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Abstract

The recent years have seen significant progress in the development of systemic therapies to treat 

patients with advanced melanoma. Use of these new treatment modalities, which include immune 

checkpoint inhibitors and small molecule BRAF inhibitors, lead to increased overall survival and 

better outcomes. Although revolutionary, these therapies are often less effective against melanoma 

brain metastases, and frequently the CNS is the major site of treatment failure. The development 

of brain metastases remains a serious complication of advanced melanoma that is associated with 

significant morbidity and mortality. New approaches to both prevent the development of brain 

metastases and treat established disease are urgently needed. In this review we will outline the 

mechanisms underlying the development of melanoma brain metastases and will discuss how new 

insights into metastasis biology are driving the development of new therapeutic strategies. Finally, 

we will describe the latest data from the ongoing clinical trials for melanoma brain metastases 

patients.
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1. Introduction

Among all tumor types, non-small cell lung cancer (NSCLC), melanoma and breast cancers 

have the highest propensity to metastasize to the brain1, 2. For melanoma, CNS involvement 

is clinically evident in over 40-60% of patients, with levels being as high as 75% at 

autopsy3. Without treatment, melanoma brain metastases (MBM) progress rapidly, with an 

average survival of approximately 3 months; approximately 50% of all melanoma deaths 

result from brain metastases 4. Brain metastatic melanoma cells disseminate through 

hematogenous spread, with the location of brain metastases being well correlated with the 

areas of the brain that receive the highest blood flow; 80% of brain metastases are located in 

the cerebral hemispheres, with much lower percentages being found in the cerebellum and 

brain stem (15% and 5%, respectively) 5. Risk factors for MBM development include male 

gender, head or neck primary disease site and the presences of visceral or nodal metastases 
6. Other reported risk factors for the development of MBM include increased serum lactate 

dehydrogenase (LDH) levels, 3 or more visceral metastases and a high Clark's level/Breslow 

thickness of the primary disease 7, 8. The initial clinical presentation of melanoma brain 

metastases typically comprises of headache, seizures, and neurological impairment.

Over the recent years there has been speculation that the incidence of brain metastases is 

increasing; most likely a result of improved systemic therapies and better detection of brain-

resident lesions through new imaging modalities. Until recently, no systemic therapies 

existed for MBM, with treatment largely consisting of surgery and radiation therapy (to 

manage symptoms and for palliation). The development of targeted therapies and 

immunotherapies for melanoma has improved overall survival (OS) for patients with stage 

IV disease9, 10. Despite these gains, treatment failure is common, and the brain is often the 

major site of disease progression; even when extracranial disease is well controlled 11. 

Indeed, in patients who achieve a complete response to the combination of dabrafenib and 

trametinib, 54% of eventual treatment failures are in the CNS. There is emerging evidence 

that patients with MBM respond to both immunotherapies and to targeted therapies, albeit 

with a reduced progression-free survival (PFS) compared to those with disease at 

extracranial sites 12. The reasons underlying these reduced durations of response remain to 

be determined, and may be a consequence of the unique microenvironment of the brain 

shaping the transcriptional and phenotypic behavior of brain-resident melanoma cells. In this 

review we will outline the latest findings on the biology that underlies MBM development. 

We will then discuss how this knowledge can help to define improved therapies for MBM.

2. The biology of melanoma brain metastases

2.1 Dissemination of melanoma cells to the brain: the blood brain barrier

Metastatic dissemination to the brain is a complex process that involves the escape of 

malignant cells from the primary tumor, their migration through the surrounding tissue into 
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the vasculature, survival in the circulation, exit from the circulation and passage through the 

blood brain barrier (BBB). Of these steps, the movement of cancer cells across the blood 

brain barrier is particularly difficult. The BBB consists of a physical cellular barrier, 

extracellular matrix (ECM) and drug/solute transporters (Figure 1). The physical barrier of 

the BBB consists of contiguous endothelial cells linked by multiple tight junctions 

(modulated by components such as ZO-1, claudins and occludins) that securely restrict the 

passage of macromolecules, drugs, toxins and pathogens into the brain 13-16. Brain vascular 

endothelial cells are distinct from those that constitute the vasculature of other organs in 

expressing high levels of drug pumps and low expression of leukocyte adhesion molecules. 

They also show low rates of transcytosis. Together these serve to restrict the passage of 

macromolecules as well as preventing the adhesion (and therefore transmigration) of 

immune cells onto the surface of the brain. The behavior of brain-resident endothelial cells 

is tightly regulated by neighboring astrocytes that send out multiple protrusions (called 

astrocyte foot processes) which tightly wrap the endothelial cells (Figure 1). Signals from 

the astrocytes induce BBB-like properties in the brain endothelial cells with a role for 

development signaling pathways, such as Wnt, being suggested 16-18. Recent work has also 

shown that fibroblast-like pericytes can contribute to BBB integrity, with loss of pericytes in 

transgenic mouse models increasing the permeability of the BBB to water and high 

molecular weight tracers 19. Pericytes contribute to BBB function in other ways such as 

regulating adherens and tight junctions in brain endothelial cells and helping to polarize the 

astrocyte end feet that interact with the cerebral microvasculature 19. Other proposed 

functions of the pericytes in the brain vasculature include the regulation of transcytosis and 

