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Abstract Modern scientific endeavors increasingly require
team collaborations to construct and interpret complex
computational workflows. This work describes an image-
analysis environment that supports the use of computa-
tional tools that facilitate reproducible research and sup-
port scientists with varying levels of software develop-
ment skills. The Jupyter notebook web application is
the basis of an environment that enables flexible, well-
documented, and reproducible workflows via literate pro-
gramming. Image-analysis software development is made
accessible to scientists with varying levels of program-
ming experience via the use of the SimpleITK toolkit,
a simplified interface to the Insight Segmentation and
Registration Toolkit. Additional features of the devel-

opment environment include user friendly data sharing
using online data repositories and a testing framework
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that facilitates code maintenance. SimpleITK provides a
large number of examples illustrating educational and
research-oriented image analysis workflows for free down-
load from GitHub under an Apache 2.0 license: github.com/
InsightSoftwareConsortium/SimpleITK-Notebooks.

Keywords Image analysis · Open-source software ·
Registration · Segmentation · R · Python
Introduction

Research and educational activities that include analysis of
biomedical images are carried out by diverse communities
that include physicians, biologists, biomedical engineers,
physicists, mathematicians, computer scientists, and oth-
ers. As a consequence, similar image analysis tasks are
performed by people with significantly different levels
of software development skills. Less-experienced software
developers often use programs that facilitate high-level
computational workflows via graphical user interfaces such
as 3D Slicer [8] and Fiji [24]. More experienced software
developers often prefer to directly use computational toolk-
its such as the Insight Segmentation and Registration Toolkit
(ITK) [13]. Many in this diverse community of scientists
have limited formal training and skills as programmers
or software developers. This observation was described
in [10]: “In the Future, Everyone Will Be a Programmer for
15 Minutes”. To support their work, these non-expert devel-
opers need tools to address the challenges of testing and
maintaining their software creations.

An essential requirement for confirming any conclusions
described in a scientific publication, including biomedical
image analysis findings, is reproducibility [7, 21]. Satisfying
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this requirement is challenging when the computational
workflow is manual, which is often the case when using
programs with graphical user interfaces. In these situations,
the workflow is not documented in an automated manner.
The need for documented computational workflows is likely
the reason why both 3D Slicer and Fiji offer automated
scripting capabilities. While this addresses the reproducibil-
ity issue, in many cases, the flexibility of such solutions is
limited when compared to directly using an image analy-
sis toolkit such as ITK. Conversely, the use of ITK requires
considerable proficiency in the C++ object-oriented program-
ming language, a relatively specialized skill.

Another significant aspect of modern scientific research
is its collaborative nature. Collaborations between multi-
ple groups at different institutions and possibly countries is
common and appears to be a hallmark of the current sci-
entific landscape [1, 2]. The work presented here is one
such example. Developing biomedical image analysis work-
flows in a distributed collaborative setting requires sharing
of data, computational models in natural language including
their mathematical derivations, source code, and the current
results both numeric and in graphical form. For active col-
laborations, all four components need to be synchronized
so that participants in the research endeavor are aware of
the current state of affairs. In most cases, the four com-
ponents are separate: (1) there is a document describing
the model and mathematical derivation, (2) there are source
code files, ideally, managed using a version control sys-
tem, (3) with both originating data, and (4) summary result
files. The management of the separate components is not
an ideal approach to communication between participants
because it requires that each participant develop connections
between sections in the model description, the implemen-
tation, and the corresponding results. These issues were
clearly identified in the 1980s, with the proposed solution
being literate programming [16]. In the literate program-
ming approach, the computation description using natural
language, figures, and accompanying mathematical deriva-
tions are embedded with the implementation in a single
document. This approach facilitates improved understand-
ing in the educational setting and can enhance collaborative
work. Unfortunately, while the idea is attractive, it was not
widely adopted till rather recently.

In this work, we present an image-analysis environ-
ment which addresses the challenges described above. We
enable flexible reproducible computational workflows using
a simplified interface to ITK that is accessible to program-
mers with varying levels of experience. The workflows
are implemented using a web-based literate programming
environment that provides opportunities for improving col-
laborations. Finally, all necessary components are combined
in a testable, maintainable image analysis environment with
transparent data sharing via online repositories.

Materials and Methods

Three elements that comprise the image-analysis environ-
ment are the SimpleITK toolkit, the SimpleITK Jupyter
notebooks, and the development infrastructure.

SimpleITK

Overview

SimpleITK, originally introduced in [18], is a simplified
programming interface to the algorithms and data struc-
tures of the Insight Segmentation and Registration Toolkit.
SimpleITK has specializations for multiple programming
languages including C++, Python, R, Java, C#, Lua, Ruby,
and TCL. The SimpleITK interfaces address the primary
challenge associated with using ITK algorithms by directly
allowing scientific domain experts to use the most common
forms of these algorithms in any one of the program-
ming languages that they are familiar with. SimpleITK
enables users to use the skills they have rather than requir-
ing a significant amount of effort to become proficient
in C++.

Three characteristics of ITK that make it a phenome-
nal platform for efficiently implementing complex medical
image analysis tools also require advanced software devel-
opment experience. The first characteristic is that the toolkit
is distributed in source code form, requiring the developer to
compile ITK before they can use it. The second character-
istic derives from ITK’s extensive use of the C++ template
mechanism to provide data-type flexibility. Finally, ITK
components are designed for use as part of a data analysis
pipeline. ITK elements are connected sequentially to con-
struct the pipeline with no computations performed during
pipeline construction. This powerful pipeline architecture
adds complexity that is a significant barrier to implemen-
tation for many ITK newcomers. Each of these power-
enabling characteristics requires specialized understanding
of advanced programming concepts.

