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The surgical intelligent knife distinguishes normal, borderline
and malignant gynaecological tissues using rapid evaporative
1onisation mass spectrometry (REIMS)

David L Phelps’, Julia Balog™?, Louise F Gildea', Zsolt Bodai', Adele Savage', Mona A El-Bahrawy’, Abigail VM Speller’,
Francesca Rosini', Hiromi Kudo', James S McKenzie', Robert Brown', Zoltan Takats' and Sadaf Ghaem-Maghami'

BACKGROUND: Survival from ovarian cancer (OC) is improved with surgery, but surgery can be complex and tumour identification,
especially for borderline ovarian tumours (BOT), is challenging. The Rapid Evaporative lonisation Mass Spectrometric (REIMS)
technique reports tissue histology in real-time by analysing aerosolised tissue during electrosurgical dissection.

METHODS: Aerosol produced during diathermy of tissues was sampled with the REIMS interface. Histological diagnosis and mass
spectra featuring complex lipid species populated a reference database on which principal component, linear discriminant and
leave-one-patient-out cross-validation analyses were performed.

RESULTS: A total of 198 patients provided 335 tissue samples, yielding 3384 spectra. Cross-validated OC classification vs separate
normal tissues was high (97-4% sensitivity, 100% specificity). BOT were readily distinguishable from OC (sensitivity 90.5%, specificity
89.7%). Validation with fresh tissue lead to excellent OC detection (100% accuracy). Histological agreement between iKnife and
histopathologist was very good (kappa 0.84, P < 0.001, z= 3.3). Five predominantly phosphatidic acid (PA(36:2)) and phosphatidyl-
ethanolamine (PE(34:2)) lipid species were identified as being significantly more abundant in OC compared to normal tissue or BOT
(P<0.001, g <0.001).

CONCLUSIONS: The REIMS iKnife distinguishes gynaecological tissues by analysing mass-spectrometry-derived lipidomes from
tissue diathermy aerosols. Rapid intra-operative gynaecological tissue diagnosis may improve surgical care when histology is

unknown, leading to personalised operations tailored to the individual.

British Journal of Cancer (2018) 118:1349-1358; https://doi.org/10.1038/s41416-018-0048-3

INTRODUCTION
Primary epithelial ovarian cancer (OC) has poor prognosis, remains
the most lethal gynaecological malignancy and presents with
advanced-stage disease in over three-quarters of patients.'
Disease burden can be extensive and involve metastatic
dissemination to the upper-abdomen, pleura and serosal
surfaces of the bowel, liver and spleen. Five-year survival, when
presenting at stage three and four, is 39 and 17%, respectively.
Cytoreductive surgery, that renders patients tumour-free,
improves prognosis. Three-year overall survival (OS) in
patients with zero residual disease after surgery is 72.4 vs 45.2%
in patients with >10mm residual disease.>® This recognised
survival benefit inevitably promotes a radical surgical approach
and often includes appendicectomy, splenectomy, peritonectomy
and omentectomy, as well as diaphragmatic stripping and
total hysterectomy with bilateral salpingo-oophorectomy.
Most patients will also receive platinum and taxane-based
chemotherapy.

Pre-operatively the nature of the tumour is often unknown,
especially if there is no extra-ovarian disease. An attempt at
histological diagnosis can be made intra-operatively, but the only

established technique, frozen section, is time-consuming and its
diagnostic accuracy varies. A meta analysis of frozen section
accuracy showed sensitivity to be 65-97% for benign tumours and
71-100% for malignant tumours.’ Borderline ovarian tumours
(BOT) are especially difficult to characterise.'®'®> A Cochrane
review revealed that BOT diagnosed at frozen section have a 21%
chance of finally being reported as OC.'? This is significant as BOT
rarely metastasise and long-term survival is significantly better
than OC.'* Women with BOT are more likely to be young and,
therefore, may wish to preserve fertility with conservative surgery.
The risk of over-treatment in these cases is as great as the risk of
under-treatment.'”

An intra-operative tool that could enable the surgeon to
differentiate between BOT and OC would allow the surgeon to
tailor the operation to the patient in real-time. The histological
diagnosis can significantly alter the course of treatment for the
patient, ranging from full clearance of gynaecological organs with
full surgical staging for cancer, to a simple unilateral cystectomy
for a benign cyst. There are obvious advantages to making a fast,
accurate and reliable intra-operative diagnosis. Inaccurate intra-
operative diagnosis of BOT results in unnecessarily radical surgery
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REIMS set-up ex-vivo and in operating theatres (in-vivo) and frozen sample work-flow. a Electrical current, produced from the generator,

