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Abstract

High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure
for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for
Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-
scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using
the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing
pipelines called “spiders.” The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly
half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the
HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server)
within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be
laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying
hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated
manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues,
herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI
medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly
presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level,
(2) flexible and dynamic software development and expansion, and (3) scalable spider deployment compatible with HPC clusters and
local workstations.
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yuankai.huo@vanderbilt.edu High-throughput medical image computing, which includes

storage, processing, and analysis, is essential in exploring hid-
den regularities of large-scale medical image data. Efficient
data storage and exchange are increasingly important for sub-
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sequent image processing. As reviewed by 1zzo [1], prevalent
large-scale medical imaging archiving solutions include, but
are not limited, to the Extensible Neuroimaging Archive
Toolkit (XNAT) [2], the eXTENsible platform for biomedical
Science (XTENS) [3], and the Collaborative Informatics and
Neuroimaging Suite (COINS) project [4]. Given the XNAT’s
high flexibility and availability of community support, the
Vanderbilt University Institute for Imaging Science (VUIIS)
Center for Computational Imaging (CCI) has built a large-
scale image database VUIIS XNAT [5, 6] that extends
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XNAT to house 379 IRB approved projects at the Vanderbilt
University and Vanderbilt University Medical Center
(VUMC) with 78,512 magnetic resonance imaging (MRI) or
computed tomography (CT) sessions, totaling 480,574 medi-
cal imaging scans for 48,556 subjects (as of December 2017).

Large-scale medical image computing requires an ef-
ficient and stable imaging database and additionally de-
mands efficient job management and distribution
schemes to handle heterogeneous images and processing
tasks (e.g., segmentation, registration, and modeling). To
address such challenges, we have developed the
Distributed Automation for XNAT toolkit (DAX, http://
dax.readthedocs.io/en/latest/) [5, 7, 8], which is a
Python-based middleware layer to control the processing
algorithms for the individual scan, scan group, or ses-
sion. For each image computing task, one or more im-
age processing algorithms are encapsulated as a pipeline
item (“spider”), which defines the order of executions,
dependencies, and the running environment. For in-
stance, an end-to-end multi-atlas MRI brain segmenta-
tion pipeline [9] has been wrapped as a “Multi Atlas”
spider, which contains preprocessing, N4 bias field cor-
rection [10], registrations [11], atlas selection [12], label
fusion [13], and post-processing [14]. The spider defines
the sequence of the processing as well as the processing
environments (e.g., binary files, package dependencies,
and source code). Once the spider is developed, it can
be launched, managed, and terminated by DAX.

The VUIIS CCI medical image data storage and pro-
cessing infrastructure (VUIIS XNAT, DAX, and spiders)
have been developed in close relationship with the hard-
ware and computing environment of the Vanderbilt
Advanced Computing Center for Research and
Education (ACCRE, www.accre.vanderbilt.edu) and
other facilities at the Vanderbilt University. This
process has ensured the effectiveness of the toolkit at
the Vanderbilt University but has also exposed certain
limitations. First, in 2016/2017, the Vanderbilt high-
performance computing (HPC) facility decided to up-
grade the underlying operating system from CENTOS
6 to CENTOS 7. Many of the VUIIS CCI image pro-
cessing tools and libraries were not supported by the
new platform. For instance, changes in supported ver-
sions of CUDA libraries between operating systems
(OS) caused unforeseen gaps in application coverage,
requiring specialized installations for various applica-
tions. This upgrade process led us to revisit the frame-
work of the VUIIS CCI medical image storage and pro-
cessing infrastructure. More generally, to deploy or mi-
grate this infrastructure to another institution or HPC

center could be laborious. Significant efforts and re-
sources could be required to migrate the DAX platforms
and spiders to a platform with differenthardware, OS,
and installed packages might be very different between
users and Vanderbilt University.

A second issue arose concerning spider portability.
Since the initial development of DAX, individual spi-
ders were designed to be executed across platforms
(e.g., laptops, workstations, servers, and HPC nodes).
The deployment worked well for several years as end
users would deploy a common library of tools and then
be able to use all available spiders. However, with the
growth of the library, multiple releases of third-party
tools, varying system level dependencies, and library
incompatibilities between spiders, the processes of
deploying the underlying architecture had become in-
creasingly cumbersome and hardware/software depen-
dent. In revisiting the framework for sustainability, we
focused on improving the ease of use for the user sce-
nario where a single spider is executed on a local lap-
top/workstation/server or a different HPC platform.

