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Abstract
Medical imaging analysis depends on the reproducibility of complex computation. Linux containers enable the abstraction,
installation, and configuration of environments so that software can be both distributed in self-contained images and used
repeatably by tool consumers. While several initiatives in neuroimaging have adopted approaches for creating and sharing
more reliable scientific methods and findings, Linux containers are not yet mainstream in clinical settings. We explore
related technologies and their efficacy in this setting, highlight important shortcomings, demonstrate a simple use-case, and
endorse the use of Linux containers for medical image analysis.
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Introduction

The evolution of complex imaging methods, coupled
with reductions in the cost of data storage, have led to
increasingly large data in the clinical imaging community.
In parallel, computational methods to analyze these images
have grown more sophisticated and nuanced. While these
new techniques represent exciting steps forward in state-
of-the-art medical image processing, they also expose the
field to new operational vulnerabilities: researchers must
take special care to precisely emulate the computational
environment and configuration of an algorithm developer, or
risk the possibility of incorrect results. As neural networks
and other complex analyses grow in popularity, ensuring
that analyses are reproducible and repeatable has taken on
new importance.

Even well-designed and highly compatible software can
incur issues when researchers’ computers do not perfectly
match software developers’ operating system, configura-
tion, or installed libraries. Resulting findings may therefore
fail to truly enable experiment reproducibility.
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Invented in 2008, Linux containers provide a way to
“freeze” an environment in a simple package, enabling
serialization and redeployment [1, 2]. However, Linux con-
tainers in their basic form remain relatively esoteric and
difficult to use for the majority of non-expert users. For
this reason, many software solutions exist to simplify the
process of tool or environment containerization. Container-
ization enables the distribution of software bundled along-
side its required packages and libraries, increasing the
portability of software and the ability to reproduce scientific
analyses. Docker and Singularity are two emerging plat-
forms which provide user-friendly avenues for containeriza-
tion and serve distinct communities based upon differences
in core features such as data security and accessibility [3, 4].

Background

Researchers have adopted a variety of strategies in order to
homogenize compute platforms to enable reproducible
software-based analyses. Some tools, such as Python virtual
environments and Conda, modify the local environment,
but cannot provide cross-platform reproducibility or extend
beyond specific language barriers [5]. Virtual machines
(VMs) are one form of portable cross-platform compute
environments that enable highly reproducible compute
environments regardless of host operating system or
environment [6]. Some cloud compute providers such as
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Amazon Web Services (AWS) offer their own versions of
these—the most popular being Amazon Machine Images
(AMIs)—which are commonly used and distributed, but
only available on specific vendors’ computing resources
[7]. Unfortunately, virtual machines are costly in terms
of resource usage. VMs must contain a full operating
system which leads to large amounts of overhead, even
for simple analytical pipelines [8]. Because VMs are fully
virtualized computers, they must be “booted up,” which
dramatically increases the amount of time required in order
to perform an analysis. Furthermore, VMs most often
require that resources such as RAM or hard-drive space are
fully devoted and allocated prior to the first boot up. This
means that it is increasingly difficult to run multiple virtual
machines on the same host machine, even when the VMs
are idle (Fig. 1a).

Containers are another tool commonly tapped for the
purposes of resource abstraction. Like virtual machines,
containers enable rapid deployment of tools across various
infrastructures, and they shift the burden of installation to
tool developers rather than users. These environments can
be deployed consistently across computational infrastruc-
tures and are useful for debugging and understanding tools.
Unlike virtual machines, containers do not require resource

Fig. 1 a Virtual machines each require their own guest operating
system (OS), libraries, and configuration. The VMs pictured above
have pre-allocated sizes and use hard drive space and RAM even when
idle. b In contrast, containers do not require a guest operating system,
can share libraries, and only the resources needed for a particular
analysis

allocation at creation time: Rather, resources are shared in
real time with the host system (Fig. 1b).

