axoneme was stained with Ac-TUBA (green),
the basal body with TUBG (blue) and phospho-(Ser2448)-MTOR was stained in red (n = 3). Scale bar: 1 mm. The amount of phospho-(Ser2448)-MTOR is significantly
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type MEFs and rescues their amount at the ciliary base of
Rpgrip1l-deficient MEFs [28]. Quantification of BBS4 and
OFD1 at the ciliary base after incubation of wild-type and
Rpgrip1l-deficient MEFs in SFN showed no difference in the
amount of both proteins between the control MEFs and the lit-
termates (Figure S3A and S3B). In wild-type and rpgrip1l¡/¡

MEFs, the proteolytic processing was clearly increased by treat-
ment with 18a-GA (Figure S4A), demonstrating that the incu-
bation of MEFs in 18a-GA increased proteasomal activity at
the ciliary base. However, the amount of the autophagy-associ-
ated proteins OFD1 and BBS4 was unchanged at the base of
cilia in wild-type and rpgrip1l¡/¡ MEFs after treatment with
18a-GA (Figure S4B and C). On the basis of these results, we
suggest that RPGRIP1L controls autophagy neither via govern-
ing SHH signaling nor via regulating proteasomal activity at
the primary cilium.

Interestingly, it was shown previously that BBS4 is able
to positively regulate proteasomal activity [63]. Because
the autophagy-dependent ciliary localization of BBS4 is
impaired in the absence of RPGRIP1L, the question arises
whether a rescue of autophagic activity would restore proteaso-
mal activity at the ciliary base. To address this question, we
used 4-(4-[{4 0-chloro-2-biphenyl}methyl]-1-piperazinyl)-N-
[{4-([{2R}-4-{dimethylamino}-1-{phenylsulfanyl}-2-butanyl]
amino)-3-nitrophenyl} sulfonyl]benzamide (ABT-737),
another known activator of autophagy aside from rapamycin
[64]. Because activation of autophagy neither affects GLI3 proc-
essing in the wild-type nor in the rpgrip1l¡/¡ status
(Figure S5A), we propose that RPGRIP1L regulates autophagy
and proteasomal activity at the primary cilium independently
of each other. To further analyze if the repression of autophagic
activity affects GLI3 processing, we used 3-methyladenine (3-
MA), a known inhibitor of autophagy [65]. Treatment of wild-
type as well as Rpgrip1l-negative MEFs with 3-MA did not alter
the processing of GLI3 (Figure S5B).

Phospho-(Ser33/37/Thr41)-CTNNB1/b-catenin 1 repre-
sents another substrate that is specifically degraded by the pro-
teasome at the ciliary base[28,66]. After treatment with the
autophagy activator rapamycin, the amount of phospho-
(Ser33/37/Thr41)-CTNNB1 at the ciliary base was unaltered in
wild-type and Rpgrip1l-negative MEFs (Figure S5C) revealing
that phospho-(Ser33/37/Thr41)-CTNNB1 is not degraded by
autophagy and is not affected or even rescued by the restored
autophagic activity in rapamycin-treated rpgrip1l¡/¡ MEFs. To
sum up, these data indicate that the known dysregulation of
SHH signaling in Rpgrip1l-deficient individuals is not responsi-
ble for the diminished autophagic activity, and that RPGRIP1L
regulates autophagy independently of proteasomal activity at
the ciliary base.

Previously, we showed that treatment of Rpgrip1l-negative
MEFs with SFN restores proteasomal activity at the ciliary base
but not cilia length indicating that additional factors besides
the reduced proteasomal activity cause the numerous defects of
Rpgrip1l-deficient embryos [28]. Because treatment with rapa-
mycin did not only decrease the OFD1 amount but also
restored ciliary length in rpgrip1l¡/¡ MEFs (Figure 2D and
Figure 4A), the reduced autophagic activity might be another
factor that leads to the defects observed in rpgrip1l¡/¡ mouse
embryos. Protein synthesis and autophagy are both mediated
by MTORC1 [22-26]. Previously, it was reported that MTOR
modulates ciliary length via controlling protein synthesis [67].
Thus, the question arises whether ciliary length in Rpgrip1l-
deficient mice is altered due to rapamycin-induced changes in
protein synthesis or due to the altered autophagy. To analyze
this, we treated wild-type and rpgrip1l¡/¡ MEFs with either the
autophagy inhibitor 3-MA, acting independently of MTOR, or
with the autophagy activator ABT-737, which was not shown
to be associated with protein synthesis until now[64,68]. Treat-
ment of wild-type MEFs with 3-MA resulted in an increase of
ciliary length demonstrating that a reduction of autophagic
activity increases cilia length independently of MTOR
(Figure 4B). However, treatment of Rpgrip1l-negative MEFs
with 3-MA did not alter cilia length (Figure 4B). Incubation in
ABT-737 led to a decrease of cilia length in wild-type and
rpgrip1l¡/¡ MEFs, respectively (Figure 4C). Together these data
indicate that although the reduction of autophagy in the
absence of RPGRIP1L is based on an increased amount of
active MTORC1, the changes in ciliary length of rpgrip1l¡/¡

mouse embryos are not caused by the increased protein synthe-
sis but by the reduced autophagic activity.