is applied to the tissue and the resultant charged particles are extracted through the custom-designed hand-piece and drawn into the REIMS
atmospheric inlet and analysed in the Xevo G2-XS mass spectrometer to produce tissue-specific mass spectra, which are then subjected to
multivariate statistical analysis using PC-LDA. Within one to two seconds, real-time tissue diagnosis is displayed on a screen for the surgeon to
see. b Work-flow for the frozen samples; all samples collected from the frozen tissue bank were processed with the iKnife. After histopathology
reporting 22 samples were rejected from the study due to not being gynaecological or epithelial ovarian samples, or the histology was
unclear and they failed quality control (QC). The remainder of the samples (n =150) and resultant spectra were included in subsequent

models, univariate and multivariate analyses

in some, or the need for two procedures in others if OC is
ultimately diagnosed. In addition, in the presence of OC that is
confined to the ovary without capsular breach, systematic lymph
node dissection of pelvic and para-aortic nodes can result in
complete staging of the tumour without the need for a second
procedure.

Electrosurgical diathermy is used to cut tissue during surgery as
it provides haemostasis. Surgical aerosol is a by-product of
thermal tissue ablation. We hypothesised that this aerosol was rich
in biological information and developed a mass spectrometric
method for the online analysis of samples.'®'® The use of
diathermy as a sampling tool and ion-source, for subsequent mass
spectrometric analysis, has been termed Rapid Evaporative
lonisation Mass Spectrometry (REIMS)."” REIMS converts molecular
constituents into charged gaseous particles (ions), using an
ordinary surgical tool, making it ideal for intra-operative use.
REIMS employs multivariate statistical analyses to translate
spectral data into clinically relevant real-time information. The
combination of electrosurgical dissection methods and mass
spectrometry (MS) in a single device that provides real-time intra-
operative histological information was termed ‘iKnife’. The iKnife
has shown sufficient accuracy for ex-vivo identification of liver,
lung and colon."” More recently it has shown significant promise
in the gastro-intestinal and breast settings successfully distin-
guishing colorectal carcinoma from normal adjacent mucosa
(94.4% accuracy) and breast carcinoma from normal breast tissue
(95.8% accuracy).'®?® The REIMS iKnife has also identified the
origin of metastatic lesions in ex-vivo and in-vivo settings
including the endoscopic classification of intestinal wall, cancer
and polyps.?'

Here we present the first use of the REIMS iKnife in the ex-vivo
and in-vivo gynaecological settings. We present results obtained
from frozen tissue samples and show excellent histopathological
discrimination between normal, benign, BOT and OC tissue types.
We have validated these results in prospectively collected fresh
tissue. In addition, we compare accurate diagnosis of tissue type

between the iKnife, surgeon and histopathologist using inter-rater
agreement analyses. Furthermore, we evaluate the chemical
composition of the tissue classes to identify lipid species that
have variable intensity in a range of gynaecological tissue types.

MATERIALS AND METHODS

This prospective observational feasibility study was approved by
Imperial College London (ICL) Research and Ethics Committee
(REC 14/EE/0024). The handheld surgical diathermy is a standard
commercially available device with in-built aerosol extraction
tubing. The iKnife system is a non-FDA approved device
used for the purpose of research in an investigational setting.
Frozen samples were issued by ICL tissue bank between
November 2014 and February 2015. Fresh samples were
collected and processed between March and November 2016.
All the samples were processed at Imperial College Healthcare
NHS Trust (ICHNT), London. Our aim was to investigate
whether gynaecological tissues yielded unique REIMS signatures
and to build a histologically assigned database upon which
models could be created to recognise tissue spectra and report
histology. Figure 1a summarises the setup and work-flow for this
study.

Sample details

In total, 335 samples (Frozen n =171, Fresh ex-vivo n =119, Fresh
in-vivo n = 45) were collected from 198 patients (Frozen n =157,
Fresh ex-vivo n = 35, Fresh in-vivo n = 6), which yielded 3384 MS
spectra. Some frozen samples were later excluded; 21 samples
(12.3%) failed quality control for the following reasons: incon-
clusive histopathology report (n = 8), necrotic tissue (n =5), non-
OC (n = 6) and technical reasons (histology processing errorn=1,
no interpretable MS signal n=1). The remaining 150 samples
were categorised as ‘normal’ (fallopian tube, normal ovary and
peritoneum) (n=44), ‘benign’ (n=22), ‘BOT" (n=21) or ‘OC
(n=63) (Fig. 1b). Some patients provided more than one sample,



for example a piece of tumour as well as normal fallopian tube or
peritoneum. Normal samples of ovary, fallopian tube, peritoneum
and omentum were collected from women undergoing gynaeco-
logical surgery for benign conditions or stage la/b endometrial
carcinoma, as the extra-uterine tissues are unaffected by tumour.
Benign, BOT and OC tumour samples, including common
histological types, were collected from the primary tumour site,
except when metastatic tumour was specifically collected.
Supplementary table 1 summarises the clinical characteristics of
the frozen tumour samples used throughout this work to create
the training data set.