Containerized software has seen wide adoption in the
software development community, for both commercial
(AWS [9], Google Gloud [10], Azure [11], etc.) and aca-
demic platforms (SIC [12], CBRAIN [13], Virtual Imaging
Platform [14]). These groups have adopted containers as a
way to repeatably install and deploy tools. Adoption efforts
by neuroimaging groups have helped to bring container-
ization into the forefront of the medical imaging analysis
consciousness. In particular, container-based neuroimaging
pipelines such as MRI analysis serve as an efficient vehicle
for sharing code and analyses between development envi-
ronments and higher-performance production workloads.

Container Managers

Both Singularity and Docker provide self-contained envi-
ronments which enable command-line or graphical execu-
tion of tools or services. Each of these systems leverages
the host system’s kernel for performing tasks, meaning
that while the encapsulated tools are identical, the under-
lying execution may differ slightly across computational
infrastructures.

Docker

Docker is the most widely used container management
system because it is installable on all major operating
systems and its configuration language is mature, simple,
and well documented [15]. This makes Docker a highly
accessible solution for developing and wrapping tools.
Docker’s major limitation is that of security: The software
inside the container can be granted elevated permissions, in
which case malicious software could access or manipulate
the host system. This is often not an issue on personal
workstations or commercial clouds, as the host systems are
small, isolated from one another, and contain little persistent
data, and so we recommend Docker for these settings [15]
(Table 1).

Singularity

Singularity’s major contribution addresses Docker’s secu-
rity shortcomings. Singularity restricts permissions within a
container to those of the user launching the task. Singularity
also enables HIPAA-compliant access-logging and differen-
tial privacy [16]. For this reason, Singularity is the platform
of choice for many high-performance or high-security com-
pute environments.

Singularity has seen less adoption due to its more recent
introduction and inability to run on Windows or OSX systems.
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It therefore has a smaller support community and base of
documentation than Docker, but enables the importing and
conversion of most Docker containers, which reduces the
need for developers to become intimately familiar with both
frameworks.

Use-Cases for Containerization

One common pitfall when deploying software in a con-
trolled environment is that of operating system versioning.
Systems are often “frozen” to older versions of an operat-
ing system in order to either maintain compatibility with
mission-critical software or pause at a known stable or
secure version of a supported OS. This becomes a problem
when new research products require more modern libraries
than the underlying OS natively supports.

This problem is solved by installing a container manager,
such as Docker, on the older platform. Barring extenuating
concerns, including inability to install such software on the
older platform or numerical precision fragility (discussed
below in Risks and Limitations), containerized software
will deliver the same results on out-of-date host operating
systems as it would on modern ones, without incurring the
additional labor and cost of upgrading resources.

WorkflowOptimization

A common convention is to run atomic steps of an analysis
in separate containers. That is, rather than installing all
software in one large container, each container holds only a
single step. For an imaging pipeline, this might mean that a

Table 1 A comparison of the basic features of Docker and Singularity

Feature Docker Singularity

Secure × �
Scalable � �
Cross-compatible × �
Supports all major OSes � ×
Accessible documentation � ×

Each of these platforms provides a powerful lightweight solution to
reliable, portable computing. Aside from this, Docker benefits from
a large user community, rich documentation, and the ability to be
deployed easily on all major operating systems (including Windows),
whereas Singularity is less mature in these areas. The differentiating
strength of Singularity lies in its ability to be deployed securely
across shared high-performance computing infrastructures, preserving
user access restrictions, whereas Docker is not suitable for these
applications. Singularity is also capable of converting Docker images,
lending itself to the popular use-case of being a deployment engine for
containers developed locally through Docker

color correction step lives in the first container, an alignment
step lives in the second, and an image processing step such
as lesion detection lives in the third.

Between steps, byproducts are stored in volumes, or
mountable directories that can be shared with the host OS so
that files persist after the container is destroyed [17]. This
enables complex error handling or retry behavior: if the first
step of an analysis fails, no other containers need to be run;
if the second step fails, the results of the first step do not
need to be recalculated. Furthermore, multiple algorithms
with different requirements can be integrated by building
Docker containers with different installation dependencies.

This stepwise paradigm is so common that there are
many existing pipelining systems that fulfill just this need
[18–21].