In this paper, we describe new innovations that create
a portable solution based on the VUIIS CCI medical
image data storage and processing infrastructure using
virtualized VUIIS XNAT, containerized DAX, and con-
tainerized spiders to isolate the image processing plat-
form from the underlying OS and hardware. The porta-
ble implementation is an alternative solution that en-
ables hardware independent encapsulation and provides
a convenient way to migrate our platforms to another
institute or center. The containerized spiders are able to
run on local workstations or alternative facilities as eas-
ily as at our local HPC center. To achieve this, the
VUIIS XNAT has been deployed on a virtual machine
(VM), while the containerized DAX and spiders use the
Docker [15] and Singularity [16] container format. More
specifically, the portable version has the following new
features: (1) multi-level portability is supported, which
not only allows for the deployment of the entire infra-
structure (VUIIS XNAT + DAX + spiders) but also
enables deploying one component (VUIIS XNAT or
DAX or spiders) independently at another HPC center.
(2) The containerized design allows future updates to
DAX and spiders to take place without concern regard-
ing the underlying hardware. (3) The portable feature
leverages the scalability of the spiders, which are
runnable on HPC clusters, workstations, and personal
computers.

The remainder of the paper is organized as follows.
First, XNAT and the existing VUIIS CCI medical image
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storage and processing infrastructure (VUIIS XNAT +
DAX + spiders) are reviewed. Next, the portable solu-
tion with containerized DAX and spiders is introduced.
Finally, we discuss the benefits and limitations of our
implementation. This paper extends our previous de-
scriptions [7, 8]with a more detailed analysis of the
framework as well as an exposition of the new contain-
erized spiders.

XNAT and VUIIS XNAT
XNAT

XNAT, developed by the Neuroinformatics Research Group at
the Washington University, is an archiving platform designed
for managing large-scale and multi-resource neuroimaging
data [2]. XNAT serves as an interface between medical imag-
ing equipment, image processing platforms, clinical database,
and end users. Approved users can manage their medical im-
age data through HIPPA-compliant security access, which is
particularly important in medical applications. The flexibility
of the XNAT framework resides in its use of XML (http://
www.w3.org/XML) and XML Schema (https://www.w3.org/
XML/Schema). The XML is a standard text format language
designed to describe a wide variety of data formats for large-
scale electronic publishing. The XNAT’s XML Schema [2,
17] supports neuroimaging data of several formats and is eas-
ily extensible by the end user for new applications.

The XNAT’s architecture is composed of a three-tier
design: (1) relational database structure, (2) Java-based
middleware class, and (3) user interface content. In the
first tier, the relational database structure is set by a
specific XML Schema Definition (XSD) [2, 17] to store
non-imaging and imaging data such as Digital Imaging
and Communication in Medicine (DICOM) files. Data
resources are associated with Uniform Resource
Identifier (URI). In the second tier, the middleware clas-
ses are established for implementing user functions upon
the rational database. In the third tier, the user interface
is implemented to provide two types of access: web-
based interface and command line tools. The XNAT
user interface enables the users to manage image pro-
cessing, data access, and data distribution.

VUIIS XNAT
The VUIIS CCI has a custom installation of XNAT, hence-

forth referred to as VUIIS XNAT [5, 6]. VUIIS XNAT cur-
rently stores data and processing results from 379 projects,
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48,556 subjects, 78,512 imaging sessions, and 480,574 imag-
ing scans at the Vanderbilt University (as of December 2017).
To achieve scalable project management, we have built a con-
trol system for VUIIS XNAT using the Vanderbilt University’s
Research Electronic Data Capture (REDCap) [18], a secure
web application for building and managing online databases.

VUIIS XNAT has been designed to house data from mul-
tiple sources. Many scans come from the research MRI scan-
ners at the VUIIS Human Imaging Core: one 7T Philips
Achieva and two 3T Philips Intera/Achieva scanners. These
data are routed to XNAT in DICOM format as requested by
investigators and are assigned to investigator-specific projects
in XNAT, leveraging the XNAT’s security controls and data
sharing model to maintain study-specific data access.
Additionally, DAX provides command line tools to upload
data from other sources to any desired XNAT project, includ-
ing support of batch uploading for large-scale imaging data.
This facilitates multi-site collaborations, permitting collabora-
tors outside of the Vanderbilt University to upload large-scale
data to VUIIS XNAT with relative ease.