SimpleITK shortens the time it takes to access the ITK
toolkit algorithms by trading-off potential flexibility and
performance for global ease of use. There are binary distri-
butions for a variety of programming languages. It abandons
the use of templates in favor of a small subset of a specific
pixel, image, and filter types which correspond to the most
widely used data-type combinations. And finally, it hides
the use of the filter pipeline in favor of the more simple pro-
gramming approach whereby the user provides input to a
filter which immediately returns the output.

When introduced in [18], SimpleITK included a large
number of components for image filtering and segmen-
tation. Since then, the toolkit has been significantly
extended to include over 280 ITK filters, with the primary
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addition being the incorporation of the ITK version 4
(ITKv4) registration framework [3]. This addition com-
pletes the SimpleITK functionality, with comprehensive
support for image filtering, segmentation, and registration.
We next describe the new registration framework, starting
with its two principal data elements, transformations, and
images.

Transformations

The toolkit supports all of the transformation types supported
by ITK, both those with a global domain such as rigid trans-
formations and those with a local domain such as displace-
ment fields. In addition to the standard transformations, with
the introduction of the ITKv4 registration framework, we
include its associated composite transformation.

The composite transform allows representation of mul-
tiple transformations applied one after the other. Each of
the transformations is added into the composite transform
using stack-based semantics, first added last applied. For
instance, to represent Tcomp = Taff ine(Trigid (x)), we first
add Taff ine to the composite transform and then Trigid .
The composite transform enables easy representation of
a transformation with a global domain that also includes
multiple transformations with local domains in a single
transformation. This is a useful feature for representing a
complex transformation with multiple deforming regions
while other regions are only effected by the global transfor-
mation. Figure 1 illustrates this scenario. In the context of
registration, the use of a composite transformation requires
some attention. The parameters that are optimized are only
those of the last added transformation and not all of the
parameters which comprise the complete transformation.
That is, while Tcomp above is an affine transformation,

Fig. 1 Visualization of a single composite transform representing a
translation (x = 1, y = 0) and two deformation fields. The first is
a uniform translation (x = 1, y = 1) for all locations in the domain
[−1 − 1] × [1, 1]. The second is a uniform translation (x = −1, y =
−1) for all locations in the domain [1, −3] × [3, 1]. Note that the
arrows are scaled for improved visualization

registration will only modify the parameters of Trigid during
the optimization process.

Images

The second principal data element in SimpleITK are
images. To facilitate adoption of SimpleITK in various lan-
guages, indexing conventions and access to sub-regions of
the image, often referred to as slicing, are language specific.
For example, in the R language indexes start at one, while
in the Python language they start at zero. Thus for the same
2× 2 image, valid index values in Python are in [0, 1] while
in R they are in [1, 2].

A fundamental tenet of ITK and consequentially of Sim-
pleITK is that images occupy a physical region in space.
This tenet is critical for adoption of tools to real-world med-
ical imaging applications. An image is thus defined by its
voxel level content and additional meta-data including its
origin, the spacing between pixels and a direction cosine
matrix defining the physical direction of each of the image
axes. This differs from most image-analysis libraries that
treat images as simple arrays of values. Figure 2 illustrates
the use of spatial information required to correctly resample
an image. Not to preclude the use of external image-analysis
libraries, SimpleITK provides functionality for transferring
the image data to and from array structures in the native
language.

Registration

SimpleITK provides an easily configurable multi resolution
registration framework supporting a variety of transforma-
tion types, optimization algorithms (both derivative free
and derivative based), similarity metrics, and interpola-
tors. The framework uses a ImageRegistrationMethod

component to represent a registration algorithm and the
user configures the underlying ITKv4 components via this
component. In addition, some variations of the Demons reg-
istration algorithms are implemented independently from
the ImageRegistrationMethod as they do not fit into
the framework given that they are limited to computation
of a deformation field and assume the intensity values of
corresponding structures do not change.

A novel aspect of the ITKv4 registration framework
which often confuses newcomers is the use of a virtual
image domain. This feature is also included in SimpleITK,
and involves three transformations instead of the single
transformation used by the traditional registration approach.
The default values of the registration framework allow one
to easily ignore this complexity reverting to the use of
the traditional domains where a single transformation maps
between the fixed image domain and the moving image
domain. The motivation for introducing the virtual image
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Fig. 2 Coronal slice extracted
from PET volume: (left) original
intensity values saved in jpg
format, which does not take into
account the physical spacing
between sample (right) intensity
values isotropically resampled
and then saved in jpg format. To
resample the original intensities
onto an isotropic grid, we use
the image’s spatial information.
The resampled image should
occupy the same physical region
in space as the original. The
code above illustrates that
resampling takes this into
account by specifying that both
images have the same origin and
axes direction but different pixel
spacings (4.0 × 2.5 vs.
2.5 × 2.5 mm) and
consequentially grid sizes
(168 × 344 vs. 273 × 344)

# A. Write image, ignoring the fact that pixels are non-isotropic
sitk.WriteImage(coronal_slice, 'not_using_spatial_knowlege.jpg')

# B. Write image, using pixel sizes and the image's spatial extent
original_spacing = coronal_slice.GetSpacing()
original_size = coronal_slice.GetSize()
min_spacing = min(original_spacing)
new_spacing = [min_spacing, min_spacing]
# Compute the new image size so that it occupies the same physical
# region in space as the original.
new_size = [int(round(original_size[0]*(original_spacing[0]/min_spacing))),

int(round(original_size[1]*(original_spacing[1]/min_spacing)))]
sitk.WriteImage(sitk.Resample(coronal_slice, new_size, sitk.Transform(),

sitk.sitkLinear, coronal_slice.GetOrigin(),
new_spacing, coronal_slice.GetDirection(), 0.0,
coronal_slice.GetPixelIDValue()),

'using_spatial_knowlege_min_spacing.jpg')

domain is that it results in a symmetric registration process
where both images are treated similarly with intensity val-
ues acquired via interpolation at off grid locations in both
images. The registration interface allows the user to set three
transformations:

– Tf : maps points from the virtual image domain to the
fixed image domain, never modified.

