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Abstract
Conventional workup of rare neurological disease is frequently hampered by diagnostic delay or lack of diagnosis. While
biomarkers have been established for many neurometabolic disorders, improved methods are required for diagnosis of previously
unidentified or underreported causes of rare neurological disease. This would result in a higher diagnostic yield and increased
patient numbers required for interventional studies. Recent studies using next-generation sequencing and metabolomics have led
to identification of novel disease-causing genes and biomarkers. This combined approach can assist in overcoming challenges
associated with analyzing and interpreting the large amount of data obtained from each technique. In particular, metabolomics
can support the pathogenicity of sequence variants in genes encoding enzymes or transporters involved in metabolic pathways.
Moreover, metabolomics can show the broader perturbation caused by inborn errors of metabolism and identify a metabolic
fingerprint of metabolic disorders. As such, using "omics" has great potential to meet the current needs for improved diagnosis
and elucidation of rare neurological disease.

Introduction

The diagnosis of many childhood-onset neurological diseases
is challenging due to often nonspecific clinical presentation or
extreme rarity of the disease. It is estimated that ~6–8% of the
general population is affected by a rare (orphan) disease, of
which 80% are primary genetic and ~50% manifest in child-
hood. Delay or lack of diagnosis of rare diseases is common
(Gahl et al. 2012), and the small number of patients diagnosed
is a limiting factor for interventional studies, warranting im-
proved diagnostic techniques.

Over the last 50 years, the development of a variety of tech-
niques for analyzing biochemical compounds has enabled the
discovery of various inborn errors of metabolism (IEM), in-
cluding neurometabolic disorders that can affect the brain as
part of a multiorgan manifestation. This is the case in
intoxication-type disorders, in which circulating compounds
(e.g., organic acids or ammonia) can damage various organs,
including the brain, or in lysosomal storage disorders such as
mucopolysaccharidosis type I (Hurler), or GM1 gangliosidosis,
in which undegradable compounds accumulate in many tis-
sues, including neuronal cells. Some IEM cause brain involve-
ment exclusively, as seen in leukodystrophies (e.g., Canavan
disease) or neurometabolic epilepsies (e.g., nonketotic
hyperglycinemia). Biomarkers in cerebrospinal fluid (CSF),
plasma, and dried blood spots (DBS) or urine have been iden-
tified for many of these disorders, enabling the development of
newborn screening programs, selective screening, or specific
diagnostic tests for a single disease. Still, detecting various
compounds during diagnostic workup necessitates different as-
says, requires large sample volumes, and is laborious and time
consuming. As well as helping in diagnosis of rare IEM, bio-
markers are important surrogate parameters for treatment
monitoring.

Recent developments in the fields of genomics and metabo-
lomics offer enormous potential for elucidating genetic and
metabolic causes of rare neurological disorders of hitherto
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unclear etiology. Combining these two powerful techniques
enables discovery of novel biomarkers and support of pathoge-
nicity—or lack—thereof, of variants of unknown significance
in genes involved in metabolic pathways. Chromosomal micro-
array analysis and next-generation sequencing (NGS) are re-
vealing an increasing number of disease-causing genes and
mutations and are part of routine analysis in many specialized
centers. Metabolomics is used to identify and quantify the
small-molecule metabolic products (metabolome) in physiolog-
ical or disease states. Untargeted metabolomics aims to analyze
all measurable metabolites in a sample, while targeted metabo-
lomics measures defined groups of chemically characterized
and biochemically annotated metabolites (Roberts et al. 2012).

Recent collaborative multicenter studies have demonstrated
the benefits of an Bomics^ approach in rare neurological dis-
eases, incorporating the expertise of clinicians and experts in
genomic and metabolomic analysis (Abela et al. 2016; 2017;
Sirrs et al. 2015; Tarailo-Graovac et al. 2016). Analysis and
interpretation of the large amounts of data obtained in such
studies presents a challenge. In NGS, a high number of se-
quence variants need to be filtered and analyzed for pathoge-
nicity and relevance to the disease. In metabolomics, the high
number of features detected need biochemical identification to
determine metabolites with alterations that might be disease
related. Untargeted metabolomic profiling of patient samples
has high sensitivity and does not only reflect endogenous bio-
markers or disease-specific changes but is complicated by ef-
fects of diet, environment, therapeutics, and genetic back-
ground. This can confound interpretation and comparison of
patient and control cohorts. However, when used in comple-
ment, metabolomics can aid in confirming pathogenicity of

mutations identified by NGS. Conversely, identifying muta-
tions in candidate genes from NGS can provide insights invalu-
able to the interpretation of metabolomic profiles (Fig. 1).