Handling of samples and data

Frozen samples had been snap-frozen and stored at —80°C. Fresh
samples (supplementary table 2), kept at room temperature, were
processed within 4 h after excision from the patient. Sixteen large
samples of omentum and peritoneum (~50 mm in diameter) were
collected in order to macroscopically assess the metastatic tumour
environment and to enable clinical classification of the tissue.
Intra-operative samples were collected during surgery and were
obtained by sampling tissue during resection from the patient.
Histopathology, sampling site, clinical diagnosis, tumour stage and
grade, was recorded on a hospital-networked computer for all
samples in the study.

Processing of samples with REIMS iKnife

Samples were cut (diathermised) multiple times with a modified
electrosurgical hand-piece coupled with a Covidien ForceTriad™
generator using 20-25 watts. Multiple unique tissue sampling
points (burns) were performed to create surgical smoke (aerosol).
The number of unique tissue sampling points was dependent
upon the size of the samples. The resultant aerosol was analysed
by a modified Waters G2-XS time of flight mass spectrometer in
negative-ion sensitivity mode. The REIMS method has been
previously described.'®'”?° Briefly, the instrument was calibrated
daily using sodium formate solution as per the manufacturer’s
instructions. Isopropyl alcohol (propan-2-ol) was injected as the
solvent matrix at a flow rate of 0.2 ml/min. An external lock mass
of leucine enkephalin (1 ng/pl) was used for all fresh tissue work
(mass in negative-ion mode 554.2615 m/z). A known phospholipid
(699.497 m/z) was used for internal lock mass correction for all
frozen work. Scan range and time was 50-1200 m/z and 1 sec,
respectively. Fresh samples were processed similarly; however,
these were additionally processed in coagulation mode. Sixteen of
the fresh ex-vivo samples with tumour metastasis were extensively
sampled with multiple sampling sites. Metastatic tumour deposits
were sampled directly (positive control), at the lateral edge, and
then at increasing distances from the edge of the metastasis.
Spectra within the 600-1000 m/z range were analysed for all
samples.

Histopathological processing and reporting

Processed tissue was formalin-fixed, paraffin-embedded (FFPE),
stained with haematoxylin and eosin (H&E) and scanned
at high resolution using NDP.view2 software (Hamamatsu Photo-
nics, Japan). The FFPE tissue samples were reported by senior
histopathologists (MAEB, AVMS, FR) at Imperial College London to
classify the histological environment of the analysis points.
Details including tissue type, histology and tumour-cell-content
(supplementary figure 1) were provided. The histopathology
technician was provided with sketches and photographs
of the sixteen large samples to accurately orientate the
samples after the process of histological slide preparation. The
final histopathological report was used as the gold standard
for diagnosis and the tissue sample database was updated
accordingly. Inconclusive diagnoses, non-ovarian tumour types
and non-epithelial ovarian tumours were excluded from the
analyses.
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Statistical analysis and models

Lock mass correction, background subtraction and binning of
peaks to 0.1Da was performed using Waters Corporation’s
software (Offline Model Builder (OMB) v1.1.29.0; not commercially
available). OMB and MatLab (v2014a) were used for all multivariate
analyses including principal component (PCA), linear discriminant
analyses (LDA) and loadings plots. Cancer samples were
excluded for model building if less than 50% viable tumour was
present (supplementary figure 1). For the purposes of model
building, the normal tissue class included normal ovary, normal
fallopian tube and normal peritoneum in all frozen tissue
models. In metastatic samples, the normal class included normal
omentum and peritoneum. Validation of each PC-LDA model was
performed using leave-one-patient-out cross-validation (LOPOCV),
which leaves out all spectra from one patient and builds a model
with spectra from all remaining patients. Tissue PC-LDA models
created in OMB software were exported into the recognition
software to serve as training data sets. OMB Recognition software
was used in post-processing mode for characterisation of blind
samples.

Univariate analyses were performed using either the Wilcoxon
rank-sum or Kruskal-Wallis tests to identify discriminatory ionic
species (P-values reported). False discovery rate correction (a 0.01)
was performed using the Benjamini-Hochberg-Yekutieli method
(g-values reported).

