Skip to main content
. 2018 May 18;8:7819. doi: 10.1038/s41598-018-25953-0

Table 1.

Fixed effects of LASSO models and hierarchical logistic regression predicting dropout.

variable LASSO glm
intake var network var block 1 block 2
estimate estimate estimate p-value estimate p-value
sex −0.32 −0.79 0.195 −1.27 0.101
GSI 0.43 0.87 0.066 0.62 0.324
nervous −betweenness −0.74 −1.00* 0.018
excited-expected force −0.62 −0.90* 0.035
active-instrength −0.68 −1.02* 0.035
social support −outstrength −0.87 −1.00* 0.029
Δ R²McFadden 0.26*** <0.001
R²McFadden 0.06 0.097 0.32*** <0.001

Note. LASSO = least absolute shrinkage and selection operator; glm = generalized linear model; var. = variables; GSI = Global Severity Index; p ≤ 0.10; *p ≤ 0.05; **p ≤ 0.001.