control of extracellular matrix deposition 20. Multiple pericyte populations are known to 

exist within the brain microvasculature, and it has been suggested that distinct subsets of 

these may help facilitate metastasis development. In experimental breast cancer models, the 

development of brain metastases is associated with increased BBB permeability that is 

secondary to the selection of pericytes with high desmin expression and decreased 

expression of laminin α2 in the percytic basement membrane13. The development of brain 

metastases typically involves the breakdown of BBB integrity; a multi-step process that 

involves dilation of the cerebral blood vessel, increased VEGF release, decreased ZO-1 

expression at the tight junctions and the initiation of an inflammatory response 21. There is 

evidence from preclinical models that the integrity of the blood brain barrier is an important 

regulator of the pattern of MBM growth. In cases where MBM growth was associated with 

breakdown of the BBB, the tumors grew as “ball shaped” masses that were demarcated from 

the brain parenchyma 14. In models where the BBB integrity was maintained (as 

demonstrated by lack of sodium fluorescein accumulation in the CNS space), the melanoma 

cells grew by co-opting existing blood vessels of the brain 14.

2.2 Migration into the brain

For many years the mechanisms that underlie the migration of melanoma cells into the brain 

have remained obscure. Dramatic new insights into this process have been made through the 

development of in vivo, live-cell imaging techniques that allow the fates of individual cancer 

cells to be followed through cranial window imaging and 2-photon microscopy22. These 

studies have demonstrated the migration of melanoma cells into the brain to be a multi-step 

process. In the initial phase, melanoma cells in the circulation move passively through the 
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brain vasculature and are carried along by the blood flow (Figure 2). Upon reaching the 

narrow capillaries of the microvasculature, the melanoma cells arrested and remained in a 

quiescent state for 1-9 days, before beginning to extravasate 22. The migration of cancer 

cells into the brain was significantly slower than into any other organ (∼6 hrs into the liver), 

perhaps explaining the long latency of MBM development compared to that of other organs 
23. The process of extravasation was dependent, in part, upon mechanical forces, with the 

cancer cells becoming rounded and developing cytoplasmic protrusions that served to push 

the endothelial cells apart (Figure 1). The loosening of the tight junctions between 

endothelial cells preceded the migration of the cancer cells through the BBB and was 

dependent upon multiple mechanisms including release of angiopoetin-2 and the expression 

of multiple pro-invasive integrins on the cancer cells (including integrin α3β1, αvβ3 and 

α4β1) 24-26. At the same time, the invading melanoma cells also expressed proteases (such 

as MMP-9 and heparanase) that degraded the basement membrane of the BBB 15, 27 (Figure 

1). Other proteases, such as cathepsin-S, were also critical for BBB transmigration with 

studies showing it to be secreted by multiple cell types including both macrophages and 

tumor cells. Mechanistically, cathepsin-S promoted brain metastasis development through its 

proteolytic activity, that cleaved the BBB tight junction protein JAM-B 25. Strategies to 

maintain BBB integrity, such as inhibition of cathepsin-S, using the small molecule inhibitor 

(VBY-999) reduced experimental brain metastasis formation 25. Other proteolytic enzymes, 

such as heparanase, also contribute to loss of BBB integrity, with studies showing 

heparanase expression to be increased in melanoma cells following exposure to 

neurotrophins 28.

Once melanoma cells have migrated through the BBB, they stay associated with the 

endothelial cells at the abluminal surface, in a manner analogous to pericytes (Figure 2). The 

melanoma cells that did not maintain contact with the blood vessels typically died 22. Initial 

growth of the melanoma micrometastases typically occurred along side the vasculature, with 

the vessels being frequently co-opted 22. Macrometastases eventually grew from the smaller 

micrometastases and remained associated with the co-opted blood vessels. Interestingly, 

some individual melanoma cells stayed dormant while associated with the brain 

microvasculature but maintained the ability to migrate along the blood vessels 22 (Figure 2). 

Whether these represent a potential reservoir of dormant melanoma cells remains to be 

determined.

2.3 The role of the brain microenvironment in the development of brain metastases

Once in the brain, tumor cells interact with multiple cell types; primarily the glia, which 

includes microglia, oligodendrocytes and astrocytes. The interaction of cancer cells with 

normal brain cells is complex with both tumor suppressive and tumor supportive effects 

being reported. For the most part, the brain is a hostile environment for cancer cells, with 

imaging studies demonstrating that the majority of cancer cells reaching the brain rapidly die 
22, 29. This protection is mediated, in part, through the release of proteases such as plasmin 

within the brain, that activate the death-inducing FAS ligand on astrocytes that trigger 

apoptosis in the cancer cells and inactivate L1-CAM 30. Successful brain metastatic cancer 

cells counteract these measures through the expression of protease inhibitors (such as the 

Serpins) and by increasing their activity in cell survival pathways 30, 31. Under physiological 
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conditions, healthy brain cell are protected from this proteolytic activity through expression 

of brain-specific protease inhibitors, such as the neuroserpins 30. Conversely, the host brain 

cells can also contribute to tumor progression, and it is known that both microglia and 

astrocytes become activated upon contact with cancer cells and often infiltrate the tumor 

mass 32-34. Co-culture of cancer cells with glia in vitro leads to increased tumor 

proliferation, suggesting that the glia are permissive for brain metastasis growth 32, 34-36. 