– Tm: maps points from the virtual image domain to the
moving image domain, never modified.

– Topt : composed with Tm, maps points from the virtual
image domain to the moving image domain, modified
during optimization.

Using these transformations, a point in the fixed image
domain is mapped to a point in the moving image domain
as follows:
mp = Topt

(
Tm

(
T −1

f (f p)
))

By default the virtual and fixed image domains coincide,
Tf = I . To use the framework in the traditional manner,

the user need only provide an initial value for Topt which is
modified during the registration process.

An additional constraint imposed by the ITKv4 registra-
tion framework is that the pixel type of registered images
is required to be a floating point type. In SimpleITK, these
are the sitkFloat32 and sitkFloat64 types. This con-
straint is only a minor inconvenience, as the user can either
enforce this when the image is read from disk by specifying
the reader’s output pixel type or they can cast the pixel type
to a float type prior to registration using SimpleITK’s Cast
function.

A code listing illustrating the use of SimpleITK for multi-
modal rigid registration is shown in Fig. 3.

SimpleITK Jupyter Notebooks

Originally introduced in 2011 as IPython notebooks, Jupyter
notebooks (www.jupyter.org) are an open-source interactive
web-based application facilitating literate programing [15, 25].
Jupyter notebooks support a large number of programming

www.jupyter.org
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# Initialize a rigid transformation that aligns the volume centers
initial_transform = sitk.CenteredTransformInitializer(fixed_image, moving_image,

sitk.Euler3DTransform(),
sitk.CenteredTransformInitializerFilter.GEOMETRY)

# Configure registration framework
registration_method = sitk.ImageRegistrationMethod()
registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50)
registration_method.SetMetricSamplingStrategy(registration_method.RANDOM)
registration_method.SetMetricSamplingPercentage(0.01)
registration_method.SetOptimizerAsGradientDescent(learningRate=1.0,

numberOfIterations=100)
registration_method.SetOptimizerScalesFromPhysicalShift()
registration_method.SetInitialTransform(initial_transform, inPlace=False)

# Register
final_transform = registration_method.Execute(fixed_image, moving_image)

Fig. 3 SimpleITK Python code for multi-modality rigid registra-
tion. Initialization aligns the geometric centers of the two volumes.
The optimized metric is mutual information using 1% of the
image voxels and a gradient descent optimizer. A novel feature
of the ITKv4 registration framework is the option for automatic
scaling of the optimized parameters so that a unit change in

each parameter will have similar effects in physical space, the
SetOptimizerScalesFromPhysicalShift function. This
is of particular importance with rigid registration where our param-
eter space consists of rotation angles in radians and translation in
millimeters

languages via language backends, referred to as Jupyter
kernels. The kernels communicate with the system using
Jupyter’s communication protocol. A notebook is a JSON-
based document which is analyzed and displayed by the
Jupyter application. A short SimpleITK notebook and its
JSON structure are shown in Fig. 4.

SimpleITK Jupyter notebooks are available in two pro-
gramming languages, Python and R. A SimpleITK note-
book is a single document containing the description of an
image-analysis workflow using equations and text, the exe-
cutable implementation of the workflow, and figures and
tables generated by running the code. The code is divided

into logical sections often referred to as “code chunks” that
are executed interactively, providing a natural setting for
exploring the effect of parameter values on algorithm per-
formance. This form of exploration can be done either by
modifying the code chunk and re-running it, or by using
graphical user interface components that are also part of the
document. Another immediate benefit of executing individ-
ual code chunks is that one can choose to run certain chunks
only once while others can be repeatedly executed. For
example, users will run a data loading chunk once while an
algorithmic chunk is run multiple times exploring a variety
of approaches to solving the same analysis task.

Fig. 4 Minimal representation
of a SimpleITK Jupyter
notebook comprised of a
markdown cell and code cell
with output. On the left is the
rendered notebook and on the
right is its JSON representation.
Note that all cells and the
notebook include a meta-data
object. This allows developers to
store additional information in
the notebook which is ignored
when rendered by the Jupyter
application. In SimpleITK
notebooks, this
meta-information is used to
facilitate notebook testing

In [1]: import SimpleITK as sitk
import matplotlib.pyplot as plt
%matplotlib inline

# Read image and display it.
img = sitk.ReadImage('brain.mha')
plt.figure(figsize=(2.5,2.5))
plt.imshow(sitk.GetArrayFromImage(img), cmap=plt.cm.Greys_r)
plt.axis('off');

# Compute and print threshold value.
stat_filter = sitk.StatisticsImageFilter()
stat_filter.Execute(img)
print('threshold is: ' +

str(stat_filter.GetMean()+0.5*stat_filter.GetSigma()))

source: ["Select the..."]

celltype: markdown
metadata: {}

data
image/png: ...
text/plain:...