These tools, in conjunction with containers, enable detailed
logging and rich capturing of execution outputs and progress.
This provides reliable work histories for reproducible
analysis and debugging.

Integrating Docker into a Clinical Workflow

The Project

In a hypothetical workflow, a scientist may want to nor-
malize the contrast of an MRI scan in order to increase
contrast. A developer on the team writes a Python script
called normalize scan.py that takes three arguments
from the command-line:

$ python normalize_scan.py [DICOM file]

[min value] [max value]

and outputs the same file with the suffix -normalized,
with the data remapped to the minimum/maximum values
provided.

These scientists work on a shared host machine, and the
software dependencies for this tool may conflict with those
used by other labs.

Writing a Dockerfile

If this tool were run on a new system, the scientists would
get the Python Module Not Found error telling them
that their environment was not properly configured with the
libraries required to run their script. Luckily, the software
developer provided a requirements.txt which lists all
required Python libraries.

In this simple case, the scientists can simply read the
imports from the Python file and install them, but this
method is less tractable for applications which depend upon
code written in multiple languages, or those developed by
multiple disparate teams.
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The team decides to execute their code inside a Docker
container in order to prevent version conflicts and to enable
workflow reproducibility.

Leveraging prior work by other open-source developers,
the scientists can use an existing container that has certain
libraries pre-installed. For the purpose of illustration, we’ll
use pydicom/dicom [22]. (In clinical environments, it
may be wiser to build the container from scratch in order
to have full control over the execution environment and
eliminate unneeded dependencies.)

To indicate this to the image-building software packaged
with Docker, the Dockerfile will begin with the line:

FROM pydicom/dicom

It is considered best practice to include the name of the
maintainer of this Dockerfile, in case future users have
questions:

LABEL maintainer="Your Name

<your@email.com>"

The next step is to copy the Python script to the image:

ADD ./normalize_scan.py /src/

normalize_scan.py

...as well as the requirements.txt file. The following
line executes pip, the Python package manager, in order to
install the libraries listed in this file.

ADD ./requirements.txt /src/requirements.txt

RUN pip install -r /src/requirements.txt

Finally, the Dockerfile indicates to Docker what com-
mand it should run when the container starts by providing
an “entrypoint.” In this example, all of the scans will be
remapped to the [0..100] range. One could allow for user-
defined inputs using environment variables, as we do in code
provided at https://github.com/jdi-matelsky-et-al-2018/.

ENTRYPOINT python3 /src/normalize_scan.py

/infile.dcm /mnt/vout/ 0 100

This code makes the assumption that our scan exists at
the path /infile.dcm. This is a safe assumption, as we’ll
discuss in Section 2.

Building the Image

Next, the Docker image can be built. The image may take
some time to build while it downloads and installs packages,
but this only needs to be done when changes are made to the

contents of the image: Afterward, Docker containers can be
launched quickly based on this image template.

To build the container and tag it with the name of
remap-dicom, the scientists will run the following com-
mand:

docker build -t username/dicom-remap .

where the “username” field above may correspond to the
scientist’s account on Docker Hub, a sharing platform for
Docker images [23]. This enables the image builder to
(optionally) “push” the image and download it on other
machines or, if shared publicly, enable others to use it.

This command will retrieve the latest version of the
pydicom/dicom image from Docker Hub and will then
run the commands from the above Dockerfile in order,
caching the results of each step so that successive builds are
faster and more efficient.