Microglia are the brain-resident macrophages and frequently become activated following 

interaction with tumor cells 37. There is evidence that the microglia, like tissue-resident 

macrophages, are involved in metastasis, with studies implicating them in the increased 

invasion and colonization of breast cancer cells into the brain through a mechanism 

involving Wnt signaling 32, 37, 38. Intriguingly, the activation of the microglia occurred 

following the arrest of the cancer cells in the cerebral blood vessels, long before they 

actually extravasate into the brain parenchyma 39.

The major non-neuronal cell type in the brain are the astrocytes, which comprise ∼50% of 

the total cells in the brain. Their primary function is to maintain homeostasis and they play 

roles in ionic balance, pH, metabolism, and the integrity of the BBB 40. Astrocytes are also 

the stromal cell most frequently implicated in brain metastasis development and become 

activated upon interaction with cancer cells (so-called reactive astrocytes), secreting many 

growth factors, chemokines and cytokines (factors including IL-6, TNF-α and IL-1β) that 

contribute to tumor cell survival 3231, 35, 36 (Figure 3). Reactive astrocytes can induce the 

expression of multiple pro-survival genes in brain-resident cancer cells including BCL2L1, 

TWIST 35, as well as pro-invasive matrix metalloproteinases such as MMP-2 and MMP-9 
38. Recent studies have suggested that brain metastatic cancer cells may also communicate 

directly with astrocytes through protocadherins and gap junctions, such as Connexin-43, 

through which the second messenger 2′3′-cyclic GAMP-AMP (cGAMP) is transferred 41 

(Figure 3). This, in turn, activates the STING pathway in the astrocytes, leading to the 

release of interferon (IFN)-α and tumor necrosis factor (TNF)-α, which acts in a paracrine 

fashion to increase STAT1 and NFκB signaling in the cancer cells, increasing their survival 

and drug resistance 41.

Crosstalk between brain metastatic cancer cells and astrocytes also seems critical for the 

maintenance of stemness and self-renewal in breast cancer brain metastases 33. Recent work 

has shown that the release of IL-1β from breast cancer brain metastases stimulates the 

expression of the Notch ligand JAG1 in nearby astrocytes, which increases self-renewal in 

the cancer stem cell compartment 33. Further evidence for a critical role of reactive 

astrocytes comes from direct targeting studies in which inhibition of PDGF receptor-β (a 

key growth factor receptor for astrocytes) prevents the growth of breast cancer brain 

metastases 42. As well as directly influencing tumor growth, astrocytes can also modulate 

drug sensitivity, with studies suggesting that astrocytes protect multiple cancer types 

including melanoma, breast cancer and lung cancer from chemotherapy, through direct cell-

cell contact 36.

In addition to influencing the behavior of brain metastatic cells through the release of 

soluble factors and through cell-cell adhesion, astrocytes also regulate cancer cells through 

epigenetic means. One major target of astrocyte mediated epigenetic regulation is expression 
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of the tumor suppressor (and PI3K/AKT pathway regulator) PTEN in brain metastatic 

cancer cells. Studies on breast cancer cells xenografted into mice have demonstrated that 

PTEN expression is typically lost only when the cells metastasize to the brain, but not to 

other organs 43. The loss of PTEN expression was reversible, being restored when the cancer 

cells were removed from the brain microenvironment 43. Mechanistic analyses showed this 

effect to be mediated by neighboring astrocytes that secreted microRNAs in exosomes that 

were then taken up by the cancer cells, leading to the epigenetic silencing of both PTEN 

RNA and protein (Figure 3). Depletion of the PTEN-targeting microRNA from the 

astrocytes, reversed the loss of PTEN in the neighboring tumor cells 43. Further experiments 

showed that PTEN loss was critical for the progression of brain metastases through a 

mechanism involving increased CCL2 release from the tumor cells that led to the 

recruitment of myeloid cells, resulting in increased growth and reduced the apoptotic levels 

in the brain metastases 43.

Other studies in melanoma have supported the idea that the CNS microenvironment shapes 

the transcriptional profile of brain metastases, with studies showing that melanoma cells in 

the brain adopt a more neuronal-like transcriptional state4445. Genes showing altered 

expression in melanoma cells in the brain microenvironment included those involved in 

neuropathic pain signaling, synaptic long-term potentiation, glutamate signaling and axonal 

guidance 45. The most significantly down-regulated genes were those involved in 

metabolism such as oxidative phosphorylation and mitochondrial function 45. Again, the 

effects of the brain environment upon the transcriptional profiles of MBM cells appeared to 

be epigenetic with methylation profiling showing a tight clustering between all of the brain 

metastases samples 43. These effects upon methylation could be partly recapitulated when 

the cancer cell lines were co-cultured with astrocytes.

The role of oligodendrocytes, whose primary function is to produce myelin that wraps axons 

and ensures efficient neurotransmission, in melanoma brain metastases development and 

progression has been little studied 46. It is however known that oligodendrocytes are highly 

sensitive to many of the chemotherapeutics commonly used to treat brain metastases and that 

the loss of oligodendrocytes following drug treatment is thought to underlie some of the 

neurotoxicities associated with chemotherapy use 47.