metadata: {}
output_type: display_data

name: stdout
output_type: stream
text: ["threshold is..."]

metadata: {}

metadata: {}
celltype: code

source: ["import SimpleITK..."]
execution_count: 1
outputs:
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Resource Control

A desirable feature of an exploratory data analysis environ-
ment is that it readily facilitate quick turnarounds. That is,
one should be able to quickly explore the effects of various
algorithmic selections. A straightforward approach to facil-
itating quick turnarounds when working on image-analysis
workflows is simply to use smaller images. The use of sub-
sampled images as the input and not the original full reso-
lution data speeds up the development process and enables
one to quickly experiment and evaluate various options.
Additionally, in some cases, the reduced memory footprint
may be a requirement due to system memory constraints.
In our case, we are using the CircleCI (www.circleci.com)
continuous integration service whose virtual-machines only
provide 4Gb of RAM.

Ideally, switching between the use of full-resolution and
sub-sampled data should not require code modification and
is nearly transparent to the developer. To optionally enable
this functionality, we use an environment variable in combi-
nation with a script that is run at the beginning of the note-
book. When the environment variable is set, the standard
image reading functionality is replaced by reading followed
by resampling. The automated resampling is implemented
using the decorator design pattern [9]. SimpleITK’s origi-
nal ReadImage function is replaced by a decorated version
which performs resampling. From the developer’s stand-
point, this is transparent with images always loaded using
the ReadImage function. Whether these are full-resolution
images or sub-sampled ones depends on the environment
variable setting.

Image Display and Interaction

As the goal of the SimpleITK image-analysis notebook
environment is to serve as an exploratory setting for develop-
ing image-analysis workflows, we also need to address the
requirement for image display and interaction. SimpleITK
itself does not provide visualization components though it
does facilitate image viewing using external programs. The
toolkit includes a Show command which by default will
write the given image to a temporary directory and attempt
to launch the ImageJ/Fiji [24] viewer to display it. Other
viewers such as 3D Slicer and ITK-SNAP can also be used
in place of ImageJ by setting an environment variable.

The use of an external viewer has several limitations.
First, the visualization is external to the notebook and is not
shared with collaborators when sharing the notebook. Sec-
ond, this approach can only visualize static results, and we
would also like to animate algorithm progress (e.g., simi-
larity metric values as registration progresses). Finally, and
most importantly, it does not allow the user to easily interact
with the image to generate input for the following phases

of the analysis workflow (e.g., localizing seed points for
segmentation).

The solution we provide for these challenges is to use
native language facilities supported by the R and Python
kernels to construct appropriate visualization components.
For the R notebooks, we utilize the ggplot2 package [28]
and for the Python notebooks, we utilize the matplotlib [11]
and ipywidgets packages. The support for inline visualiza-
tion and interaction for the R kernel is currently limited, and
therefor the R-based notebooks are still limited to displaying
static inline visualizations.

In the Python-based notebooks, we provide a dynamic
display of registration progress using SimpleITK’s callback
mechanism to record registration progress data combined
with custom plotting functions. In the general case, we pro-
vide functions which display the similarity metric value
throughout the registration process. When additional infor-
mation is available such as corresponding target points in
the two image domains we also provide functions for dis-
playing the target registration error alongside the similarity
measure value. This form of visualization allows the devel-
oper to gain insight into the appropriateness of a specific
similarity measure. When the similarity metric is appropri-
ate for the registration task, we expect to see a decrease in
the similarity measure corresponding to a decrease in the
target registration error.

We provide several components for display and interac-
tion purposes that are useful for obtaining input for vari-
ous registration and segmentation tasks: Registration
PointDataAquisition, PointDataAquisition,
MultiImageDisplay, and ROIDataAquisition.
All components allow the user to zoom and pan the dis-
played images as part of the supported interactions.

The RegistrationPointDataAquisition com-
ponent allows one to acquire point data in two volumetric
image domains either as input for paired point registration
or for the acquisition of corresponding point pairs for reg-
istration evaluation. The component operates in two modes,
one for data acquisition and the other for visual inspection
of registration results. In data acquisition mode, the two vol-
umes are displayed side by side and the user can localize
corresponding points. Undoing the last point localization
and clearing all data are supported. The interface forces the
user to localize a point in each volume interleaving between
the two. In visual inspection mode, in addition to the images,
the user is required to provide a transformation that maps
between the two volumes. In this mode, when the user local-
izes a point in one volume, it is mapped and displayed on the
other volume using the given transformation or its inverse;
this is sometimes referred to as linked cursor mode.

The PointDataAquisition component allows one
to display a volumetric image and localize points as input for
various segmentation algorithms that require user-supplied

www.circleci.com
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seed points. The component also allows one to add pre-
determined point indexes with the constraint that they are
inside the image index bounds. Note that the output from
this component are the physical coordinates of the points in
the image’s coordinate system and not the point indexes.

The MultiImageDisplay component allows us to
display multiple volumetric images with the same dimen-
sions side by side using a single slider to scroll through the
image stack. This is a useful interface for qualitative evalu-
ation of image registration and segmentation results. In the
registration case, prior to using the interface one image is
resampled to the grid of the other so that they share the spa-
tial extent and dimensions. In the segmentation case, the
results of several segmentation algorithms or segmentation
steps can be visually compared side by side.

Finally, the ROIDataAquisition component dis-
plays a volumetric image and allows us to interactively
select one or more box-shaped regions of interest. This is
useful for creating masks for registration, limiting the com-
putation of the similarity measure to the regions of interest
or for segmentation purposes such as determining a local
threshold in a region of interest.