For most subsequent processing, DICOM images are
converted to the neuroimaging community’s NIfTI-1 da-
ta format [19], which is a standard medical image for-
mat supported by most medical imaging processing soft-
ware. VUIIS XNAT also contains ancillary data (if
available and required by investigators) such as respira-
tory and cardiac data from physiological monitoring
equipment. However, since VUIIS XNAT is not certified
to store protected health information (PHI), all PHI is
stored instead in REDCap and linked to the image data
in VUIIS XNAT by numerical code to avoid potential
privacy concerns.

DAX and Spiders
DAX

The large-scale image database is organized as different
projects based on the definition by PIs. Within each
project, all imaging scans and the corresponding pro-
cessing results from the same patient are saved as one
subject on XNAT, which might contain one session
(time point) or multiple sessions. DAX was developed
to provide an efficient database and processing manage-
ment tool for large-scale medical image processing sce-
narios. It is a Python-based middleware layer used to
specify the processing algorithms to apply to each im-
age session on XNAT. First, DAX communicates with
XNAT to identify which sessions match the running
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Fig. 1 The framework of the portable implementation of VUIIS CCI
medical image storage and processing infrastructure (VUIIS XNAT +
DAX + spiders). The input images in VUIIS XNAT are acquired from
scanners, local workstations, and Internet remote access. REDCap

requirements (e.g., input files, queue permits). Then, the
image processing tasks are launched for all requirement
satisfied sessions based on the definition in the REDCap
dashboard. To launch the processing tasks, DAX pro-
vides the scripts of image processing pipelines called
spider, which defines not only the software requirements
but also handles the image processing pipelines. The
spiders define a list of image processing tasks and the
corresponding software environments. Then, spiders are
launched on ACCRE (a high-performance computing
cluster housing over 6000 CPU cores) using batch pro-
cessing technique. To enable the batch processing of the

provides the non-imaging database as well as the processing commands
to trigger the Spiders using DAX. Then, the final results are achieved as
PDF format files, which are used for quality assurance purposes

spiders, DAX has been developed to support the cus-
tomized shell scripts using Simple Linux Utility for
Resource Manangement (SLURM).

Each time a process runs, the precise version and parame-
ters of the algorithm that ran are logged along with the proc-
essed data. Manual interaction with the data flows is possible
and widely used. Once each processing job is complete, a final
report is generated in Portable Document Format (PDF). The
reports are tailored for each processing task and can be quickly
reviewed by a human for quality assurance (QA) purposes.
For security reasons, users are required to do registration on
the VUIIS XNAT website (http://xnat.vanderbilt.edu/index.
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Fig. 2 This figure presents the change in a total number of processors for
Multi_Atlas, DTIQA, and fMRIQA pipelines between the year 2013 and
2017

php/Main_Page) to use DAX. Manual interaction with the
data flows is possible and widely used; in these cases, both
the original automated results and the manual correction/
interaction are saved.

In the currently deployed state-of-the-art DAX (version
0.7.1), the complete source code, runtime binaries libraries,
and configuration files are archived in version controlled re-
positories linked to the high-performance computing center.
Authorized users can retrieve the exact data, execution envi-
ronment, and runtime arguments to recreate any analysis at a
later time.

DAX has been tested on the SUN Grid Engine [20,
21], the Simple Linux Utility for Resource Management
(SLURM) platform [22], and the Moab scheduler on the
Terascale Open-source Resource and QUEue Manager
(TORQUE) [23].