Discussion

The degradation of proteins by autophagy and the ubiquitin-
proteasome system is essential for mammalian development
and homeostasis [69-76]. Consequently, a tight regulation of
these degradation processes has to be ensured. For this reason,
cells have developed a compensatory safety concept. If one deg-
radation system is downregulated, the other gets upregulated to
prevent cell-damaging protein overload[33,34]. Thus, the regu-
lation of both degradation systems in the same direction is
rather uncommon. Our current study in combination with our
previous report reveals that RPGRIP1L deficiency results in a
decrease of proteasomal activity at the ciliary base and also in a
reduction of autophagic activity demonstrating that RPGRIP1L
positively controls both activities [28]. In this regard, the differ-
entiation between autophagic and proteasomal activity was a
difficult task.

increased at the base of rpgrip1l¡/¡ MEFs. (H) Quantitative real-time reverse transcriptase-PCR studies for Ptch1 in SAG-treated Rpgrip1l-deficient MEFs compared with
SAG-treated wild-type MEFs (n = 3). The relative induction of Ptch1 in Rpgrip1l-deficient MEFs is reduced about 60%. (I) Immunofluorescence studies on wild-type and
Rpgrip1l-deficient MEFs after GLI1 overexpression. The cells were visualized by marking F-ACT (Phalloidin 405, blue), ATG5 was stained in red (n = 3). In the single channel
images the F-ACT staining is shown in white to provide a high contrast between the black background and the outline of the cells which are marked by the F-ACT stain-
ing. Scale bar: 5 mm. The amount of ATG5 is increased after transfection with a plasmid expressing GLI1 in wild-type MEFs, while the amount of ATG5 remains unaltered
after GLI1 overexpression in Rpgrip1l-deficient MEFs. (J) BBS4 staining of wild-type and Rpgrip1l-deficient MEFs after transfection with a plasmid expressing GLI1. Cilia
were marked with Ac-TUBA (red), BBS4 was stained in blue (n = 3). Scale bar: 1 mm. The amount of BBS4 is increased after GLI1 overexpression in wild-type MEFs, while
the amount of BBS4 remains unaltered after GLI1 transfection in Rpgrip1l-deficient MEFs. (C to J) Asterisks indicate statistically significant differences. (I and J) The most
important significant differences are written in bold.
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Most proteins that are affected by one of these degradation
systems are also associated with the other. In our current study,
all analyzed proteins (MAP1LC3B, OFD1, BBS4) except ATG5
are related to both degradation processes: MAP1LC3 is not
only a substrate of autophagy but also of the 20S proteasome

[77]. Interestingly, the amount of MAP1LC3B-II in rpgrip1l¡/¡

MEFs was subject to the period of time in which these MEFs
were serum starved. In Rpgrip1l-negative MEFs that were
exposed to serum starvation for 6 h, the amount of
MAP1LC3B-II was increased, whereas the amount of

Figure 4. Pharmacological treatments rescue autophagic activity and ciliary length in the absence of RPGRIP1L. (A to C) Immunofluorescence-based cilia length quantifi-
cations. (A) Measurement of ciliary length after rapamycin treatment. The ciliary length in wild-type and Rpgrip1l-deficient MEFs is decreased after application of rapamy-
cin (n = 3). (B) Application of the autophagy inhibitor 3-MA lengthens cilia in wild-type MEFs, but not Rpgrip1l-deficient MEFs. The ciliary axoneme is marked by Ac-TUBA
(green), the basal body by TUBG (blue) (n = 4 for wild-type; n = 5 for rpgrip1l¡/¡ MEFs). Scale bar: 1 mm. (C) Application of the autophagy activator ABT-737 decreases
ciliary length in wild-type and Rpgrip1l-deficient MEFs. The ciliary axoneme is stained with Ac-TUBA (green), the basal body with TUBG (blue) (n = 4 for wild-type; n = 5
for Rpgrip1l¡/¡ MEFs). Scale bar: 1 mm. Asterisks indicate statistically significant differences. The most important significant differences are written in bold. (A and C) Cells
were treated with DMSO as a vehicle control.
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MAP1LC3B-II was reduced in Rpgrip1l-deficient MEFs that
underwent serum starvation for 24 h (Figure 1C-E). In sum-
mary, these data suggest that the amount of MAP1LC3 is unaf-
fected by the reduced proteasomal activity at the ciliary base
caused by RPGRIP1L deficiency.