Development Infrastructure

A key aspect of a sustainable and maintainable devel-
opment environment is the infrastructure and associated
development process. Our development process follows best
software engineering practices including code reviews, the
use of a version control system, and incorporation of contin-
uous integration testing so that the status of the current code
and any code under future consideration is available online.

We use the git version control system and the GitHub
(www.github.com) service to distribute the SimpleITK
Notebook environment. We therefore follow a GitHub cen-
tric workflow. In our case, the authoritative repository is
found under the Insight Software Consortium organization.
No developer directly commits changes to this repository.
Instead, core and external developers fork create a copy of the
authoritative repository onGitHub. All new code is developed
using the topic branch-based git workflow approach [4].
Once a topic branch is uploaded to a forked repository, the
developer issues a pull request to the main repository. The
pull request automatically triggers testing using the Cir-
cleCI continuous integration testing service. Concurrently,
the code is reviewed by the team. Once the code is approved
by the team and passes the testing, it is merged into the
master branch of the authoritative repository.

Testing

To test the notebooks, we provide a testing script which is
distributed as part of the SimpleITK notebook environment.

In general, a notebook is comprised of three types of ele-
ments: (1) markdown cells containing natural language,
markdown elements, figures and links to online resources;
(2) code chunks that are executed; and (3) output from
the code chunks. Testing includes a static analysis of the
notebook addressing each of these elements and a dynamic
analysis which only deals with executing the code cells.

In the static notebook analysis, we start with the mark-
down cells. The script checks spelling using a US English
dictionary with an additional set of exceptions that include
various acronyms and non-standard words such as “Sim-
pleITK.” In addition, the validity of all external URL links is
tested to ensure that the links are not stale. We then analyze
the code cells, spell checking all of the inline comments and
checking for the existence of output from the code.

The output from code chunks presents a unique problem
from a version control standpoint. Minor changes to out-
put are common for many algorithms that have a stochastic
component (i.e., registration). Thus, the same code will pro-
duce slightly different output every time it is run. If the
output is included as part of the notebook, from the ver-
sion control viewpoint, these are changes just like any other.
Viewing these changes as equivalent to changes in code and
textual content has the potential to result in many superflu-
ous commits and a history of changes that for all intents and
purposes should be ignored. We solve this issue by having
the testing framework check that notebooks do not contain
any output. Attempting to submit a notebook containing
output is considered an error and the pull request is rejected.

In the dynamic notebook analysis, we use the Jupyter
nbconvert tool. This tool allows the testing script to exe-
cute the notebook and convert it to a variety of formats. In
our case, we use the same JSON Jupyter notebook format
as the input with the output written to a temporary file. A
key feature of our notebooks is that they include code that
will produce errors. The purpose of this code is to illustrate
common usage mistakes and their associated errors. When
running a notebook, the default behavior is for execution to
stop once an error is encountered. We use the nbconvert tool
option which indicates that execution should continue even
after an error is encountered. Once the notebook execution
is completed, we analyze all of the outputs.

Each code cell has associated JSON meta-data informa-
tion that is not displayed by the Jupyter application. We use
this meta-data to mark code cells that are expected to gen-
erate an error and code cells that potentially generate one.
Each entry also identifies the expected error message. The
former type of entry is used to identify intentional errors
included in the code. These errors illustrate expected behav-
ior such as adding the intensity values of two images that do
not physically overlap, an illegal operation in SimpleITK.
The later type of entry denoting potential errors is used to
relax the requirement for an external viewer. A cell using

www.github.com
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the SimpleITK Show function which relies on an exter-
nal viewer may or may not generate an error depending
on whether the viewer is installed or not, such as on our
continuous integration testing service machines. All output
cells are checked to ensure that the expected errors were
generated and that no unexpected errors occurred. Potential
errors, if generated, are ignored.

Dependencies

As the notebook development environment also depends on
additional packages, we readily facilitate their installation.

For the R programming language, all of the dependen-
cies are readily installed from the R prompt using a list we
provide.

In Python, we support two setups, plain Python, and Ana-
conda Python. For both options, we recommend the use
of Python virtual environments. These enable one to main-
tain a consistent and reproducible development environment
with known versions of each package. When using plain
Python, the user first creates a virtual environment and then
installs the dependencies using the pip package manage-
ment system and the requirements file we provide. From
the command line, issuing the command pip install
-r requirements.txt is all that is required. When
using the Anaconda Python distribution, the virtual environ-
ment and dependent package installation are created using
the conda package management system. From the com-
mand line, issuing the command conda env create
-f environment.ymlwill create a virtual environment
called “sitkpy” which contains all the required packages.

Data Sharing

Finally, the last component in our development environment
infrastructure addresses the need for convenient data shar-
ing and distribution. The development environment does not
contain the data referred to in the notebooks. Rather, the
data is stored in multiple instances of the MIDAS data stor-
age system (www.midasplatform.org) and on plain websites
such as the Point-validated Pixel-based Breathing Thorax
Model (POPI) [26]. We use a data directory which serves
as a local cache of all the datasets. Initially, the cache only
contains a data manifest. This file is a JSON document con-
taining a list of file names and their MD5 hash function
values and an optional URL. The user fetches a specific
dataset by using the fetch datamethod which we provide.
The input to this method is the file name as specified in the
data manifest. If the file is already in the local data cache,
then no download is performed. If the file is not in the cache
and a URL was specified in the data manifest file, then we
attempt to download it from the URL and cache it locally. If
no URL is specified, then we attempt to download it from

the list of MIDAS repositories we maintain. The MIDAS
system allows one to download data based on its MD5 hash
value which uniquely identifies it. Once the data is found
on one of the repositories, it is downloaded. After download
either from MIDAS or directly from a URL, the MD5 hash
value for the downloaded file is automatically computed and
compared to the value specified in the data manifest file. If
the two match, then the download is successful and the data
is valid; otherwise, an error is issued.