2.4 Signaling in melanoma brain metastases

The brain microenvironment is quite distinct from that of other organs raising the possibility 

that brain metastatic cancer cells may be dependent upon a unique series of signaling 

pathways. Early work, in which a series of non-matched cranial and extracranial melanoma 

metastases were compared by reverse phase protein array (RPPA) and 

immunohistochemistry, revealed a preferential role for PI3K/AKT signaling in the brain 

metastases samples 48. Specifically, it was shown that 60% of the brain metastasis samples 

had reduced PTEN expression and elevated PI3K/AKT pathway signaling; including S473-

AKT, T308-AKT and phospho-GSKα/β 48. These initial findings were later confirmed in a 

small immunohistochemistry (IHC) study of nine matched sets of cranial and extracranial 

metastases 49, as well as a further study of matched samples in which AKT pathway activity 
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was measured using RPPA 50. In the latter study, loss of PTEN expression was only 

observed infrequently, even in specimens with high levels of AKT signaling 50.

Recent preclinical animal modeling studies have demonstrated that AKT may also be 

required for the initiation of melanoma brain metastases. It was found that introduction of 

myristolated AKT1 into mouse melanocytes that were BRAF V600E mutant/Cdkn2a-null 

led to the development of melanomas that metastasized to the lung and brain in 67% and 

17% of cases, respectively 51. In this instance, the effects of AKT1 activation were not 

recapitulated by the silencing of PTEN, but PTEN loss did co-operate with myristolated 

AKT1 to reduce the latency of tumor development and the appearance of distant metastases 
51. Significant differences in PI3K/AKT/mTOR pathway utilization was observed between 

the PTEN-null and PTEN/myr-AKT groups detected by RPPA, with the myr-AKT1 group 

showing greater mTOR signaling activity 51. Although the role of PTEN loss in brain 

metastasis development from animal models has been somewhat conflicting, and only a 

subset of established brain metastases seemed to lack PTEN protein expression 50, there is 

evidence that its complete loss can be prognostic for MBM development at earlier disease 

stages 52. A retrospective analysis of 136 patients with stage IIIB/C melanoma showed that 

loss of PTEN expression (as determined by IHC staining) in conjunction with a BRAF 

V600E mutation predicted for a reduced time to brain metastasis development and a shorter 

overall survival 52.

In other recent work, gene expression profiling approaches have been utilized to identify 

putative drivers of MBM development. One such study identified the phospho-inositide 

binding protein PLEKHA5 as being associated with increased risk of MBM development 53. 

It was found that silencing of PLEKHA5 decreased the viability of the A375BR 

cerebrotropic melanoma cells and prevented their migration through BBB-like structures in 
vitro. Similar results were also observed in a cell line derived from a melanoma patient with 

extensive brain metastases 53. A major question facing the field is whether the melanoma 

cells that metastasize to the brain are genetically or epigenetically distinct from those that 

metastasize to other organs. There is already evidence from other cancers (including breast, 

lung and kidney cancers) that up to 53% of brain metastases have distinct, and possibly 

therapeutically tractable, mutations in the PI3K/AKT and EGFR/HER2 signaling cascades 

that are not present in matched metastases from extra-cranial sites 54. Other studies, 

characterizing circulating tumor cells (CTCs) from patients with and without breast cancer 

brain metastases, identified a unique gene expression signature in CTCs competent for brain 

metastases characterized by increased Notch, innate/adaptive immunity, pluripotent stem cell 

behavior, and immunosuppression 55.

Although much of the MBM research focus to date has been on the role of the PI3K/AKT/

mTOR pathway, other signal transduction cascades have also been implicated. One such 

signaling pathway is JAK/STAT3; a key driver of both cell growth and angiogenesis in 

multiple melanoma models. STAT3 functions as a transcription factor with direct effects 

upon the expression of cyclin D1, MMP-2, c-Myc and VEGF 56. Expression of STAT3 in 

melanoma cells increased their potential to develop brain metastases in nude mice, whereas 

expression of a dominant negative STAT3 reduced MBM formation 56. Further studies 

showed that increased STAT3 expression led to increased angiogenesis in vivo and increased 
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melanoma cell invasion in vitro, associated with increased expression of VEGR, bFGF and 

MMP-2 56. Attempts have also been made to determine whether growth factors can increase 

the homing of melanoma cells to the brain. A number of potential factors have been 

identified, including expression of endothelin receptor B (EDRB) on brain-metastatic 

melanoma cells 57. The brain is known to express high levels of the ligand ET-3, suggesting 

a possible brain homing mechanism 57. Melanomas also express high levels of receptors for 

neurotrophins, with levels of p75NTR being associated with increased risk of MBM 

development 28. Multiple ligands for the neurotrophin receptors, such as neurotrophin-3 

(NT3) are expressed in astrocytes, and their expression is typically increased upon astrocyte 

activation; again suggesting a possible homing signal for melanoma cells to the brain 28, 58.