Cohen’s kappa (k) inter-rater reliability agreement analyses were
performed between three raters of tissue type ((1) Surgeon, (2)
iKnife and (3) Histopathologist) on fresh ex-vivo metastatic tissue
samples using RStudio (version 3.2.2, https://cran.r-project.org).
The surgeon reported their impression of the tissue type at each
burn site during sampling with the iKnife. OMB Recognition
software was used to give the iKnife's impression of tissue
type at each burn site, using an appropriate tissue PC-LDA model.
After histopathological reporting, an agreement analysis between
all three reporters was performed. Agreement was categorised by
the following k values: 0.00 no agreement, 0.01-0.20 poor,
0.21-0.40 fair, 0.41-0.60 moderate, 0.61-0.80 good and =>0.81
very good.

Lipid identification

LIPID Metabolite and Pathways Strategy (LIPID MAPS®) Lipidomic
Gateway (www.lipidmaps.org) was used to provide tentative lipid
identification. This was performed for peaks of interest in PC-LDA
models, restricting the search to only deprotonated [M-H]™
glycerophospholipid and fatty acid ions, with a mass tolerance of
+/— 0.1 m/z, and even-chains only.

REIMS tandem MS (REI-MS/MS) was performed on frozen tissue
samples using the Xevo G2-XS Q-Tof instrument. Mass peaks of
interest that contributed strongly to class separation in PC-LDA
models were selected for fragment ion scan analysis. For these
experiments m/z 699.497, 744.555 and 673.481 were selected as
the ‘MS/MS mass'. Tissue samples were processed in cut mode,
20W, wusing Argon as the collision gas. Tissue sampling
was performed over 5 sec to gain adequate volumes of aerosol
for MS/MS analysis. MS/MS negative-ion-mode spectra were
presented to the LIPID MAPS online tool with the following
parameters: intensity threshold 5, ion mass tolerance +/— 0.1 m/z,
any head-group.

RESULTS

Statistical modelling with frozen samples—normal vs cancer tissue
To establish the iKnife’s ability to distinguish normal gynaecolo-
gical tissue from OC, a multivariate statistical model was created
from the frozen sample spectra, including normal sample types
and OC (Fig. 2). Some OC samples had very-little tumour cell
content and, therefore, samples with <50% tumour were excluded
from the analysis (see supplementary figure 1 for examples), to
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ensure that mass spectra obtained from the samples were
representative of tumour rather than tumour associated stroma.
The OC class separated from normal gynaecological samples
along the first principal component (PC1) (Fig. 2a). This suggests
that normal gynaecological samples have a significantly different
mass spectral profile from OC samples. Derived PCs were used as
input variables for PC-LDA (Fig. 2b). Normal ovary and normal
peritoneum classes predominantly separate along the second
linear discriminant (LD2), while fallopian tube clusters away from
the other classes along LD3. Although the separation of the
classes is obvious in the PCA plots, further statistical validation of
these class separations was performed using LOPOCV. Cross-
validated correct classification in this model was 97.6% with OC
correct classification sensitivity of 97.4% and specificity of 100%
(Supplementary Table 3). In the same analysis, normal fallopian
tube and peritoneum were both classified with 100% accuracy.
One sample of normal ovary (6.7%) was misclassified as fallopian
tube. One OC sample (2.6%) was misclassified as peritoneum,
which could be a true misclassification or a result of the iKnife
sampling a fibrotic (peritoneum-like) area of the tumour.
Univariate analysis was performed to determine, which mass
spectral peaks varied significantly between classes. Figure 2c
shows the most discriminating top ten significant and abundant
m/z peaks and the relative log2 fold change between tissue
classes. Overall the results show that the iKnife can achieve highly
accurate classification rates (93-100%) in a model comparing
normal gynaecological tissues with OC. However, in clinical

practice the distinction between normal tissue and OC is not
often a challenge. Further work focused on the ability to
distinguish BOT from OC.

Statistical modelling with frozen samples—invasive and non-
invasive tumours

The most challenging intra-operative differentiation is between
OC and BOT as macroscopically they can appear very similar and
intra-operative frozen section diagnostic sensitivity can be as low
as 25% for BOT.'® To investigate whether non-invasive ovarian
tumours (benign and BOT) have differential mass spectral
lipidomes from OC, a multivariate PC-LDA model was constructed
to compare these tissue classes (Fig. 3).