This data sharing approach allows anyone using the
development environment to readily share data stored online
with multiple collaborators in a simple and convenient man-
ner. The only information that needs to be directly shared is
the data manifest file.

Results

The SimpleITK Image-Analysis Notebook environment and
an extensive set of more than 35 notebooks is freely
available on GitHub under an Apache 2.0 license. The
repository can be found under the Insight Software Consor-
tium organization: github.com/InsightSoftwareConsortium/
SimpleITK-Notebooks.

The notebooks found in the repository include material
which is useful for educational purposes and for illustrat-
ing the ability of the environment to serve as a platform for
reproducible research. Note that this work is in line with the
current scientific trend towards development of free, open-
source, computing environments such as those offered by
the Python and R programming languages.

We next present case studies illustrating notebooks for
educational purposes and for reproducible research. In each
category, we describe both a Python-based notebook and an
R notebook.

Educational Notebooks

The educational notebooks introduce concepts associated
with incorporating SimpleITK into contemporary problem
settings. We provide notebooks illustrating the usage, inter-
action, and modification of images and transforms in the
twomost prevalent research development languages, Python
and in R. These notebooks focus on illustrating common
SimpleITK usage paradigms, rather than developing new
research algorithms.

The SimpleITK and Jupyter notebook environment is
well suited to teach the tool and techniques need to incorpo-
rate multi-dimensional image processing into medical, bio-
logical, and industrial research endeavors. Special emphasis
is given to using these tools to address big data chal-
lenges associated with volume, velocity, veracity, and vari-
ety of real-world imaging data. The Jupyter notebooks allow

www.midasplatform.org
https://github.com/InsightSoftwareConsortium/SimpleITK-Notebooks
https://github.com/InsightSoftwareConsortium/SimpleITK-Notebooks
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students that may have differing levels of programming
expertise to uniformly experience developing and apply-
ing tools in contemporary problem settings with motivating
problem domains that include object detection, scene seg-
mentation, and object co-localization (i.e., registration). The
paradigms demonstrated employ best practices needed for
generating reproducible results by including version man-
agement for both the development and analysis phases of
a research project. Students are exposed to a rich set of
tools: high performance multi-threaded image processing
algorithms (exposing ITK), rapid prototyping (Jupyter note-
books), and analysis pipeline building, Statistical Analysis
(R), machine learning tools (R, scikit-learn), and repro-
ducible science tools (R, python, git).

Transformations

The first educational notebook we describe here provides
an overview of the transformation types supported by Sim-
pleITK and illustrates how to move from a low-dimensional

parameter space to higher ones, starting with a rotation
or translation going through rigid and similarity transfor-
mations to affine. We also emphasize the non-standard
parameterization associated with the global transformations.
All global transformations except translation are centered.
That is, they are of the following form:

T (x) = A(x − c) + t + c

The nomenclature describing this transformation refers to
the following components: matrix A, center c, translation t,
and offset t + c − Ac. The use of centered transformations
may sometimes surprise the newcomer as we illustrate in
the notebook snippet shown in Fig. 5.

Additionally, this notebook introduces the two types
of bounded domain transformations supported by Sim-
pleITK, BSpline Free-Form Deformations and Displace-
ment Fields. The notebook illustrates the details associated
with the creation of each of these transformation types and
with the composite transform which was described above.

Fig. 5 Snippet from a Python
educational notebook illustrating
the concepts underlying the
SimpleITK transformation
model. This section allows the
user to interactively change the
transformation center using
sliders and observe its somewhat
unintuitive effects on a
similarity transformation.
Changing the center also results
in translation. A similar
notebook is available in R

In [4]: def display_center_effect(x, y, tx, point_list, xlim, ylim):
tx.SetCenter((x,y))
transformed_point_list = [ tx.TransformPoint(p) for p in point_list]

plt.scatter(list(np.array(transformed_point_list).T)[0],
list(np.array(transformed_point_list).T)[1],
marker='^',
color='red', label='transformed points')

plt.scatter(list(np.array(point_list).T)[0],
list(np.array(point_list).T)[1],
marker='o',
color='blue', label='original points')

plt.xlim(xlim)
plt.ylim(ylim)
plt.legend(loc=(0.25,1.01))

# 2D square centered on (0,0)
points = [np.array((-1.0,-1.0)), np.array((-1.0,1.0)), np.array((1.0,1.0)),
np.array((1.0,-1.0))]

# Scale by 2
similarity = sitk.Similarity2DTransform();
similarity.SetScale(2)

interact(display_center_effect, x=(-10,10), y=(-10,10),tx = fixed(similarity),
point_list = fixed(points),

xlim = fixed((-10,10)),ylim = fixed((-10,10)));
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The notebook concludes with code illustrating the Sim-
pleITK approach to reading and writing transformations.