Potentially, MAP1LC3 is not degraded by the cilia-regulated
proteasome but by other kinds of proteasomes. Remarkably,
despite the opposing amounts of MAP1LC3B-II in Rpgrip1l-
negative MEFs after serum starvation for 6 h and for 24 h
(Figure 1C and Figure S1B), autophagy was decreased in the
absence of RPGRIP1L under both conditions (Figure 1D and E).
An explanation for this phenomenon could be that loss of
RPGRIP1L hypothetically affects autophagy in 2 different ways:
rpgrip1l¡/¡ MEFs that were serum starved for 6 h do not form
cilia at all, while 10.4% of the wild-type MEFs possess cilia
(Figure S1A). Previously, it was already speculated that primary
cilia could be associated with autophagosome-lysosome fusion
[78]. Consequently, the absence of RPGRIP1L may result in a
blockade of later steps in the autophagy process, e.g. a perturbed
fusion between autophagosomes and lysosomes leading to a
smaller number of autolysosomes. Considering the accumulation
of MAP1LC3B-II in the nucleus of Rpgrip1l-negative MEFs that
underwent serum starvation for 6 h, it is likely that the produc-
tion of MAP1LC3B-II and presumably also of autophagosomes
is unaffected by RPGRIP1L deficiency.

It is also known from other studies that the amount of
MAP1LC3B-II increases in case of an impaired autophago-
some-lysosome fusion [79-82]. In the condition in which MEFs
were serum starved for 24 h, a plethora of cilia was formed
(Figure S1A) and loss of RPGRIP1L may disturb the generation
of autophagosomes most likely by upregulating cilia-mediated
MTOR signaling. Potentially, a residual autophagic activity
and/or the cilia-independent proteasome degrades the high
amount of MAP1LC3B-II and hence the high number of auto-
phagosomes that was detected in rpgrip1l¡/¡ MEFs that were
serum starved for 6 h. Because no new autophagosomes were
formed, the amount of MAP1LC3B-II was decreased in
rpgrip1l¡/¡ MEFs that were exposed to serum starvation for
24 h (Figure 1C). In summary, we propose that RPGRIP1L reg-
ulates the initiation of autophagy via governing MTOR signal-
ing and later steps of autophagy (for example the fusion of
autophagosomes and lysosomes) by a yet unknown mecha-
nism. Future investigations should be undertaken to prove our
two-way hypothesis.

In line with the finding that the absence of RPGRIP1L leads
to a reduced autophagic activity, the autophagic substrate
OFD1 is elevated by RPGRIP1L deficiency. It was previously
reported that OFD1 positively regulates proteasomal activity.
In contrast to RPGRIP1L, OFD1 controls the overall cellular
proteasomal activity by controlling the amount of proteasomal
components [63]. Although the loss of RPGRIP1L results in
an increased amount of OFD1 at the ciliary base (Figure 1F
and Figure S2B), overall cellular proteasomal activity is not
altered and the proteasomal activity at the base of primary
cilia is decreased [28]. In this context, it is remarkable that
RPGRIP1L deficiency results in a reduced amount of BBS4 at
the ciliary base (Figure 1G and Figure S2C), and that a posi-
tive regulation of overall proteasomal activity by BBS4 was
formerly reported, raising the question of why the increased

OFD1 amount or the decreased BBS4 amount at the ciliary
base of rpgrip1l¡/¡ MEFs and limbs does not lead to an
affected overall cellular proteasomal activity. Addressing this
question in the future will make an important contribution to
the understanding of the crosstalk between autophagy and the
ubiquitin-proteasome system, which at least partly is mediated
by ciliary proteins.

RPGRIP1L is not the only protein that regulates both auto-
phagic and proteasomal activity in the same direction. Another
protein that is involved in the regulation of both degradation
processes in the same direction is USP14 (ubiquitin specific
peptidase 14). This protein negatively controls proteasomal
activity by trimming K48 ubiquitin chains on proteasome-
bound substrates [83-85], and autophagic activity by governing
K63 ubiquitination of BECN1/Beclin 1 [86]. Furthermore, the
transcription factor FOXO3 (forkhead box O3) activates
proteasomal proteolysis and autophagy. However, it performs
this function exclusively in myotubes[87,88]. Another factor
that seems to control both degradation systems in a cell type-
specific manner is the COP9 (Constitutive photomorphogene-
sis 9) complex consisting of the GPS1/CSN1/COPS1/COP9
signalosome 1 to COPS8/CSN8/COP9 signalosome 8 proteins.
Su and colleagues showed that a conditional loss of the COPS8/
CSN8 protein in murine hearts reduces the activity of the
ubiquitin-proteasome system and the autophagic flux at the
same time [89].