In PCA analysis there is an obvious grouping of OC away from
the benign and BOT samples, particularly along PC1 (Fig. 3a). PC1
always explains the largest variance, which, therefore, suggests
that OC, as a distinct class, has a significantly differential lipidomic
signature to both benign and BOT samples. This is an important
finding, as it is this distinct group of OC patients that require full
cancer staging surgery, rather than patients with benign tumours
or BOT. In PCA there is little separation between the two non-OC
classes. Clear separation can, however, be seen in the LDA model
(Fig. 3b). In LDA OC separates from the other classes along the first
linear discriminant, with benign and borderline classes separating
along LD2. LOPOCV in the model that included all three tissue
classes (Fig. 3¢) had overall correct classification of 83.1%, with the
highest correct classification observed for OC and benign (=87%).
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BOT had the lowest correct classification accuracy (71.4%), most
likely due to them having similarities to both benign and OC
tumours, whereas OC and benign tumours are histologically,
biologically and phenotypically the most dissimilar. Univariate
analysis was performed to determine, which mass spectral
peaks varied significantly between classes. Figure 3d shows the
most discriminating top ten significant and abundant m/z
peaks and the relative log2 fold change between OC and BOT
tissue classes. To explore whether binary classification models
affect the correct classification accuracy, three binary models were
created to compare only two classes at any one time. Figure 3e-g
show that classification accuracies can be improved significantly
when using binary models, with overall correct tissue classifica-
tions ranging from 90.0 to 93.5%. OC discrimination from BOT
showed high accuracy with sensitivity of 90.5% and specificity of
89.7%.

To determine the effect of freeze-thaw on the samples and to
validate the results previously shown, we prospectively collected
fresh tissue samples to serve as a validation data set.

Validation of frozen data sets with prospectively collected fresh
samples

An intra-operative tool that could provide a binary classification of
‘Normal' or ‘Cancer’ would be more useful than a tool which
differentiates between fallopian tube and peritoneum for
example. A frozen model was, therefore, created to classify new
blind fresh samples as ‘Normal Tissue’ or ‘Ovarian Cancer’ (Fig. 4a,
b). This model was constructed to check the feasibility of using
frozen tissue data as a reference data set for real-time analysis and
to serve as a fresh validation of the frozen model. Thirty-five
patients donated 119 fresh samples, yielding 2134 unique
sampling points with the iKnife (supplementary table 2). Fresh
samples of primary OC, normal ovary, fallopian tube and
peritoneum totalled 64 of these samples and 32 were processed
in cut mode.

The frozen tissue binary model had an internally cross-validated
sensitivity and specificity of 100% (Fig. 4c). Each fresh tissue
spectrum (burn) was presented to the model using OMB
Recognition software (v1.1.29.0) to output, in real-time, the tissue
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classification (Fig. 4d). OMB Recognition software allows a
classification accuracy or reliability threshold to be set. This
ensures that all software outputted classifications are deemed, by
the software, to be the most reliable. We set this level at 75%,
therefore any outputted classifications with a reliability score of
<75% were ignored. A total of 232 sampling points (burns) were
collected from 32 samples to validate the frozen model with fresh
samples (Fig. 4e). Of the 232 sampling points, 217 (93.6%) were
reported with >75% reliability. Overall, 215/217 sampling points
were correctly classified using the REIMS iKnife, by analysing the
tissue lipidome signatures, when compared to gold-standard
histology, an overall correct classification rate of 99.1%. Individual
OC, normal ovary and fallopian tube sampling points were all
classified with 100% accuracy when using the real-time recogni-
tion model. There was a 5.9% false positive rate for peritoneal
samples, which may be compounded by the smaller number of
samples in this class. Supplementary Table 4 summarises the fresh
samples processed in this analysis, and the processing points
included, showing the associated diagnostic accuracy using the
recognition software.

Comparison of iKnife, surgeon and histopathologist tissue
diagnosis in metastasis

Intra-operatively, surgeons rely on tissue characteristics, such as
tissue architecture, colour and consistency to form an opinion as
to its pathological nature. All previous samples presented in this
research paper were relatively small (3-8 mm). This hindered the
macroscopic study of the samples to be able to form clinical
impressions about tissue type. Figure 5a shows how multiple

processing points were possible on the sixteen larger samples. The
surgeon planned each sampling point and noted their impression
for all sampling points before sampling with the iKnife (Fig. 5e
‘Surgeon’).

Figure 5b shows the matched H&E slide for the tissue processed
in Fig. 5a. The sampling points were identified on the total ion
chromatogram and resultant mass spectra compared (Fig. 5¢, d).
Mass spectral peaks at m/z 699 and m/z 744 featured amongst the
most abundant peaks in both normal and metastatic tissue.
The intensity of these two peaks is closely matched in
normal tissue, which contrasts with OC where m/z 699 is
significantly higher (Fig. 5d). OMB Recognition software
reported iKnife classification for each of the sampling points
(Fig. 5e ‘iKnife’). Post-processing histopathological impression is
shown in Fig. 5e ‘Histology’. The inter-rater Cohen'’s kappa (k) for
the surgeon’s impression compared to the histopathologist was
0.60 (moderate), P=0.0088, z=2.62. Cohen's k inter-rater
reliability for the iKnife and histopathology was 0.84 (very good),
P<0.001, z=3.3. Metastatic deposits could be easily
palpated at sampling points 1&2 and all three raters identified
this as tumour. All other sampling points appeared normal to the
surgeon, but it is clear from Fig. 5b that points 13 and 15 sampled
areas of tumour (stained purple), which were not seen by the
surgeon, but were identified by the iKnife and the histopathol-
ogist. Point 14 on Fig. 5a, b, which is close to other metastatic
deposits is reported as normal by the histopathologist, but as
metastasis by the iKnife.