Image Operations

The second educational notebook we describe provides an
overview of image access operators (slicing and indexing),
mathematical operators between images and logical com-
parison operators. The code illustrates the tight integration
of SimpleITK with the specific programming languages,
providing familiar access methods with the language spe-
cific indexing conventions. Additionally, we illustrate what
happens when one forgets SimpleITK’s fundamental tenet
about images, all of these operations are only valid if the
images occupy the same physical location in space. We
also show how to explicitly coerce two images to occupy
the same space, so that a developer who insists on treating

images as arrays can do so, but they have to do so explicitly.
The notebook snippet shown in Fig. 6 illustrates this.

Reproducible Research Notebooks

A set of reproducible research notebooks based on pub-
lished research is also available. More specifically, varia-
tions on the work described in [22], metrics for evaluation
of segmentation, and [29] spherical fiducial localization in
cone-beam CT.

Segmentation Evaluation

In our first notebook example, we partially reproduce the
work described in [22], evaluating liver tumor segmen-
tations. While the focus of SimpleITK is on segmenta-
tion and registration algorithms, the toolkit also provides

Fig. 6 Snippet from an R
educational notebook illustrating
the concepts underlying the
SimpleITK image model. This
section explains the conceptual
difference between an image
and an array. In SimpleITK
binary operations, such as
adding intensities of two
images, are only valid if the
images occupy the same
physical space. A similar
notebook is available in Python

In [4]: ## source the functions for loading data
source("downloaddata.R")
cthead <- ReadImage(fetch_data("cthead1.png"))
img = Cast(cthead,"sitkFloat32")
img

In [5]: flipped_img <- img[img$GetWidth():1, ]
img + flipped_img

Warning message:
In f(...): Exception thrown in SimpleITK Add: ...itkImageToImageFilter.hxx:250:
itk::ERROR: AddImageFilter(0x7fc98e741320): Inputs do not occupy the same physical space!
InputImage Origin: [0.0000000e+00, 0.0000000e+00],
InputImage_1 Origin: [2.5500000e+02, 0.0000000e+00]

Tolerance: 1.0000000e-06
InputImage Direction: 1.0000000e+00 0.0000000e+00
0.0000000e+00 1.0000000e+00
, InputImage_1 Direction: -1.0000000e+00 0.0000000e+00
0.0000000e+00 1.0000000e+00

Tolerance: 1.0000000e-06

Error in f(...): Exception in SITK - check warning messages
Traceback:

1. img + flipped_img
2. img + flipped_img
3. Add(e1, e2)
4. f(...)
5. stop("Exception in SITK - check warning messages\n")

In [6]: flipped_img$CopyInformation(img)
img + flipped_img
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components that facilitate algorithm validation and evalu-
ation. The main requirements on validation listed in [12]
include standardization of validation methodology, use of
reference data sets and use of appropriate validation metrics.
The work presented here addresses the later two.

Similar to Popa et al., we start by deriving a reference
segmentation from multiple manual expert segmentations.
As the authors publicly provided the set of liver tumor seg-
mentations used in their work, we utilize that data. We
illustrate the two methods supported by SimpleITK for
determining a reference segmentation from multiple seg-
mentations, majority vote, and the STAPLE algorithm [27].

Once we have a reference segmentation, we compare seg-
mentations to it. Similar to the original work, we use both
volumetric overlap measures and surface distance measures
between the two segmentations. The former are directly
computed using SimpleITK filters. The later require a
slightly more involved computation.

To compute the non-symmetric distance measures
between the two surfaces defined by the reference and
evaluated segmentation, we compute a distance map for
the reference segmentation. We then extract the surface
of the evaluated segmentation and use these two elements
as input for the LabelIntensityStatisticsImage

Fig. 7 Snippet from an R
notebook reproducing work
from [22]. The code shows
derivation of a reference
segmentation using the STAPLE
algorithm and plotting of
volumetric overlap measures. A
similar notebook is available in
Python

In [5]: <- 1
<- 0.95

<-

<- >

"sitkLabelUInt8" = 1
:: 5 "cm"

In [8]: library
library
options

<- = = -

= = = = +
="identity" ="dodge" ='black' =0.5

foregroundValue
threshold
reference_segmentation_STAPLE_probabilities STAPLE(segmentations,
foregroundValue)
reference_segmentation_STAPLE reference_segmentation_STAPLE_probabilities

threshold
show_inline(LabelMapContourOverlay(Cast(

reference_segmentation_STAPLE[,,slice_for_display],
), display_slice, opacity ),

grid unit( , ))

(tidyr)
(ggplot2)
(default.options)

overlap.gathered gather(overlap_measures, key Measure, value Score, rater)
ggplot(overlap.gathered,

aes(x rater, y Score, group Measure, fill Measure))
geom_bar(stat , position , colour , alpha )
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Filter. This filter computes statistics on the intensities
in the spatial region defined by a label mask. In our case,
the intensities correspond to the distance from the reference
segmentation surface and the label mask corresponds to the
evaluated segmentation’s surface, yielding information on
the distances between the two surfaces. In the notebook
environment, these numbers are readily plotted using either
the ggplot2 package [28] in R or the matplotlib package [11]
in Python. The notebook snippet shown in Fig. 7 illustrates

the derivation of a reference segmentation and plotting of
the evaluation results.