Interestingly, some of the GPS1-COPS proteins localize at
the centrosome in HeLa cells [90]. Because the ciliary BB is
built up by the centrosome, a localization of the GPS1-COPS
complex at the cilium is conceivable. It is an interesting topic of
future studies to test whether there is a relationship between
GPS1-COPS proteins and RPGRIP1L. Moreover, it was
reported that MTORC1 signaling does not only negatively con-
trol autophagic activity but also negatively regulates proteaso-
mal activity [91]. However, another report described the
opposite, namely that MTORC1 signaling positively governs
proteasomal activity [92] leading to a controversial debate
[93,94]. Our current study revealed that RPGRIP1L deficiency
results in elevated MTORC1 signaling (Figure 2A and C,
Figure 3G) and our previous study showed that overall protea-
somal activity is unaltered in rpgrip1l¡/¡ MEFs [28]. In combi-
nation, these data indicate that the increased MTORC1
signaling does not affect overall proteasomal activity at all in
the absence of RPGRIP1L. Furthermore, the investigations in
which we used the MTORC1 inhibitor rapamycin uncovered
that proteasomal activity at the ciliary base is not regulated by
MTORC1 signaling (Figure S5C).

Previously, we showed that RPGRIP1L governs proteasomal
activity at the ciliary base via interacting with the PSMD2 (pro-
teasome [prosome, macropain] 26S subunit, non-ATPase, 2)
protein, a component of the regulatory proteasomal 19S sub-
unit. In doing so, RPGRIP1L controls cilia-mediated SHH sig-
naling [28]. Although SHH signaling governs autophagy in
MEFs, RPGRIP1L does not regulate autophagy via SHH signal-
ing (Figure 3I and J). In MEFs, the regulation of autophagy by
RPGRIP1L is accomplished via MTORC1 signaling (Figure 2A
and D). Interestingly, several studies reported the localization
of AKT1, a protein acting upstream of MTOR, to primary cilia:
For example, the activated form of AKT1 is localized at
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the basal body of cilia in murine 3T3-L1 preadipocytes and in
cortical progenitors[57,95]. In addition, it was shown that acti-
vated AKT1 colocalizes with HSP90 (heat shock protein 90) at
the ciliary base making this part of the cilium a possible candi-
date for the activation of AKT1 signaling [58]. Our data reveal
that the amount of phospho-(Ser473)-AKT1 and phospho-
(Ser2448)-MTOR is elevated in Rpgrip1l-deficient MEFs
(Figure 2A and Figure 3C). Remarkably, we did not only detect
the increased amount of these 2 proteins in whole cell lysates
but also at primary cilia (Figure 3E and G) demonstrating that
more activated AKT1 and MTOR protein is present at
Rpgrip1l-negative MEF cilia. These data together with the fact
that the treatment of rpgrip1l¡/¡ MEFs with the MTOR
inhibitor rapamycin leads to a rescue of autophagic activity
indicate that RPGRIP1L controls the phosphorylation of
MTOR and hence autophagy by governing the activation of
AKT1. The mechanism by which RPGRIP1L realizes the reg-
ulation of AKT1 phosphorylation remains to be elucidated
in the future.

By using different pharmacological activators and inhibi-
tors of autophagy and the proteasome, we suggest that
RPGRIP1L regulates the 2 protein degradation processes
independently from each other. It is a difficult endeavor to
discriminate between autophagic and proteasomal activity
because many drugs that have an effect on the one degrada-
tion system often also affect the other. The drugs used in
the current study include rapamycin, SFN, 18a-GA, ABT-
737 and 3-MA. Rapamycin is one of the best studied
autophagy activators but it was reported that it is also able
to affect proteasomal activity[51-56,96,97]. An inhibition of
proteasomal activity by rapamycin was shown in lympho-
cytes [97], MEFs and human embryonic kidney (HEK293)
cells [92], whereas a rapamycin-induced activation of pro-
teasomal activity was reported in MEFs, HEK293 cells and
the murine liver [91]. SFN and 18a-GA are well-known
proteasome activators but can also activate autophagy. In
the case of SFN, this autophagy-activating function was
shown in pancreatic cancer cells [98], human prostate can-
cer cell line (PC-3) [99], human androgen-dependent pros-
tate cancer cells, human neuroblastoma cells [100],
immortalized human hepatocytes [101], murine neurons
[102] and the mouse brain [103]. 18a-GA serves as a pro-
teasome activator in human embryonic fibroblasts [62], in
human bone marrow stromal cells [104] and in human as
well as murine neuronal cells [105] and functions as an
autophagy activator in hepatocellular carcinoma cells [106]
and in non-small cell lung cancer cells [107]. Thus, an
effect on both autophagic and proteasomal activity, was
reported for all three drugs. However, in MEFs, we did nei-
ther detect any effect of rapamycin on the proteasomal
activity at the ciliary base (Figure S5C) nor any impact of
SFN or 18a-GA on autophagic activity (Figure S3,
Figure S4). Accordingly, the treatment of wild-type and
rpgrip1l¡/¡ MEFs with rapamycin, SFN or 18a-GA allows
us to differentiate between autophagic and proteasomal
activity at the ciliary base.