Building a Singularity Image

If the scientists wish for their tool to be available for others
who are using platforms which require Singularity rather
than Docker, they can easily leverage the above work in
order to create a Singularity image hosted instead on Singu-
larity Hub. There are two common approaches for this: The
first is through the docker2singularity utility [24],
and the second is by creating a Singularity file. The
former method is an open-source tool which walks the user
through the conversion of Docker images to Singularity
images. The latter is a much shorter equivalent of the Dock-
erfile created above but it relies on pushing the Docker
image to Docker Hub. If the image is accessible online, this
file can contain just the two lines below:

Bootstrap: docker From: username/dicom-remap

Running Docker Containers

The final step is running the container. To do this, the
scientist navigates into the directory with the image file
they wish to normalize, called myfile.dcm and runs the
following command:

mkdir ./out docker run -v $(pwd)/

myfile.dcm:/infile.dcm -v $(pwd)/

out:/mnt/vout dicom-remap

The -v syntax indicates a Docker volume: This is a
mapping from the host’s filesystem to the private Docker
filesystem. Because actions inside the container do not
affect the host environment, the scientist must deliberately
allow the container to make changes to only specific files.

https://github.com/jdi-matelsky-et-al-2018/
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Two volumes are mounted by the command above. The
first is the target file, myfile.dcm, which is mounted to
the /infile.dcm location (referenced earlier). Simply,
this allows the container to access this under the alias of
/infile.dcm.

The second mounted volume is the output directory.
An empty directory on the host file system is mounted,
$(pwd)/out, to the directory /mnt/vout/ in the
container. When a file is placed in the container’s
/mnt/vout/ directory, it will appear in the host
machine’s $(pwd)/out/ directory.

By mounting these locations rather than a full working
directory, data access is restricted within the container.
Deliberate and careful use of volumes improves container
security.

Risks and Limitations

While containers simplify many aspects of dependency
management and analysis reproducibility, this technology
requires that a user manage container installation and
execution. This may provide a barrier to entry in cases
where potential users lack the necessary training. End-
user container management applications are typically
straightforward, and writing new recipes (i.e, Dockerfiles)
may be unfamiliar to some researchers. Despite this, we
observe that existing tutorials and seed containers make this
straightforward for most users.

Containers may reduce the accessibility of container-
based tools when users are restricted to environments that
do not support container management systems (e.g. old
operating systems or platforms that dramatically restrict
user permissions). This can be mitigated by system
administrators aiming to provide up-to-date environments
for researchers.

Because container use abstracts operating system selec-
tion and installation processes from tool users, the tool user
has less control over the eventual execution environment.
This can lead to incompatibilities that are not obvious to
the end user. One particularly subtle example of this is
the practice of pointing to the “latest” version of libraries
when installing. This makes the image brittle to changes in
updates to its dependency libraries. If another user builds
the image after a library has updated its latest-deployed ver-
sion, the resultant image will differ from the author’s. Users
can easily remedy this issue by explicitly specifying recom-
mended versions of libraries or software when distributing
images.

Recent research has suggested that the use of contain-
ers may obfuscate the origin of numerical instabilities
running inside the container. These differences may only
become apparent when deploying software across multiple

operating systems using the same data and comparing
the results. Several recent studies (in submission, OHBM
2018 [25]) have demonstrated significant differences in
MRI brain segmentation when running the popular Pre-
FreeSurfer pipeline [26] between different operating sys-
tems and configurations. It is suspected that these differ-
ences between operating systems are the result of underly-
ing numerical instabilities in the underlying algorithms, and
numerical libraries may be performing different approxima-
tions or handling of these exceptions.

We assert that these issues are irrelevant for the majority
of users and suggest exercising caution and validating
results when deploying software both when using and when
not using containers.

Discussion

Because clinical and medical sciences are increasingly
reliant on complex algorithms in order to derive insight
from data, analysis repeatability or reproducibility should
be considered a high priority (see [27] for a review of
these terms and their various definitions). Many medical
image analysis developers are beginning to provide their
tools in containerized environments, enabling portable,
repeatable analyses. Spearheading this containerization
effort are Singularity and Docker, two platforms that
simplify the process of developing and deploying container-
based applications. These systems hold the promise of
dramatically reducing the complexity of configuring and
installing medical imaging analysis tools and pipelines.

These tools have been deployed in a wide range of
infrastructures, including privacy-sensitive settings such as
the XSEDE super computing cluster in the USA [28],
Compute Canada [29], and other commercial clouds [9].
While adoption in clinical research environments is still low,
these platforms can serve as valuable tools when bridging
the gap between research and clinical settings.
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