Fiducial Localization

In our second notebook example, we partially reproduce
the work described in [29], spherical fiducial localiza-
tion in cone-beam CT. We implement the method used
to establish a reference localization of the markers in the

Fig. 8 Snippet from a Python
notebook reproducing work
from [29]. Code shows GUI for
selecting a region of interest
(ROI) which bounds a spherical
fiducial. The fiducial is then
localized via least-squares fit of
a sphere to the edges detected in
the ROI. A similar notebook is
available in R

In [3]: roi_acquisition_interface = gui.ROIDataAquisition(spherical_fiducials_image)
roi_acquisition_interface.set_rois(roi_list)

In [10]: sub_image = spherical_fiducials_image[roi[0][0]:roi[0][1],
roi[1][0]:roi[1][1],
roi[2][0]:roi[2][1]]

edges = sitk.CannyEdgeDetection(sitk.Cast(sub_image, sitk.sitkFloat32),
lowerThreshold=0.0,
upperThreshold=200.0,
variance = (5.0,5.0,5.0))

edge_indexes = np.where(sitk.GetArrayViewFromImage(edges) == 1.0)

physical_points = [edges.TransformIndexToPhysicalPoint([int(x), int(y),
int(z)])\

for z,y,x in zip(edge_indexes[0], edge_indexes[1],
edge_indexes[2])]

A = np.ones((len(physical_points),4))
b = np.zeros(len(physical_points))

for row, point in enumerate(physical_points):
A[row,0:3] = -2*np.array(point)
b[row] = -linalg.norm(point)**2

res,_,_,_ = linalg.lstsq(A,b)

print("The sphere's location is: {0:.2f}, {1:.2f}, {2:.2f}".format(

*res[0:3]))
print("The sphere's radius is:
{0:.2f}mm".format(np.sqrt(linalg.norm(res[0:3])**2 - res[3])))
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volumetric data. In addition to the edge-based localization
used in the original work, we also present an intensity-based
localization approach using the Otsu threshold selection
method.

Both approaches start with the user interactively selecting
a box-shaped region of interest which bounds the fidu-
cial, using the ROIDataAquisition GUI component.
With the edge-based approach, we localize the edges in
the ROI using the Canny edge detector and then esti-
mate the optimal sphere which fits the edges using a
least-squares formulation. The notebook snippet shown in
Fig. 8 describes this formulation and its implementation
using SimpleITK and the SciPy library [14]. With the
thresholding-based approach, once the fiducial is segmented
we use SimpleITK’s LabelShapeStatisticsImage
Filter component to obtain its location as the centroid of
the segmented blob and its radius as the radius of the sphere
which has the same volume as the segmented blob.

Discussion and Conclusions

Two significant requirements associated with modern scien-
tific computational environments are that they facilitate col-
laborations and that they enable reproducibility [1, 2, 7, 21].
In this work, we presented such an environment for devel-
oping biomedical image analysis workflows using a literate
programming approach with the Python or R programming
languages. The environment allows one to provide algorith-
mic details, mathematical formulations, figures, and imple-
mentation code all within a single document. Data sharing
is readily supported via remote online data repositories and
raw URL addresses. Additionally, the environment supports
continuous integration testing of notebooks, further facil-
itating collaborations, as all contributions to a repository
are tested before merging into it. We focused our work on
the Python and R interpreted programing languages from
among those supported by SimpleITK due to their popu-
larity within the scientific computing community, though
developing SimpleITK notebooks using other languages is
possible as long as there is a Jupyter Kernel which supports
the language.

The need for an environment that facilitates the devel-
opment of image-analysis workflows for non-expert C++
developers which also incorporates the algorithms found
in ITK is not new. ITK components have been previously
incorporated into a variety of image-analysis environments.
The main challenge facing developers incorporating ITK
components is in hiding the complexity underlying the
C++ code. As a consequence, the majority of solutions
are either stand-alone programs that provide a graphical
interface to various ITK functionalities or development
environments based on a visual programming methodology

in which analysis pipelines are constructed by connecting
and interacting with graphical representations of ITK com-
ponents. Examples of standalone programs include 3D
Slicer [8], ITK-SNAP [30] and the MITK Workbench [19].
Examples of visual programming environments include
SCIRun [20], MeVisLab [23], ITKBoard [17], and Sim-
ITK [6]. The only two efforts, of which we are aware, that
incorporate ITK components directly into an interpreted
programming environment include [5], incorporating ITK
into the MATLAB scripting language (MathWorks, Nat-
ick, MA, USA), and the effort of incorporating ITK into
the Python language initiated by the ITK developers [13].
The former effort appears to have been abandoned. The
latter is active with ITK Python bindings available for all
major platforms. This effort is the closest to SimpleITK
with the primary differences being that it is focused only on
Python and that it does not provide the simplified interfaces
available in SimpleITK.

The use of standalone programs to perform complex
image-analysis tasks often results in computational work-
flows that are hard to document and replicate. This may
also lead to disconnected workflows if no single program
supports all of the required functionality without modifica-
tion. Visual programming environments are more flexible
and reproducible in that they allow the user to specify and
save the analysis pipeline with a relatively fine-grained
control over the ITK components. The only visual program-
ming environment listed above which also allows one to
incorporate a rich set of components developed by other
users is SimITK which fits within MATLAB’s Simulink
environment. Thus, in most cases, extending the visual
programming environment is beyond the user’s expertise.

In this work, we leveraged the Jupyter notebook web
application in conjunction with the SimpleITK toolkit to
offer a flexible and extensible development environment
with a focus on facilitating both educational and repro-
ducible research workflows. Beyond the advantages of this
environment described above, the use of the popular Python
and R programming languages reduces the amount of effort
required to master the syntax and semantics of the envi-
ronment. Additionally, the large number of packages freely
available for these programing languages are readily inte-
grated into the environment, easily extending it based on the
developer’s needs.

To download, contribute, or inquire on the SimpleITK
Image-Analysis Notebook environment go to: github.com/
InsightSoftwareConsortium/SimpleITK-Notebooks.
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