As such, a multiomics approach using metabolomic analy-
sis used in combination with whole exome sequencing can be
useful in interpreting the complex data obtained from each
method. Here, we detail the benefits and challenges of the
omics (genomics, proteomics, and metabolomics) and review
published studies using multiomics in the field of rare neuro-
logical disease. Identifying proteomics biomarkers presents
many challenges that are particularly difficult to overcome in
studies on rare diseases. Most multiomics studies have there-
fore used a combined genomics–metabolomics approach,
which we also focus on in this review.

The omics

Genomics

In the past decade, high-throughput sequencing has been
made possible by advances in technology allowing faster
and cheaper sequencing of large numbers of DNA sequences.
This includes whole-genome sequencing (WGS) and whole
exome sequencing (WES). Historically, Sanger sequencing
was used to confirm suspected mutations in selected genes
related to monogenic disease. This approach is less success-
ful for diagnosing rare diseases with genetic heterogeneity,
e.g., leukodystrophies with lack of typical magnetic reso-
nance imaging (MRI) patterns), due to insufficient through-
put and high costs for sequential sequencing of single genes

Fig. 1 Workflow of combined
omics’ approaches. Using
combined Bomics^ techniques
can be helpful for confirming
effects of variants of unknown
significance (VUS) on function of
a disease gene or a gene of un-
known significance (GUS) (can-
didate gene)
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(Neveling et al. 2013). Furthermore, NGS enables compre-
hensive analysis of the exome or genome for diagnosis and
discovery of previously unrecognized disease-causing
variants.

In brief, NGS involves amplifying and sequencing DNA
fragments from samples to be analyzed using one of several
available sequencing technologies (e.g., Illumina, Roche 254,
Ion torrent, or SOLiD sequencing). In whole exome sequenc-
ing, only the protein-coding genes (exomes) are targeted and
amplified, whereas for whole-genome sequencing, fragments
from the entire genome are amplified. The millions of short-
sequence reads generated are processed bioinformatically for
alignment to a reference genome, and a list of variants (differ-
ences to the reference genome) is generated, which is then
filtered to identify a subset of highly confident variants that
are likely to be relevant to the disease. Variants in this subset
are subsequently analyzed for significance and classified as
belonging to one of five categories according to the American
College of Medical Genetics (ACMG) guidelines (Richards
et al. 2015):

& Pathogenic
& Likely pathogenic
& Likely benign
& Benign
& Variant of unknown clinical significance (VUS)

Classification of each variant takes into account available
evidence indicating significance of the variant, including pop-
ulation-, computational-, functional-, and segregation data. In
cases where the variant does not fall into either the pathogenic
or benign category, it is classed as a VUS, and the effect of the
variant on gene function needs to be further studied to deter-
mine likely pathogenicity.

The ACMG guidelines are intended to classify variants in
genes with a definitive role in a Mendelian disorder. When no
(likely) pathogenic variant is identified in any gene known to
be associated with the disorder, variants in other genes that
may be relevant can be considered as candidate genes (Fig. 1).
Additional investigations are required to demonstrate affected
function and provide evidence supporting the gene’s associa-
tion with the disease before the variant can be considered
pathogenic for the disease (Richards et al. 2015). As such,
conventional assays, such as profiling of urine organic acids,
plasma amino acids, acyl carnitines and neurotransmitters, or
enzyme assays, can be useful and are necessary for assessing
the functional effects of variants identified in NGS. Still, these
techniques do not cover all metabolites and pathways that
could be altered by hitherto unknown defects. In view of the
20,000 protein-encoding genes and that current text books list
a total of only 530 monogenic IEM, it seems reasonable that
by applying new techniques, many more IEM will be delin-
eated in the near future.

Filtering and identifying which variants are disease causing
presents the largest challenge in WGS and WES. Considering
that there are 3–4 million variants and structural changes in a
single individual when compared with the reference genome
(Bentley et al. 2008; Johansson and Feuk 2012; Levy et al.
2007; Roach et al. 2010), and ~20,000–25,000 of those are
in coding exons of genes (Wheeler et al. 2008; Ng et al.
2008; Ng et al. 2009), determining which identified variants
cause disease is an enormous task and requires extensive time
and expertise. The benefits of WES and WGS for diagnosing
rare neurological diseases have been demonstrated in several
recent studies comparing the use of NGS or conventional pro-
cedures as a first-line approach. In a group of 119 patients with
neurodevelopmental disorders from 100 families, the use of
WES and WGS reduced costs per family to a maximum of
US $7640 from an average of US $19,100 of previously neg-
ative procedures, including laboratory tests, imaging proce-
dures, electromyograms, and nerve-conduction-velocity stud-
ies. Amolecular diagnosis was reached in 45% of patients with
previously negative diagnostic testing, and time to diagnosis
was estimated to accelerate by 77 months (Soden et al. 2014).
Similarly, a recent analysis of the clinical utility of exome
sequencing versus conventional genetic testing in selected pa-
tients with pediatric neurologic disorders revealed a diagnostic
rate of 29.3% with NGS versus 7.3% with the standard-care
pathway, >50% reduction in costs, and >80% reduction in time
to diagnosis using the NGS approach (Vissers et al. 2017). In a
group of patients with epileptic encephalopathy, use of targeted
NGS panels increased the genetic diagnostic yield from <10%
to >25% (Mercimek-Mahmutoglu et al. 2015). Similarly, diag-
nostic yields in the range of 22–25% have been reported with
the use of epilepsy gene panels (Allen et al. 2016; Segal et al.
2016; Mercimek-Mahmutoglu et al. 2015).