Another unique feature of the brain is its metabolic environment, which is characterized by 

high levels of glucose oxidation that are required to meet the energy demands of neuronal 

function 59, 60. There has been some suggestion that the metabolic microenvironment of the 

brain may influence both tumor progression and drug responses in MBM. Preclinical studies 

in which CTCs from stage IV breast cancer patients were seeded into either cranial or extra 

cranial sites of immunodeficient mice showed that the cancer cells that adapted to grow in 

the brain underwent metabolic rearrangement characterized by increased dependency upon 

glycolysis, the TCA cycle and oxidative phosphorylation 61. These brain-adapted cancer 

cells also showed increased activity in the pentose phosphate pathway and the glutathione 

system which provide protection under conditions of high-level ROS generation 61. Other 

work showed that breast cancer cells growing in the brain had higher expression of 

glycolytic enzymes but did not show signs of increased glucose uptake. Instead it was found 

that these metastatic breast cancer cells proliferated independently of glucose, and showed 

enhanced gluconeogenesis as well as metabolism of glutamine and branched chain amino 

acids. Silencing of key metabolic enzymes such as fructose 1,6-bisphosphatase reduced the 

growth of brain metastatic cells, leading to increased overall survival of the tumor bearing 

animals 62.

3. Therapeutic strategies for Melanoma Brain Metastases

3.1 Radiation therapy

Whole brain radiation therapy (WBRT) has been a mainstay of treatment for brain 

metastases since the 1950s, when it was first shown to improve neurological function of 

MBM patients. Despite its widespread use, WBRT has not been shown to improve long-term 

survival and most patients develop recurrences. An analysis of patients treated with WBRT 

during the early 2000s demonstrated the median OS to be 3.4 months, compared to 2.1 

months in patients receiving best supportive care. Melanomas are known to be radiation 

resistant - perhaps explaining the lack of long term clinical benefit following WBRT. At this 

time use of WBRT is restricted to patients who are inoperable, or have large volume tumors 

or diffuse, symptomatic disease. A more effective approach, particularly in the treatment of 

smaller lesions, has been stereotactic radiosurgery (SRS). This approach utilizes a Gamma 

knife or a linear accelerator and involves use of a small, focused beam of high-energy 

radiation to directly ablate the lesion while leaving the surrounding brain tissue intact. In 

patients with low numbers (less than 5-7) of small MBM, SRS can be associated with a high 
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rate of local control that has been associated with a median OS of 5-11 months in single-

institution studies 8. Although SRS is now the standard of care for patients with limited 

numbers of MBM, its impact on PFS and OS has never been formally evaluated in 

randomized clinical trials.

3.2 Targeted therapy approaches to brain metastasis treatment

The discovery of activating mutations in the serine/threonine kinase BRAF as a driver 

oncogene in ∼50% of all cutaneous melanomas has revolutionized the treatment of 

melanoma 63. At the molecular level, mutations in BRAF contribute to the oncogenic 

behavior of melanoma cells through activation of the mitogen activated protein kinase 

(MAPK) pathway leading to uncontrolled cell growth, increased cell survival and invasion 
64-66. To date, two BRAF inhibitors (vemurafenib, dabrafenib) have been FDA-approved for 

the treatment of stage IV melanoma with a third (encorafenib) being submitted to the FDA 

for review (in combination with the MEK inhibitor binimetinib). All three of these drugs 

show good single-agent activity and rapidly shrink established melanomas at multiple 

extracranial sites. Although initial responses to BRAF inhibitors are highly impressive, 

resistance is commonplace, with reactivation of the MAPK pathway through multiple 

mechanisms (NRAS-mutations, BRAF-splice mutants, MEK mutations, adaptive RTK 

signaling) being implicated 67-70.

BRAF-mutant melanomas frequently metastasize to the brain, with 58% of MBM patients 

being BRAF-mutant 71. Patients on BRAF inhibitor therapy show an increased risk of 

progression in the brain, even when the extracranial disease is well-controlled 72-75. Even 

among patients who respond well to BRAF inhibitor therapy and have complete responses, 

the CNS is the most frequent site of treatment failure. It has long been believed that the brain 

is a sanctuary site for drug resistant disease because of poor CNS drug penetration. It is 

known that BRAF inhibitor levels are lower in the CSF of mice compared to plasma, with 

both dabrafenib and vemurafenib being substrates for the drug efflux pumps ABCB1 and 

ABCG2 76, 77. Of the two FDA-approved BRAF inhibitors, vemurafenib has a much lower 

brain penetration (typically a 3-log lower concentration in mouse CSF than plasma) than 

dabrafenib 76, 77. Despite this, the BBB is frequently compromised in MBM patients and 

therapeutics with extracranial activity frequently show intracranial activity75, 78-80. Analysis 

of MBM patients on vemurafenib therapy showed drug levels in the CSF to be highly 

variable (a likely reflection of differences in BBB integrity), but consistently lower than that 

of the plasma 81. Routine MBM treatments such as SRS and surgery frequently compromise 

the BBB and likely increase the concentrations of drug reaching the brain. Of note, the 

MBM of two patients who showed the highest reported vemurafenib levels in their CSF had 

prior SRS 81.