ABT-737 activates autophagy [64], whereas 3-MA is an
autophagy inhibitor [65]. Until now, no connection between
ABT-737 or 3-MA and the proteasome was reported. We

analyzed the processing of GLI3, which is realized specifically
by the cilia-regulated proteasome (see refs. 35 and 71), in wild-
type and rpgrip1l¡/¡ MEFs after treatment with ABT-737 or 3-
MA and found no alteration (Figure S5A and S5B). Thus, the
activation or the inhibition of autophagy does not affect protea-
somal activity at the ciliary base in MEFs. Together, the results
of the drug treatments in MEFs strongly argue for a scenario in
which RPGRIP1L regulates proteasomal activity at the ciliary
base and autophagy independently of each other. However,
because all of our treatments have been carried out in vitro, we
cannot conclude that the drugs used in our study exert the
same effects in vivo.

Remarkably, on the one hand, ciliary proteins have an
impact on autophagy, and, on the other hand, autophagy has
an effect on cilia. In this context, several studies revealed that
autophagy is able to regulate cilia length [108-110]. Our inves-
tigations showed that the reduced autophagic activity in the
absence of RPGRIP1L leads to an elongation of cilia
(Figure 4). Treatment of MEFs with the autophagy activa-
tors rapamycin (affects autophagy by inhibiting MTOR)
and ABT-737 (affects autophagy but not protein synthesis)
reduces cilia length (Figure 4A and C) demonstrating that
autophagy is able to modulate cilia length in MEFs inde-
pendently of MTOR-regulated protein synthesis. Interest-
ingly, a study in the zebrafish also reported that the usage
of rapamycin reduces ciliary length [67]. Noticeably, our
treatment with the autophagy inhibitor 3-MA increases the
length of cilia in wild-type MEFs but does not elongate cilia
in rpgrip1l¡/¡ MEFs (Figure 4B). We assume that
RPGRIP1L deficiency decreases autophagic activity to such
a low level that 3-MA has no impact on autophagy-
regulated cilia length in these cells.

In contrast to our findings, Wang et al. showed that
inhibition of autophagy via 3-MA leads to a decreased cilia
length in HK2 cells [111]. As this cell line is derived from
human kidney cells, we hypothesize a cell type-dependent
role of autophagy in the regulation of ciliary length. In the
same study, it was demonstrated that ciliary length is
affected by a cooperative activity of the proteasome and
autophagy in HK2 cells [111]. We found another situation in
MEFs. Combined with the data of our previous report in
which the proteasome activator SFN was not able to restore
cilia length in Rpgrip1l-negative MEFs, we conclude that
RPGRIP1L controls cilia length via regulating autophagy
but not by governing proteasomal activity at the ciliary base
[28]. In summary, we propose that the differences that exist
between the findings of our study and the results of other
reports are caused by the analysis of different cell types.

One of the most important questions raised by our find-
ings is whether reduced autophagic activity takes part in
the development of human ciliopathies caused by mutations
in RPGRIP1L. Previously, it was reported that autophagy
plays an important role in vertebrate development
[70,71,112-114]. Autophagy is involved in the embryonic
development of the brain [115], the eyes [116-118], the
lung [119], the heart[120,121] and the liver [120]. To evalu-
ate the importance of our findings for human health, it
would be an interesting future task to analyze autophagic
activity in ciliopathy patients who carry a mutation in
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RPGRIP1L. Previously, it was shown that prenatal rapamy-
cin treatment reduced cystogenesis in pkd1¡/¡ mice, a well-
established mammalian model for polycystic kidney disease,
a medical condition that is associated with dysfunctional
cilia [122-124]. However, this positive effect was not linked
to autophagy but was only related to the relationship of
upregulated MTOR signaling and cyst formation. So far, it
is unknown if treatment with rapamycin has also positive
impacts on other ciliopathy symptoms. Treatment of
rpgrip1l¡/¡ mouse embryos with rapamycin would shed light
on this open question. Accordingly, the decreased autophagic
activity and the impaired proteasomal activity could be 2
independent reasons for the development of ciliopathy
symptoms in Rpgrip1l-negative mouse embryos. On that
account, the rescue of both activities together could be the
decisive step to treat, heal or even prevent ciliopathies caused
by mutations in RPGRIP1L.

Materials and methods

Ethics statement and animal husbandry

All mice (Mus musculus) used in this study were on the C3H
background and kept under standard housing conditions (12/
12-h dark-light cycle; with food and water ad libitum). Animal
procedures were performed in accordance with National Insti-
tutes of Health guidelines and with local and state regulations
for research with animals.

Mouse strains

We mated Rpgrip1l+/¡ male and female mice to obtain wild-
type and rpgrip1l¡/¡ mouse embryos. Rpgrip1l-heterozygous
mutant mice were generated as described previously [29].