In total, 16 metastatic samples were collected, totalling
150 sampling points. All 150 sampling points were processed in
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Fig. 5 Spatial resolution of metastatic peritoneal deposits and iKnife recognition. a Peritoneum containing metastatic tumour deposits with
iKnife burns labelled 1-16 sampling normal peritoneum and tumour nodules. b Matched haematoxylin and eosin histological slide for the
tissue sample in panel A with corresponding burn sites numbered. Scale showing millimetres. ¢ Total ion chromatogram obtained during the
sampling of the specimen with the iKnife with each burn numbered. Coloured boxes represent data obtained from a nodule (red; burns 1&2)
and normal peritoneum (green; burns 9&10). d Representative mass spectra, obtained in negative-ion mode from a nodule (red) and normal
peritoneum (green) showing the degree of variability in the MS peaks for different tissue types (OC vs normal). e Surgeon’s histological
impression, iKnife's impression (percentages in parenthesis represent probability of correct classification) and the histopathologist’s final

diagnosis (percentages in parenthesis represent tumour cell content)

the same manner as the sample in Fig. 5 (Supplementary table 5).
Unfortunately, the majority of the samples were rare tissue types
(mucinous carcinoma and carcinosarcoma), which are not well
represented in the cancer model. Therefore, it was not appropriate
to perform kappa analysis on these samples.

Intra-operative in-vivo experiences with iKnife

Promising intra-operative in-vivo results have been observed,
providing 119 spectra from 45 tissue samples (n =6 patients) in
both cut and coagulation mode. The iKnife has reliably provided
high quality mass spectra in the in-vivo setting and data collection
continues to enable robust analyses.

Lipids involved in class separation

Multivariate PC-LDA models perform well in LOPOCV and will be
the cornerstone of intra-operative iKnife recognition models.
However, these models do not define the lipids responsible for
class separation—they merely serve as a tissue fingerprint.
LipidMAPS was used to propose deprotonated [M —H]™ and
chlorinated [M + Cl]™ negative ions using the inputted m/z values

from the models. It is also known, from previous work within the
iKnife research team, that the REIMS method can result in the
deammoniated anion [M — NHs]~,%° but these are not available in
LipidMAPS.

The three most significant MS peaks that contribute to the
separation of OC from all normal samples are m/z 673.481, 699.497
and 744.555. m/z 673.481 likely represents the deprotonated ([M
—H]7) form of phosphatidic acid (PA(34:1)). [M —H]™ ion of
phosphatidic acid (PA(36:2)) and [M—NHs]” form of
phosphatidyl-ethanolamine (PE(34:1)) are the most likely con-
tributors to the peak at m/z 699.497. [M —H]™ phosphatidyl-
ethanolamine (PE(36:1)) was tentatively associated with m/z
744.555. MS peaks at 699.497 m/z also featured in the OC/BOT
model, with peak 699.497 significantly higher in OC than BOT
(Fig. 3d). Intensity of the ion associated with deprotonated
phosphatidyl-ethanolamine (m/z 742.539, PE(36:2)) is significantly
higher in OC than BOT and [M—H]™ phosphatidic-acid-
plasmalogen (m/z 685.517, PA(P-36:1)) is more abundant in OC.
The levels of significance, relative arbitrary intensity and median
log2 fold change of all highly significant (p <0.001, g < 0.001) m/z
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Table 1. Tentative lipid assignments for the top three significant lipids in each model

Model m/z Lipid Configuration lon

Cancer vs Normal 673.481 Phosphatidic acid PA(34:1) M —H]"
699.497 Phosphatidic acid/Phosphatidyl-ethanolamine PA(36:2 / PE(34:1) [M —H]/[M — NH3]™
744.555 Phosphatidyl-ethanolamine PE(36:1) [M—H]"

Cancer vs BOT 699.497 Phosphatidic acid/Phosphatidyl-ethanolamine PA(36:2 / PE(34:1) [M —H]/[M — NH3]™
742.539 Phosphatidyl-ethanolamine PE(36:2) [M-H]"
685.517 Phosphatidic-acid-plasmalogen PA(P-36:1) [M—H]™

Tandem MS and LipidMAPS used along with locally derived lipid data sets from previous REIMS work to tentatively assign lipid classifications and

configurations. PA phosphatidic acid, PE phosphatidyl-ethanolamine

peaks contributing to class separation for OC/Normal and OC/BOT
are shown in supplementary tables 6 and 7.