While overall costs, time until diagnosis, and diagnostic
yield indicate the usefulness of WES (or WGS) as a first-
line diagnostic method in routine clinical diagnosis of
suspected genetic neurological disease, limitations include
availablility of resources required for analysis, interpretation
of the complex data obtained, and further validation of VUS
and candidate genes. Close collaboration between geneticists
and clinicians is required for data interpretation with respect to
deep clinical phenotyping and additional confirmatory inves-
tigations, including electroencephalogram (EEG), MRI, fun-
doscopy, etc. Furthermore, it is important that ethical issues
regarding incidental findings and data ownership be consid-
ered carefully and regulated before establishing large-scale
screening programs using these techniques.

Proteomics

Proteomics can be described as the global identification and
quantification of all proteins contained in a single biological
sample. Despite recent improvements in instrumentation,
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experiment design, and data handling (Boersema et al. 2015),
several challenges remain for the effective implementation of
proteomics in clinical research. The excessively large dynamic
range of protein concentrations in body fluids, especially
blood, can result in a comparatively low positive identification
rate for disease-specific proteins with intrinsically low con-
centrations (Beck et al. 2015). The most frequently measured
enzymatic proteins are aspartate aminotransferase (AST) and
alanine aminotransferase (ALT), mainly expressed in liver but
also in muscle and kidney. These can be altered in various
IEM affecting the liver, but their alteration is not sufficiently
specific to meet criteria of a diagnostic biomarker. One exam-
ple of an established protein biomarker for an IEM is cerulo-
plasmin in Wilson’s disease, which is always measured in
combination with copper levels in serum and urine and is
typically lowered as the respective transport protein.

Use of proteomics to identify biomarkers is limited due to
substantial biological and experimental variability in clinical
samples (even to a larger extent than in other omics ap-
proaches), which requires large patient and control cohorts,
and means analysis is prohibitively expensive and time con-
suming (Drake et al. 2011; Schubert et al. 2017). Progress in
the robustness and reproducibility of targeted experiments,
however, makes proteomics a potentially valuable comple-
mentary technique for the detailed characterization of meta-
bolic pathways (Crutchfield et al. 2016; Liu et al. 2013).

Metabolomics

Metabolomics is the comprehensive analysis of the small-
molecule metabolic products of a biological system. It has
the potential to identify disease-related alterations in the me-
tabolome and therefore can be used for biomarker discovery
and confirmation of pathogenicity of mutations detected by
NGS, if the relevant gene is involved in a metabolic pathway.
As such, metabolomics is useful in discovery of new causes of
neurological disease and further elucidation of already de-
scribed IEM that hitherto lack a diagnostic marker.

The workflow of a metabolomics experiment can be divid-
ed into two consecutive sections (Smith et al. 2014): the ex-
perimental portion, which involves sampling, sample prepara-
tion, and measurement; and the bioinformatics portion, which
includes data processing and interpretation (Fig. 2). Each step
of metabolomics profiling needs to be carefully considered to
obtain useful data from the complex output obtained. We now
detail factors to be considered in each of these steps.

Sampling and sample preparation

Considering the high biological variation of metabolomic pro-
files in human biofluids due to effects of treatment, diet, en-
vironment, and genetic background, high numbers of age- and
sex-matched patients and controls are needed, and it can be
difficult to identify small-scale variations that can be relevant
to the disease. These confounding factors can be more suc-
cessfully controlled when using model systems such as cell
culture or animal models, which may be useful first steps
before undertaking more targeted analysis of human samples.
Although CSF would be the ideal patient material for
metabolomic analysis of rare neurological disease, it is diffi-
cult to obtain from sufficient numbers of patients and age and
sex matched healthy controls. Plasma is more easily obtained
and can be useful in identifying novel biomarkers in central
nervous system (CNS) disorders. One approach tominimizing
variations due to diet is taking plasma samples after overnight
fasting. However, as described by Hannelore (2013), over-
night fasting can lead to increases in free fatty acids and
branched-chain and aromatic amino acid concentrations, and
these increases vary depending on the metabolic state of the
patient and amount of glycogen stored in the liver.