Primary antibodies

In this study, the following primary antibodies were used: rab-
bit anti-ACT (Sigma-Aldrich, A2066), mouse anti-GAPDH
(Sigma-Aldrich, G8795), goat anti-GLI3 (R&D systems,
AF3690), rabbit anti-phospho-(Ser2448)-MTOR (Cell Signal-
ing Technology, 2971), rabbit anti-TSC1 (Cell Signaling Tech-
nology, 4906), rabbit anti-phospho-(Ser939)-TSC2 (Cell
Signaling Technology, 3615), rabbit anti-phospho-(Ser473)-
AKT1 (Cell Signaling Technology, 9271), mouse anti-Ac-
TUBA (Santa Cruz Biotechnology, sc-23950), goat anti-TUBG
(Santa Cruz Biotechnology, sc-7396), rabbit anti-BBS4 (Pro-
teintech Group Inc., 12766-1-AP), rabbit anti-MAP1LC3B
(Cell Signaling Technology, 2775), rabbit anti-MAP1LC3B
(Abcam, ab48394), rabbit anti-OFD1 (kind gift provided by
Brunella Franco; TIGEM, Italy), rabbit anti-MTOR (Cell Sig-
naling Technology, 2983), rabbit anti-AKT1 (Cell Signaling
Technology, 4691), rabbit anti-TSC2 (Abcam, ab32554), mouse
anti-GFP (Roche, 11814460001), rabbit anti-phospho-(Ser33/
37/Thr41)-CTNNB1 (Cell Signaling Technology, 9561), mouse
anti-ATG5 (Proteintech Group Inc., 60061-1-LG), rabbit anti-
ubiquitin (Sigma-Aldrich, U5379).

Autophagic flux assay

For the autophagic flux assay MEFs were treated for 6 h with
40 mM chloroquine (Sigma-Aldrich, C6628) dissolved in
DMEM containing no serum. Alternatively, MEFs were serum
starved for 24 h with an additional CQ treatment within the
last 6 h. Serum-deprived MEFs served as control. Cells were
harvested in radioimmunoprecipitation buffer (150 mM
sodium chloride, 50 mM Tris-HCl, pH 7.4, 0.1% sodium deox-
ycholate (Sigma-Aldrich, D6750), 1 mM EDTA) and prepared
for western blot analysis. Calculation of the autophagic flux
was performed via subtracting the quantified and normalized
(to the ACT loading control) MAP1LC3B amount (in proce-
dure defined units) of the CQ-treated MEFs from the quanti-
fied and normalized MAP1LC3B amount of the untreated
MEFs.

Cell culture, transfection, and drug treatment

For MEF isolation, single embryos (E12.5) were used. MEFs
were grown in DMEM supplemented with 10% fetal calf
serum, 1:100 (vol:vol) L-glutamine (Gibco, 25030-024), 1:100
(vol:vol) sodium pyruvate (Gibco, 11360-39), 1:100 (vol:vol)
nonessential amino acids (Gibco, 1140-35), and 1:100 (vol:
vol) penicillin/streptomycin (Gibco, 15140-122) at 37�C and
5% CO2. Ciliogenesis was induced by starving confluent
MEFs in medium containing 0.5% fetal calf serum for at
least 24 h.

GLI1 overexpression in MEFs was achieved via transfection
of a construct encoding a HsGLI1-EGFP fusion protein. Full-
length HsGLI1 was cloned into a p-EGFP-C1 vector (BD Bio-
sciences Clontech, 6084-1). Transfection was performed using
the Lipofectamine 3000 detergent (Thermo Fisher Scientific,
L3000008) when the MEFs reached 70–80% confluency. At
6–10 h after transfection, MEFs were serum starved for 24 h.
Cells were either harvested for western blot analysis or fixed
and stained for fluorescence microscopy.

Cells were treated for 20 h with 10 nM rapamycin (Cell
Signaling Technology, 9904), for 20 h with 10 mM 3-methyla-
denine (Sigma-Aldrich, M9281), 5 mM SFN (Enzo Life Scien-
ces, ALX-350-230-M010), for 6 h with 1 mM ABT-737 (Viva
Bioscience, B2766-0001), for 2 h with 2 mg/ml 18a-GA
(Sigma-Aldrich, G8503-250MG) or 6 h with 40 mM CQ
(Sigma-Aldrich, C-6628). As a solvent control, cells were
treated for the same time with 0.1% DMSO; in the case of 3-
methyladenine, 18a-GA and CQ, serum-deprived DMEM
served as solvent and thereby as control. To stimulate SHH
signaling, cells were treated for 24 h with 200 nM SAG (Cal-
biochem, 566660). All treatment experiments were repeated 3
independent times.