To further confirm the tentative lipid assignments, tandem MS
was performed on frozen samples of OC, normal ovary, normal
peritoneum and normal fallopian tube to confirm the lipid
identification for 673.481, 699.497 and 744.555 m/z. Tandem MS
confirmed the tentative assignments listed in Table 1 for the OC/
Normal Tissue and OC/BOT models.

DISCUSSION

We present the first published report of REIMS characterising
gynaecological tissue types in real-time. The robust differentiation
of normal tissue types from OC was remarkable (Fig. 4c) with
100% sensitivity and specificity. The REIMS technology provides a
close-to-ideal solution as it gives real-time feedback, which can
inform the surgeon of accurate histopathological information,
allowing them to tailor surgery. Whilst the REIMS technique
currently requires tissue destruction with diathermy, it performs
better than current non-destructive MS-based tissue identification
methods for OC.*

Tissue discrimination in the OC and BOT model is promising as
it is well recognised that BOT are difficult to diagnose, especially
intra-operatively.””'®> Whilst these numbers are relatively small,
and some caution should be exercised when drawing conclusions,
the correct classification results (90.5% sensitivity and 89.7%
specificity) are encouraging and could be a progressive develop-
ment for younger women having treatment for BOT wishing to
preserve their fertility. In addition, intra-operative diagnosis of OC
confined to the ovary with no capsular breach, will allow removal
of lymph nodes for full staging. We recognise that an intra-
operative tool, which uses histopathology to guide surgeons
towards more personalised management, may have wide-
reaching benefits to patients and the health service. We
appreciate however, that the number of BOT in this study are
relatively low and we endeavour to focus on this particular
histology to further improve our model for future testing.
Reducing the numbers of tissue classes in the multivariate models
appears to increase the correct tissue classification accuracy. This
is likely to be as a result of removing a class of tissue that is
lipidomically similar. This is supported by the superior classifica-
tion of OC in Fig. 3f when compared to benign tumours, as these
tissue classes are biologically more dissimilar than OC and BOT for
example. It could be argued that using binary models introduces
bias, as the correct diagnosis is more likely to be made by chance.
However, the correct classification rates in the 3-class model
(Fig. 3c¢) rival existing intra-operative diagnostic methods and
provide a result in 1.8 sec®® rather than 30 to 45 min for frozen
section.

The diagnostic tissue accuracy seen in the frozen tissue models
was impressive, but caution should be exercised as these samples
were processed and analysed retrospectively and the samples

were frozen. However, our real-time fresh ex-vivo work corrobo-
rated the frozen data. Real-time diagnosis of fresh tissue types
using a frozen model was reliable and robust with 217 out of
232 sampling points (93.5%) reported with a classification
accuracy of >75%. Of the 217 sampling points reported, 215
(99.1%) were correctly diagnosed. This suggests that the
phospholipid composition of tissues is not significantly altered
by a single freeze-thaw cycle. This is an encouraging finding as it
implies that models could be built from historical fresh-frozen
tissue bio-banks, which would be especially useful for the much
rarer tissue types. Furthermore, use of historical samples would
also allow the testing of the prognostic capability of the method,
as long-term follow-up data would be available on large numbers
of historical samples. The instrument continues to be used intra-
operatively (in-vivo) and the acquisition of data is ongoing to build
histopathological-spectral libraries. Future work will encompass
tissue processing in a clinical trial setting to robustly test the
iKnife’s discriminatory ability and to establish whether the
improved accuracy of tissue detection may have a positive effect
on progression-free and OS.

The larger metastatic tissue samples provide further fresh
tissue validation of the frozen models. The purpose of these
experiments was to investigate any peri-tumoural halo effect that
may be present around each of the metastatic deposits. We
hypothesised that normal tissue adjacent to metastatic nodules
would display an altered lipidome and be recognised by the OMB
Recognition software as tumour. This did not appear to be the
case and likely represents the fact that ovarian metastases are
known to develop via a trans-coelomic route. OC single cells or
spheroids, carried in the peritoneal fluid from the primary tumour,
are known to seed onto the peritoneal surface and grow locally
rather than invading along its surface.”>?* These experiments did,
however, present an opportunity to compare the diagnostic ability
of surgeons and the iKnife, using histopathology as the gold
standard. When comparing Fig. 5a, b it is evident that some
tumour deposits seen in the H&E image are not visible to the
naked eye. This explains why the iKnife performed better than the
surgeon for this sample. It is an interesting finding as it that raises
the possibility that surgeons may leave behind tissue that appears
normal and the iKnife could be used as a surgical adjunct to test
for hidden metastases, or to guide the extent of peritoneal
stripping. Point 14 in Fig. 53, b is notable as the iKnife confidently
classified the tissue as metastasis, yet the histopathologist
reported normal tissue. This highlights a limitation when
validating the iKnife technology—sampling is destructive, there-
fore limiting histopathological confirmation. Point 14 may very
well have been a small focus of tumour, explaining the iKnife's
report, but the tissue no longer exists for it to be confirmed by the
histopathologist. The diagnostic ability of the iKnife was hindered,
when analysing the 16 large metastatic samples, by the fact that
many of the histologies within these samples were rarer
(mucinous, carcinosarcoma), and, therefore, did not have