In the largest brain-specific single agent BRAF inhibitor trial to date, dabrafenib had an 

intracranial response rate of 39% 82. Despite these promising results, PFS and OS levels 

remain lower for brain metastasis patients than for patients without CNS involvement, and 

intracranial progression is frequently the major factor that limits the overall systemic 

responses. More recent studies have focused on the BRAF-MEK inhibitor combination, with 

the COMBI-MB trial of dabrafenib-trametinib reporting response rates of up to 58% in 
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patients with asymptomatic MBM who had not received prior therapy for brain metastases 
12. Encouragingly, the rate of response to the BRAF-MEK inhibitor combination in the brain 

was similar to that observed at extracranial sites and no unique brain-specific toxicities were 

observed 12. Despite these promising results, responses in the brain were more short-lived 

than those at non-CNS sites (6.5 months vs 12.9 months), and the brain was the major site of 

treatment failure 12. The finding that responses were lower in the brain, suggested a role for 

the brain microenvironment in therapeutic escape, and there is growing evidence that the 

brain microenvironment plays an active role in BRAF-MEK inhibitor resistance 83. This 

phenomenon has been most extensively explored in vitro with studies demonstrating that 

secreted factors in the CSF limit vemurafenib-induced apoptosis in melanoma cells through 

increased PI3K/AKT signaling49, 73, 84. Other work showed that growth of melanoma cells 

in astrocyte conditioned media also reduced sensitivity to vemurafenib 49 (Figure 3). The 

protective effects of both CSF and astrocyte-conditioned media were reversed through PI3K 

inhibition 49. Other evidence of brain microenvironment-driven resistance comes from 

studies in breast cancer in which CNS metastases exhibited HER3-mediated resistance to 

brain-penetrant PI3K inhibitors that was lacking at extracranial metastatic sites 85. More 

recent in vivo studies demonstrated that the PI3K inhibitor buparlisib was effective at 

treating human melanoma cells xenografted into the brains of mice 84. In this instance, PI3K 

inhibition was more effective against NRAS-mutant rather than BRAF-mutant melanoma 

brain xenografts 84. Other studies showed that the combination of buparlisib with the BRAF 

inhibitor encorafenib improved survival of mice with intracranial melanomas, compared to 

encorafenib alone 50. There may be circumstances in which brain-resident melanoma cells 

show resistance to PI3K/mTOR inhibition. Studies using cranial window chamber assays 

showed melanoma cells located within the perivascular niche of the cerebral vasculature to 

undergo less apoptosis following PI3K inhibitor treatment than melanoma cells further away 

from blood vessels 14. These data suggest that brain endothelial cells could regulate 

melanoma cell survival following drug treatment. Whether or not the vascular niche also 

conveys “stemness” to brain resident melanoma cells – as has been reported for glioblastoma 

– remains to be determined 86. Stemness in melanoma remains a controversial issue. 

Multiple studies have convincingly shown that melanomas lack a classical “cancer stem 

cell” population and instead harbor a high percentage of cells (∼25%) that possess tumor-

initiating qualities 87. Another potential therapeutic target in brain metastases and brain 

tumors is the autophagy pathway. Autophagy is a process in which cellular material is 

transported to lysosomes for degradation, recycling and the maintenance of cell metabolism. 

There is evidence that astrocytes upregulate autophagy in breast cancer cells that are 

metastatic to the brain, and that autophagy inhibition, using chloroquine can resensitize 

BRAF mutant brain tumor cells to BRAF inhibitors 88, 89.

3.3 Immunological approaches to brain metastasis treatment

Although the brain is generally considered to be an immunologically privileged site, the 

BBB is frequently impaired in patients with MBM, making immune infiltration likely. An 

analysis of multiple brain specimens using immunohistochemical staining revealed that 

lymphocyte infiltration was correlated positively with overall survival. Among the various T-

cell subsets, increased levels of CD8+ effector T-cells was predictive of a better prognosis. 
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The inhibitory ligand programmed death ligand-1 (PD-L1) was expressed in the tumor, 

infiltrating lymphocytes and the reactive glia of the brain 90-92.

PD-L1 is the ligand of an immune inhibitory receptor called programmed death (PD)-1, 

which is expressed on the surface of activated (and exhausted) T-cells 93. This axis 

constitutes the most pertinent example of an immune checkpoint; a complex array of ligands 

and receptors that serve to tone down immune responses that would otherwise damage 

healthy tissues. It is now well established that tumors have the ability to hijack this 

mechanism of immune control, in order to prevent tumor immune destruction. Therefore, 

they constitute an attractive target for the design of cancer therapies aimed at stimulating an 

anti-tumor immune response94. The first therapy targeting immune checkpoint molecules 

was an antibody that blocked the interaction of cytotoxic T-lymphocyte-associated protein-4 

(CTLA-4) with its ligands 95. Several reports, including anecdotal cases96 and retrospective 

analyses of clinical trial data 97-100, have documented that patients benefited from anti-

CTLA-4 therapies based upon the systemic administration of ipilimumab. The first 

prospective phase II clinical trial of this immune checkpoint inhibitor in patients with MBM 

was published in 2012. The authors reported that, within a cohort of neurologically 

asymptomatic patients, intravenous anti-CTLA-4 treatment resulted in disease control in 

18% of the patients. It is important to note that they include complete responders, partial 

responders, and patients with stable disease in the category “disease control”. Within a 

parallel cohort that included patients displaying neurological symptoms and receiving 

corticosteroid therapy, the rate of disease control dropped to 5% 101. It was concluded that 

systemic anti-CTLA-4 treatment provided a therapeutic benefit to MBM patients, in 

particular to those with a small disease burden.