Spiders

A spider is a processing pipeline package containing a
controlling Python script, source code, and binary exe-
cutable files. The controlling python script defines the
running environments (e.g., input format, output format,
software paths, related packages, etc.), and the execu-
tion order when more than one image processing algo-
rithm is included in the spider. DAX, to date, supports
303 different spiders for efficient large-scale image pro-
cessing. For instance, FreeSurfer brain segmentation and
cortical surface extraction [24], multi-atlas segmentation
[9, 13], voxel-based morphometry and other structural
analysis using the SPM [25, 26], and FSL [26, 27]

@ Springer

software suites are implemented as spiders. Also, the
diffusion tensor imaging (DTI) processing and analysis
spiders have been developed for quality analysis [28,
29] plus various approaches for diffusion modeling and
tractography: the FSL’s BEDPOSTX [30] and TBSS
[31], the Freesurfer’s TRACULA [32], and the gray
matter diffusion analysis GSBSS [33]. Available cortical
surface reconstruction and analysis spiders include
CRUISE [34], MaCRUISE [35, 36], surface parcellation
[37], and quantitative analyses on surfaces (e.g., thick-
ness, curvatures, sulcal depth, etc.) [38, 39]. Other spi-
ders perform lesion segmentation like TOADS [40] and
Lesion Segmentation Tools (LST) [41], fMRI quality
analysis [42], or abdomen segmentation using multi-
atlas segmentation [14] or deep neural networks [43].

Since each update for a spider relies on different versions of
source code or software packages, it is appealing to develop a
spider to contain its full computing environment and be iso-
lated from the underlying software and hardware
environments.

Portable VUIIS XNAT, DAX, and Spiders

The VUIIS CCI medical image storage and processing
infrastructure (VUIIS XNAT + DAX + spiders) has
been successfully deployed as a high-throughput large-
scale medical image processing and analysis facility at
the Vanderbilt University since 2011. However, since
DAX and the spiders have been developed for the
Vanderbilt’s specific hardware and operating system in-
frastructure, it can be laborious to migrate to another
hardware platform or OS environment. Therefore, we
now provide an additional portable implementation of
the VUIIS CCI medical image storage and processing
infrastructure that isolates VUIIS XNAT, DAX, and spi-
ders from the hardware. For the portable solution, a
virtual machine (VM) [44] is used to host VUIIS
XNAT, while Docker [15] and Singularity [16] are used
to establish containerized DAX and spiders (Fig. 1).

VUIIS XNAT Virtual Machine

The XNAT team [2] has provided virtual machine images to
run XNAT on a virtual environment built on top of the Ubuntu
OS (https://wiki.xnat.org/docs16/1-installing-xnat/xnat-
virtual-machine). We employ a similar approach to
implement VUIIS XNAT, but we have designed our
platform with two (the “dual front end” approach)
virtual machines: VUIIS XNAT-I and VUIIS XNAT-II.
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Fig. 3 The qualitative analysis reports of the representative containerized spiders including “Multi_Atlas” (a), “MaCRUISE” (b), “Surface Parcel” (c),

“Deep_SpleenSeg” (d), and “Deep_MultiOrganSeg” (e).

VUIIS XNAT-I hosts web-based access, while VUIIS
XNAT-II is designed for automated programmatic access
and high-load command line access (e.g., DAX tools).
The two virtual machine images are deployed on Hyper-
V hypervisors and manage 140 terabytes (TB) Dell
Network Attached Storage (NAS). A separate 30-day
rolling backup is also maintained. When DAX generates
a new data storage or retrieval request, the data are
queued by VUIIS XNAT-II. Using this design, VUIIS
XNAT is isolated from the hardware and is able to be
deployed at other centers or institutes efficiently.

Containerized DAX
Docker [15], an open-source container technology, has

been increasingly successful in both industry and acade-
mia, as it provides a lightweight solution to deploy

applications in an OS-independent fashion. Traditional
virtual machines employ hypervisors (e.g., Hyper-V,
KVM, and Xen) to emulate the virtual hardware—yet,
each application requires an independent guest OS. By
contrast, the Docker container rests on top of a single
Linux OS instance that leads to a smaller and neater
capsule containing multiple applications. Therefore, we
provide the containerized DAX using a Docker contain-
er rather than VM.DAX is a lighter weight python ap-
plication compared to XNAT, and with the Docker con-
tainer, a working DAX does not require a full copy of
an OS and all related hardware as a VM would.