significant representation in the iKnife reference database. This
highlights a limitation of the iKnife technology; the recognition
accuracy will always be impaired when few histologically similar
samples exist in the data set. This underlines the need for ongoing
data collection to populate the iKnife's histology and spectra
reference database.

An important hallmark of cancer is uncontrolled cellular
proliferation, requiring an increased rate of biological-
membrane-synthesis that is orders-of-magnitude higher than
healthy tissue. Consequently, phospholipid biosynthesis pathways
differ between healthy and malignant tissues. Cancer cell
metabolism encourages de-novo lipid synthesis of fatty acids by
anaerobic glycolysis producing energy and pyruvate (Warburg
effect). Fatty acids are incorporated into complex lipids through
phosphatidic acids (PAs) as intermediary metabolites. PAs also
serve as precursors for phospholipids generated de-novo, or from
existing phospholipids, and can serve as cell survival signalling
molecules acting primarily on the mammalian target of rapamycin
(mTOR).2> We observed significantly elevated PA levels in OC
tissue using REIMS, which supports its previously established role
in phospholipid metabolism and cancer. Whilst we do not
currently believe that individual lipids can be used as diagnostic
biomarkers alone, when combined they do appear to have a role
to play as part of a diagnostic signature. Phospholipids have long
been understood to have a role in carcinogenesis and metastasis
and have been used to improve diagnostic accuracy in 0C.2%%*
More recently lysophosphatidic acid (LPA), a precursor of PA, and
phospholipases involved in the hydroxylation of LPA precursors
have all been shown to be abundant in OC227° LPA is a well-
recognised mitogen and has been shown to stimulate prolifera-
tion of OC cell lines.' Furthermore, it is a potent modulator of
gene expression, specifically those involved with inflammation,
angiogenesis and carcinogenesis, including vascular endothelial
growth factor.>* We have shown that using REIMS we can identify
phospholipid species predominantly within classes of PA and PE in
ovarian samples, which our group previously showed in breast
tissue.?’ These findings are further supported by the identification
of abundant PA(36:2) and similar PE classes using desorption
electrospray ionisation MS (DESI-MS) on OC tissue samples in our
group.® The differential intensity of PA species suggests that
future REIMS models could focus on these species for more robust
diagnostic performance. Further work is planned to identify the
species detected throughout this study and to investigate the
expression patterns of corresponding genes, which will enable a
more targeted approach towards detection of phospholipid
biomarkers by REIMS.

REIMS may have the potential to augment surgical decision
making in real-time by revolutionising intra-operative histological
diagnosis for OC. Tumours that radiologically and visually appear
less aggressive, which often receive conservative resection, are
occasionally high-grade invasive OC, requiring return to theatre
for staging and resection. The iKnife could end this intra-operative
uncertainty by providing a rapid and reliable point of care tissue
diagnosis. Similarly younger women, wishing to retain fertility,
could be assured of real-time accurate diagnosis to guide the
surgeon towards the least radical resection for benign or BOT.
Furthermore, detection of metastatic tumour deposits, which are
not visible to the naked eye, could potentially introduce a new
paradigm shift in the treatment of OC by removing microscopic
tumour deposits, which may reduce recurrence and improve
survival. The current technology is able to use the entire tissue-
derived MS-spectrum as a fingerprint to identify the tissues
rapidly. The reference data set created throughout this research
will be the foundation for future real-time intra-operative tissue
diagnosis as part of a clinical trial. New iKnife features and
methods are currently in development. The laparoscopic iKnife, for
example, would allow less-invasive sampling pre-debulking
surgery. Intra-operative REIMS imaging will potentially provide
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real-time lipid profile mass spectral images of the tissue without
the need for diathermy. This non-destructive method could allow
more accurate resection of metastatic disease. These exciting
iKnife applications should be investigated within appropriately
controlled multi-centre clinical trials.
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