In a recent publication, Kluger et al. showed that high PD-L1 expression correlated with 

greater CD8+ T-cell infiltration which, in turn, correlated with a delayed onset of melanoma 

brain metastases and improved survival 102. These findings showed that cytotoxic T-cells 

have the ability to accumulate, and presumably recognize, melanoma lesions located in the 

brain. Moreover, they suggested that patients with spontaneous CD8+ T-cell infiltrates could 

benefit from anti-PD-L1 or anti-PD-1 therapies. Consistently, Anderson and collaborators 

described, in a small retrospective study, that patients receiving radiotherapy in combination 

with anti-PD-1 therapy (pembrolizumab) experienced a higher rate of objective responses 

than those receiving radiotherapy alone. Importantly, this effect was not associated with 

severe adverse events, suggesting that immune checkpoint inhibition may represent an 

effective and safe option for patients receiving radiotherapy103.

Currently, four clinical trials are listed in clinicaltrials.gov, that match the search for 

“immunotherapy AND melanoma brain metastasis”: NCT03340129, NCT02374242 

(Australia), NCT02460068 (Italy), and NCT03297463 (USA). All of these involve 

multimodal treatments: combining two types of immunotherapies (NCT02374242, anti-

PD-1 and anti-CTLA4; NCT03297463, IL-2 plus anti-CTLA-4) or checkpoint blockade with 

radiotherapy (NCT03340129, anti-PD-1 and anti-CTLA-4) or with chemotherapy (anti-PD-1 

and anti-CTL4, plus Fotemustine). We anticipate that the number of immunotherapy clinical 

trials including patients with melanoma brain metastases will continue to increase, as the 

notion of the CNS being an immune sanctuary continues to be challenged. Moreover, the 
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description of multiple immune checkpoint receptors beyond CTLA-4 and PD-1 will likely 

lead to the development of newer and hopefully more effective combinatorial approaches. A 

careful analysis of the specific features of intracranial melanoma lesions, and their 

immunological properties, will be instrumental for the design of the appropriate therapies.

Two Phase 2 studies that combined anti-CTLA treatment (Ipilimumab) with anti-PD1 

inhibition (Nivolumab) were recently completed and presented in abstract form 104, 105. Both 

studies, which consisted of patients with mostly asymptomatic MBMs along with a small 

cohort of symptomatic or previously irradiated MBMs, showed very similar results. The 

Checkmate 204 Study (NCT02320058) comprised short-term follow up of 75 patients. In the 

asymptomatic cohort there was an overall intracranial response rate of 56% (95% 

CI=44-68%) with approximately 20% of the patients experiencing a CR. In general, the 

response rate of systemic (i.e. non-intracranial) disease was concordant with that of 

intracranial brain disease. The results were remarkable (Figure 4), but came at a cost. 

Approximately half of the patients had Grade 3-4 toxicities - which were manageable. 

Together these studies suggest that the ipilumumab-nivolumab combination has good 

activity against asymptomatic MBM along with a tolerable safety profile. Future adoption of 

this regimen may change clinical practice and could avoid or delay the use of WBRT or 

SRT.

Both studies had small cohorts of poorer prognosis patients who were symptomatic, 

receiving corticosteroids, had leptomeningeal disease or had previously been irradiated 105. 

These patients had a poorer response rate and possibly a worse OS. The current challenge 

for the field is to understand the biology that distinguishes responders and non-responders 

allowing better predictions to be made as to who should receive conventional therapy for 

MBMs (such as SRT).

In addition to immune checkpoint blockade, adoptive immunotherapy has gained momentum 

over the past few years, leading to the recent FDA approval of two T-cell products for the 

treatment of B-cell malignancies106, 107. This group of therapies involves the isolation of 

immune cells from the patient, ex vivo expansion and manipulation of the T-cell 

compartment, and reinfusion of activated tumor-targeted T-cells. Open-repertoire T-cells 

isolated from the peripheral blood can be retargeted to tumor-associated antigens through 

genetic manipulation, by induced expression of a cloned T-cell receptor (TCR) or a synthetic 

immune receptor (CAR, zetakine, etc.)108. Alternatively, naturally occurring tumor-targeting 

T-cells can be isolated from the tumors109. Tumor-infiltrating lymphocytes (TIL) can be 

removed from the suppressive tumor microenvironment and stimulated to regain their 

effector function. Once administered systemically, TILs are expected to traffic back to the 

tumors and unleash their cytolytic potential. Although TILs have been successfully tested in 

clinical trials of advanced melanoma110, there is limited information on their efficacy in the 

control of intracranial lesions. Patients with MBM have been typically excluded from most 

clinical trials. However, anecdotal cases suggesting that TILs can induce objective responses 

in intracranial lesions have been reported. In a retrospective analysis, Hong and collaborators 

showed that 41% of patients treated systemically with TIL experienced complete regression 

of their melanoma brain metastases and an additional 35% experienced partial responses. In 

the same report, the authors described that 22% of patients treated with TCR-transgenic T-
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cells also underwent complete responses 111. In a separate retrospective study, including 

MBM patients treated with a wider range of immunotherapy regimens (high-dose IL-2, 

vaccines, adoptive immunotherapy, monoclonal antibodies, and combinations thereof), 9.8% 

of the patients experienced a complete response to systemic immunotherapy. In addition, 

26.8% experienced partial responses and 4.9% had stable disease following treatment 112. 