The containerized DAX was built on a standard Docker
container. A DockerFile was configured to set up all required
packages and tools (e.g., python-dev, libxmlI2-dev, libxsltl-
dev, wget, zip, unzip, and zliblg-dev). The DockerFile for
containerized DAX is available on the DAX Github (https://
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Fig. 4 The working flow of image processing tasks using VUIIS CCI
medical image data storage and processing infrastructure. (1) RedCap
triggers DAX to start image processing based on a pre-defined “.yaml”
configuration file, specifying which spider to execute (code is available
on https://github.com/MASILab/Containerized DAX). (2) DAX defines
data retrieval, computing environment, and software dependencies from a
python based spider (code is provided in APPENDIX). (3)

github.com/VUIIS/dax). The containerized DAX was
designed for managing containerized Spiders.

A significant concern when using Docker containers
on HPC clusters is security, as Docker processes run
with root level privileges (such as user escalation).
Singularity [16] is a new technique to support container
execution without root privileges. Moreover, users are
able to establish a Singularity container directly from a
Docker container using the “singularity import” tool.
Therefore, we also provide a Singularity DAX container
that runs the processing in user space for the scenarios
that root privileges are not permitted or not preferred.
As a result, the OS of the image processing software is
now separate from the underlying cluster, which means
that the exact computational environment can be easily
reproduced anywhere Singularity is installed. The con-
tainerized DAX aids reproducibility and decouples the
DAX workflow from the software libraries (including
the specific versions) installed on a computational
system.

Containerized Spiders
The total number of scans that have been processed by

spiders has been increasing steadily using VUIIS CCI
infrastructure. Figure 2 demonstrated the number of
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Computational infrastructure (e.g., ACCRE) downloads the input data
from XNAT. (4) Computational infrastructure executes the related pro-
cessing algorithms (e.g., “Deep MultiOrganSeg,” whose Docker image
is available on https://hub.docker.com/r/masidocker/spiders/). (5) The re-
sults (e.g., segmentation volumes and final report in Fig. 3e) are pushed
back to XNAT database

MultiAtlas, DTI QA, and fMRI QA spider processing
tasks that have been computed in the past 5 years. Each
spider called by DAX is an application that performs
one or more medical image processing tasks. However,
since the spiders were designed for the Vanderbilt
University HPC infrastructure, it was difficult to run
on other HPC clusters or local workstations directly
unless the same OS and packages were already
installed. To enable the portable deployment of a spider,
we encapsulate the corresponding OS environment, soft-
ware packages and source code to a Docker container.

So far, we have containerized five representative spiders from
the Medical-image Analysis and Statistical Interpretation
(MASI) Lab: (1) whole brain multi-atlas segmentation spider
(“Multi_atlas™), (2) cortical surface reconstruction spider
(“MaCRUISE”), (3) cortical surface parcellation pipeline
(“Surface Parcel”), (4) spleen segmentation pipeline
(“Deep_Spleen”), and (5) multi-organ segmentation pipeline
(“Deep_MultiOrganSeg”). Briefly, the “Mulit_Atlas” spider
performs multi-atlas segmentation pipeline using Non-Local
Spatial Staple (NLSS) label fusion technique. [9, 13]. The
“MaCRUISE” spider performs consistent whole brain segmen-
tation and cortical surface reconstruction. [35, 36]. The
“Surface Parcel” spider parcellate the whole brain cortical sur-
faces to 98 regions of interests (ROIs) [37]. The
“Deep_SpleenSeg” spider performs spleen segmentation for
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both normal and splenomegaly patients on clinically ac-
quired CT scans [43]. The “Deep MultiOrganSeg” spi-
der performs segmentation for liver, left kidney, right
kidney, spleen, and stomach for normal patients on clin-
ically acquired CT scans [43].

The final PDF reports generated from the spiders are
presented in Fig. 3. The OS for Docker containerized
spiders is Ubuntu 16.04 LTS and Centos 6. The first
three Docker containers are designed for CPU usage,
while the latter two are compatible with both CPU
and GPU computing. To enable GPU acceleration, we
used the NVIDIA-Docker.

Usage Example

An example of a containerized spider is presented with
python source code (in APPENDIX). A test CT abdo-
men scan, from the MICCAI 2015 challenge “Multi-at-
las labeling beyond the cranial vault—workshop and
challenge,” is provided as an example input. The related
source code has been made open-source online (https://
github.com/MASILab/Containerized DAX), while the
corresponding Docker/singularity image has been pro-
vided publically available (https://hub.docker.com/r/
masidocker/spiders/). The processing workflow is
illustrated in Fig. 4, and the final results are shown as
a PDF report in Fig. 3e.