Cryosections

The isolated embryos were fixed in 4% paraformaldehyde for
2 h at room temperature. Subsequently, the limbs were sepa-
rated from the animals and incubated separately in 30% sucrose
(Merck, 107651; in PBS [4 mM NaH2PO4¢H2O, 16 mM
Na2HPO4¢2H2O, 150 mM NaCl]) over night (o/n) at 4�C. On
the following day, embryos and limbs were embedded in
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Tissue-Tek O.C.T. Compound (Sakura Finetek Inc., 4583) and
then stored at -80�C. Transverse cryostat sections (7 mm in
thickness) were prepared. For staining with anti-OFD1, the sec-
tions were fixed 10 min in MeOH at -20�C.

Immunofluorescence

For immunofluorescence of MEFs, cells were grown on cover-
slips until confluency. After serum starvation for 24 h, MEFs
were fixed with 4% paraformaldehyde (for stainings with the
antibodies to phospho-[Ser473]-AKT1, Ac-TUBA, phospho-
[Ser33/37/Thr41]-CTNNB1 and phospho-[Ser2448]-MTOR)
or methanol (for stainings with the antibodies against BBS4,
MAP1LC3B, CDH, ubiquitin, ATG5 and OFD1). Fixed cells
were rinsed 3 times with sterile PBS. Permeabilization was per-
formed by incubating the cells in PBS-0.5% Triton X-100
(AppliChem, A4975,0500) for 10 min. After 3 washes with
PBS-0.1% Triton X-100, unspecific antigens were blocked for at
least 1 h at room temperature using PBS-0.1% Triton X-100
containing 10% donkey serum (EMD Millipore, S30-100ML).
In blocking solution, diluted primary antibodies were incubated
o/n at 4�C. After 3 washing steps with PBS-0.1% Triton X-100,
incubation with fluorescent secondary antibody (Jackson
ImmunoResearch Laboratories) all were raised in donkeys, anti-
mouse Alexa 488 (711-545-151), anti-rabbit Alexa 488 (711-
545-152), anti-mouse Cy 3 (715-165-151), anti-rabbit Cy 3
(715-165-152), anti-rabbit Dylight 405 (711-475-152), anti-goat
Dylight 405 (705-475-003) diluted in block was performed at
room temperature for 1 h followed by several washings and sub-
sequent embedding with Mowiol (Sigma-Aldrich, 81381).

For immunofluorescence on limb cryosections, sections
were permeabilized with PBS-0.5% Triton X-100 for 15 min at
room temperature. Blocking was performed with 10% donkey
serum in PBS-0.1% Triton X-100. The sections then were incu-
bated with the primary antibodies diluted in block o/n at 4�C.
After 3 washing steps, sections were incubated in the secondary
antibody (again diluted in blocking solution) for 2 h at 37�C
and then washed again. Finally, they were embedded in
Mowiol.

Image processing

Image acquisition and data analysis were performed at room
temperature using a microscope (Imager.A2; Carl Zeiss), 100x,
NA 1.46 oil immersion objective lens (Carl Zeiss), a mono-
chrome charge-coupled device camera (AxioCam MRm; Carl
Zeiss), and the AxioVision Rel. 4.8 software package (Carl Zeiss).

3D-structured illumination microscopy (3D-SIM) was per-
formed on a Zeiss ELYRA PS.1 system (Carl Zeiss) equipped
with an Andor EM-CCD iXON DU-885 with 1004 £ 1002 pix-
els at room temperature. Z-stacks were taken using a 100x
alpha-Plan-Apochromat oil immersion objective with a numer-
ical aperture of 1.46. To generate structured illumination a grid
pattern is projected onto the image plane in 5 different posi-
tions and at 5 different modulation angles to obtain high fre-
quency information within the low frequency information
captured by the optical system. For the Dylight405-,
Dylight488-, Cy3-channel back-computation of the lower fre-
quencies using Fourier transformation was performed using

the Zeiss ZEN Structured Illumination Processing tool to
increase the resolution in the final image.

Appropriate anti-mouse, rabbit, or goat Cy3, Dylight405 or
Dylight488 fluorochrome–conjugated secondary antibodies
(Jackson ImmunoResearch, 711-165-152; Jackson ImmunoRe-
search, 705-475-003; Jackson ImmunoResearch, 715-485-151)
were used to detect primary antibody binding. The following
Phalloidin-conjugates were used: CytoPainter Phalloidin-iFluor
488 reagent (Abcam, ab176753); CytoPainter Phalloidin-iFluor
405 reagent (Abcam, ab176752) and TRITC-Phalloidin
(Sigma-Aldrich, P1951).