While loco-regional cellular therapies have not been tested for MBM, a recent case report on 

the treatment of glioblastoma multiforme, with intraventricular administration of autologous 

T-cells targeting IL13RA2, resulted in a complete response with no evidence of toxicity113. 

These results suggest that intracranial immunotherapy may be an option for MBM as well, 

provided that the correct tumor-associated antigen is targeted.

4. Future perspectives: are we doing better and what next?

Targeted therapies and immune checkpoint inhibitors have proven transformative in the 

treatment of advanced melanoma. It is an open question to whether these have also impacted 

the survival of patients with MBM. Prior to the widespread use of these new therapeutic 

modalities (2011), 44% of melanoma patients with distant metastases had brain involvement 

during the course of their disease. The median OS for this patient cohort from time of first 

brain metastases diagnosis was 4.6 months 4. Other large studies, such as that from the 

Sydney Melanoma Unit reported similar levels of OS, at 4.1 months 6. In these analyses, the 

numbers of brain metastases were prognostic, with individuals having >3 lesions having a 

worse outcome than those with less than 3 lesions. The presence of disease in the 

leptomeninges was associated with significantly worse outcome and associated with a 

median OS of less than 2 months. A more recent analysis by our group on a cohort of 610 

stage III/IV melanoma patients evaluated between 2000-2012 highlighted the impact of new 

targeted and immunotherapies upon MBM patient survival 114. It was found that although 

the incidence of MBM development has remained constant at 40% of patients with advanced 

melanoma, the median OS improved from 7.5 months (2000-2008) to 22.7 months (2011-

last date of follow up) 114. No significant differences were noted with regards to BRAF 

mutational status, sex or type of therapy received.

Although there are clear improvements in outcomes for MBM patients, we do not yet have 

therapies that are equi-effective against extracranial and cranial disease. A number of 

clinical trials are currently underway, evaluating novel drugs and drug combinations such as 

anti-CTLA-4/anti-PD-1 (ipilimumab-nivolumab), anti-PD-1/VEGFR inhibitor 

(pembrolizumab-bevacizumab), anti-CTLA-4/SRS, single-agent PI3K inhibition (buparlisib) 

and CDK4/6 inhibition (abemaciclib). What is needed are new therapeutics, defined by both 

the biology of the brain microenvironment and the metastatic cascade. Routine tissue 

interrogation of the MBMs of patients treated with novel therapies would help uncover novel 

targets and mechanisms of resistance. Strategies that can predict which patients are risk for 

MBMs (e.g. serum CTCs that are neurotrophic), prevent and treat resistance mechanism in 

the brain microenvironment, and the abrogate the emergence of brain-specific MBM clones 

are expected to make major inroads towards the long term management of melanoma.
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Figure 1. The migration of melanoma cells through the blood brain barrier
To invade into the brain, the melanoma cells must migrate through the blood brain barrier. 

Under normal physiology the BBB is formed by tightly interlocking endothelial cells that 

are surrounded by a basement membrane and astrocyte foot processes. Pericytes also 

contribute to BBB integrity by regulating brain endothelial cell behavior. Movement of 

melanoma cells through the BBB is a multi-step process that involves pro-invasive integrins, 

the loosening of the endothelial cell tight junctions, degradation of the basement membrane 

(through the release of MMPs and other proteases) and mechanical forces that push the 

endothelial cells apart.
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Figure 2. The process of MBM development
Melanoma cells move passively through the vasculature until they reach the smaller vessels 

of the brain. Here they arrest due to size restriction until moving through the blood vessel 

wall and then remaining in contact with the abluminal surface. Successful brain metastases 

often secrete protease inhibitors that abrogate the anti-tumor effects of serpins secreted by 

the host astrocytes.
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Figure 3. Cross-talk between cancer cells and astrocytes contributes to the progression of brain 
metastases
The interaction of cancer cells and astrocytes frequently causes astrocyte activation and the 

release of multiple growth factors that contribute to tumor progression. Astrocytes can also 

secrete exosomes containing microRNAs that silence key tumor suppressors such as PTEN. 

Co-culture of astrocytes with melanoma cells also limits responses to BRAF inhibition 

through increased PI3K/AKT activity in the melanoma cells. At the same time astrocytes 

connect directly to cancer cells through Connexin-43 (Cx43) mediated gap junctions, where 

the transfer of the second messenger cGAMP activates the STING pathway in astrocytes 

leading to the release of IFNα and TNFα to stimulate STAT1 signaling in the cancer cells, 

leading to enhanced survival and chemoresistance.
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Figure 4. Impressive responses to ipilimumab and nivolumab in the brain
A CT scan of a 71 y.o. man with melanoma lung metastases and approximately 12 

asymptomatic brain metastases (Panels A pre-gadolinium scan & B post-gadolinium, blue 

arrows). Panel B shows considerable surrounding edema (red arrow). After one cycle of 

Ipilimumab and Nivolumab he had a PR in his lungs and a major PR in his brain (not 

shown). Four months later, he had a near CR in his lungs and near CR in his brain (Panel C 

pre-gadolinium scan shows no abnormalities or hemorrhage) and a single tiny area of 

enhancement in his brain (Panel D, post-gadolinium, blue arrow). The other 11 brain lesions 

resolved completely. In spite of the edema on his baseline scan (Panel B solid arrow) this 

was never symptomatic nor had any “pseudoprogression”.
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