Discussion

In summary, all human research scans taken at VUIIS
today are automatically routed to a long-term PACS
archive and mirrored in an XNAT server to provide
secure, multi-site access to data resources. Our VUIIS
XNAT/DAX systems have enabled large-scale automated
analysis and quality assurance/control with a reasonable
level of human oversight. Since 2010, DAX/XNAT has
used 650+ CPU-years (5.6M+ CPU-hours) of image
analysis at ACCRE and 200+ CPU-years (1.8M+
CPU-hours) on the MASI grid. To improve portability
of the VUIIS CCI medical image storage and processing
infrastructure (VUIIS XNAT + DAX + spiders), the new
innovations provide an additional implementation that
isolates the infrastructure from the underlying hardware
and OS. The portable infrastructure may be deployed to
another HPC center conveniently. Moreover, the con-
tainerized spiders are ready to run on HPC clusters or
workstations, which enables efficient algorithm deploy-
ment and version management.

Although large-scale image processing has become
essential in scientific research and clinical investigation,
very few modern approaches are routinely used in clin-
ical practice. A key barrier to clinical translation of
image processing techniques is the evaluation and char-
acterization of techniques at scale. Existing medical im-
aging automation and data interaction approaches have
largely been designed for traditional well-controlled
studies, and it is difficult to apply these frameworks to
the more diverse data of clinical practice. With “big”
imaging data, acquisitions are not uniform (e.g., multi-
site issues, hardware/software changes, acquisition dif-
ferences, personnel changes, etc.), and it is not clear
which of the myriad of potential factors will be most
challenging for image processors to generalize across.
Furthermore, as many medical imaging applications be-
gin to utilize deep learning approaches, accessible and
translatable access to GPU interfaces and hardware is
paramount for broad usage. Hence, creating algorithms
to robustly function with big imaging data becomes a
Herculean effort, in particular in the context of GPU
programming.

Another interesting direction is to further improve the effi-
ciency of large-scale data storage and image processing. We
have previously investigated the theory, algorithm, and imple-
mentation of using Hadoop [45] and a data colocation grid
framework [46]. We also presented a “medical image process-
ing-as-a-service” grid framework that offers promise in utiliz-
ing the Apache Hadoop ecosystem and HBase distributed data
store for data colocation by moving computation close to
medical image storage [47]. It is appealing to integrate such
techniques with the Vanderbilt University HPC clusters to
improve computational efficiency under Big Data scenarios.
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Appendix segmentation. The related source code and illustrations
have been made freely publically available on https:/

This appendix presents an example spider (“Deep Multi  github.com/MASILab/Containerized DAX.

OrganSeg”), which executes the multi-organ deep learning based

from dax import AutoSpider

#Envrioment setting

name = 'wholebody_singularity'
version = '1.0.0'
exe_lang = 'bash'

#Setup Inputs and Outputs location
inputs = [
("ct_file", "FILE", "Path to CT file")
]
outputs = [
("OUTPUTS/FinalResult/SpleenVvol.txt","FILE","SPLEEN_VOL"),
("OUTPUTS/FinalSeg/keeplargel _morphol/GCN/Dice_norm/target_img/seg view3.nii.gz",
"FILE","FINAL_SEG"),
("OUTPUTS/FinalSeg/keeplargel morphol/GCN/Dice_norm/target_img/seg view3 orig seg
.nii.gz","FILE","FINAL_SEG"),
("OUTPUTS/FinalResult/result.pdf","FILE","PDF")
]

code = p"n
# Set ACCRE Environment
module load GCC Singularity

# Create INPUTS and OUTPUTS directories
mkdir ${temp_dir}/INPUTS

mkdir ${temp_dir}/OUTPUTS

mv ${ct _file} ${temp_dir}/INPUTS/CT.nii.gz

# Run Singularity Image

singularity exec -B ${temp_dir}/INPUTS:/INPUTS/ -B ${temp_dir}/OUTPUTS:/OUTPUTS/
/data/mcr/singularity/wholebody_v1 © 0/wholebody vl © 0.img
/extra/run_deep_wholebody.sh"""

if __name__ == '__main__"':
spider = AutoSpider(
name,
inputs,
outputs,
code,
version=version,
exe_ lang=exe_lang,
)
spider.go()
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