Quantifications of immunofluorescence intensities

Intensity of ciliary protein staining was quantified using ImageJ
(National Institutes of Health). For the measurement of fluores-
cence intensities of ciliary base proteins, we selected the region
labeled by TUBG and the area in-between the TUBG staining
and the proximal part of the Ac-TUBA staining and measured
the total pixel intensity. For quantifications of the fluorescence
intensity of the phospho-(Ser473)-AKT1 signal, we used the
area marked by Ac-TUBA and quantified the average pixel
intensity to take the cilia length into account, thereby making
the data of wild-type and rpgrip1l¡/¡ cilia comparable. To get
rid of the ratio of nonspecific (background) staining, we sub-
tracted the mean value of the average pixel intensity (in the
case of phospho-[Ser473]-AKT1) or of the total pixel intensity
(for all ciliary base proteins) of 3 neighboring regions free from
specific staining.

Quantifications of autophagosomes in MEFs

All measurements (either MAP1LC3B or ATG5) were per-
formed in Fiji (National Institues of Health). Images were
loaded into the software and single-color planes were merged.
The cell border was marked and the total cell area was mea-
sured. The red channel within this area was copied and
pasted into a new Fiji file. Total autophagosome area was
measured via the “Object counter” Plugin, whereas an inten-
sity threshold between 30 and 40 (for both wild-type and
Rpgrip1l-deficient MEFs) was used to automatically mark the
autophagosomes and thereby measure their area. All auto-
phagosome areas for one cell were summed up. A ratio
between their sum and the total cell area was calculated. For
each individual per genotype, at least 10 cells and their auto-
phagosomes were measured.

Quantitative real-time reverse transcriptase PCR analysis

All quantitative real-time reverse transcriptase PCR analysis
were performed using TaqManTM probes and a StepOneTM

Real-Time PCR System (Thermo Fisher Scientific/Applied Bio-
systems). The used TaqManTM probes were Ptch1 (Thermo
Fisher Scientific/Applied Biosystems, Mm00436026_m1) and
Gapdh (Thermo Fisher Scientific/Applied Biosystems,
Mm99999915_g1) as a housekeeping gene. Measurements were
performed in triplets. Expression differences between wild-type
and Rpgrip1l-deficient MEFs were calculated via the DDCt-
method.

578 A. STRUCHTRUP ET AL.



Semiquantitative PCR analysis

MEF total cell RNA was isolated using the RNeasy Mini Kit
(Qiagen, 74104) and a RNase-Free DNase Set (Qiagen,
79254). The RNA was transcribed into cDNA by usage of a
reverse transcriptase system (Roche, 11785826001). With this
cDNA a semiquantitative PCR for Hif1a was performed, while
Hprt was used for normalization. The following primers were
used:

Hif1a forw.: TGATGCTCTCACTCTGCTGG
Hif1a rev.: AGAAGGACTTGCTGGCTGAT
Hprt forw.: CACAGGACTAGAACACCTGC
Hprt rev.: GCTGGTGAAAAGGACCTCT

Western blotting

Whole-cell lysates were obtained by lysis with radioimmuno-
precipitation buffer (150 mM sodium chloride, 50 mM Tris-
HCl, pH 7.4, 0.1% sodium deoxycholate, 1 mM EDTA). The
Bradford method was used to determine the protein amount.
All samples were normalized. Total protein (20 mg) was sepa-
rated by SDS-PAGE on polyacrylamide gels (10% or 15%)
and transferred to a PVDF membrane (Bio-Rad Laboratories
Inc., 1620177). Blocking was performed in either skimmed
milk powder or bovine serum albumin dissolved in PBS-0.1%
Tween 20 (Carl Roth GmbH + Co. KG, 9127.1) or TBS
(20 mM NaCl, 150 mM Tris)-0.1% Tween 20. The membrane
was incubated with antibodies against MAP1LC3B (in this
case the antibody from Cell Signaling Technology was used),
GLI3, phospho-(Ser2448)-MTOR, non-phospho-MTOR,
TSC1, phospho-(Ser939)-TSC2, non-phospho-TSC2, phos-
pho-(Ser473)-AKT1, non-phospho-AKT1, GLI1 or GFP. Anti-
ACT antibody was used as loading control. Proteins were
detected with secondary antibodies conjugated to horseradish
peroxidase (DakoCytomation, P0260; DakoCytomation,
P0448; Santa Cruz Biotechnology, sc-2020) and the ECL
detection kit (GE Healthcare, RPN2232). Band visualization
was performed using a LAS-4000 mini (Fujifilm) and their
intensities were measured using the Fiji Software (National
Institutes of Health).

Figure preparation

Figure preparation was performed by using Photoshop 7 or
CS4 (Adobe), and collages of all images for figure preparation
were arranged using Illustrator CS4 (Adobe).

Statistical data

Data are presented as means § SEM. A 2-tailed Student t test
was performed for all compared data by using Excel (Micro-
soft). A P < 0.05 was considered to be statistically significant
(�), a P < 0.01 was regarded as statistically very significant (��),
and a P < 0.001 was considered to be highly significant statisti-
cally (���).
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