Dried blood spots (DBS) offer advantages in terms of sim-
ple sample collection, storage, and transport, but they show
limited metabolite stability (less than 1 week unless frozen),
mitigating their advantages. So far their use is limited to the
targeted analysis of metabolites or classes of metabolites with
tested stability (Wilson 2011). Similarly, urine is easily

Fig. 2 Workflow of a standard liquid chromatography/mass spectrometry (LC/MS) metabolomics experiment
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obtainable, but there are conflicting reports on the stability of
metabolites after urine collection (Dunn 2008; Gika et al.
2008; Lauridsen et al. 2007; Saude and Sykes 2007), and
variable hydration status results in large differences in urine
dilutions even from the same individual on different days
(Ryan et al. 2011). Furthermore, urinary metabolite composi-
tion is heavily influenced by genetic and environmental fac-
tors, age, gender, and diet, which produce significant changes
(Slupsky et al. 2007; Johnson and Gonzalez 2012; Bondia-
Pons et al. 2013) and are likely to confound smaller, disease-
specific effects, which limits the utility of urine for untargeted
metabolomics approaches.

The use of highly sensitive analytical approaches in
metabolomic experiments requires robust and reproducible
sample preparation protocols and comparison to appropriate
controls. The number of control samples required for a mean-
ingful experiment can be estimated based on expected false
discovery rates (Nyamundanda et al. 2013). It can be quite
difficult to obtain sufficient numbers of healthy controls for
analysis of human biofluids, as it is important that controls are
age- and gender-matched to patients due to age- and gender-
related variations in the metabolome. Collection of large co-
horts of control samples can be time consuming. Ideally, all
samples of interest and closely matched controls should be
measured under the same conditions, preferably in one run.
This can bemanaged in controlled studies but is a challenge in
metabolomics for diagnostic testing of individual patients.

To minimize variation of the metabolome introduced dur-
ing sampling, it is imperative that sampling, storage, and sam-
ple preparation is consistent. Current recommendations and
precautions are outlined below.

Human biofluid sample handling

(1) CSF
To minimize metabolic activity of white blood cells

(WBC) in CSF, which can affect the metabolome
(Rosenling et al. 2009), it is recommended to centrifuge
CSF samples immediately before snap freezing for stor-
age at −80 °C. Even one freeze–thaw cycle can affect
levels of transtherytin (Rosenling et al. 2009), while
monoamine metabolites remain stable after repeated
freeze–thaw cycles (Langlais et al. 1982). Therefore,
such cycles should be minimized, and the effect on me-
tabolites of interest should be monitored carefully.

(2) Blood biofluids
Preparation of serum requires incubation at room tem-

perature for clotting prior to separation of serum, and
clotting time affects the metabolomic profile (Timms
et al. 2007; Teahan et al. 2006). Therefore, clotting time
should be kept constant for metabolomics analysis.
Preparation of plasma from whole blood does not require
clotting, so samples can be placed on ice after collection.

Metabolites are stabilized for up to 6 h when whole blood
samples are stored at 4 °C prior to separation of plasma
(Yin et al. 2013; Kamlage et al. 2014; Jobard et al. 2016).
Plasma and serum sample storage at −80 °C is recom-
mended, at which blood biofluids are stable for
metabolomic analysis for at least 3 months (Jobard et al.
2016). It is recommended to minimize freeze–thaw cycles
(Fliniaux et al. 2011; Teahan et al. 2006; Yin et al. 2015) as
changes have been observed in several metabolites (Pinto
et al. 2014; Yin et al. 2013; Fliniaux et al. 2011). It is also
imperative that blood collection tubes used are consistent
for all samples. The choice of blood collection tubes can
affect the metabolome, and the best option depends on the
analytical method used (Yin et al. 2015).

Plasma preparation includes a deproteinization step to pre-
cipitate high-molecular-weight species and subsequent re-
moval by centrifugation, which results in loss of protein-
bound metabolites. The sample is treated with an organic
solvent/solvent mixture (typically methanol and/or acetoni-
trile), which is consequently removed through lyophilization
or evaporation, and the sample is reconstituted in an appropri-
ate solvent mixture for the desired analysis.

Cell culture sample preparation

Several factors can introduce variation in the metabolome dur-
ing preparation of cell culture samples and should be mini-
mized. Factors such as passage number should also be matched
for comparisons to minimize potential effects on the metabo-
lome due to time in culture. Trypsinization for removal of ad-
herent cells from the culture dish is unsuitable for metabolomic
profiling of cell culture extracts due to the prolonged medium-
free incubation, which leads to an energy-depleted intracellular
state;. Furthermore, damage to the cell membrane from
trypsinization results in a variable portion of metabolites being
released into the trypsin solution (Bordag et al. 2016; Martano
et al. 2015; Quincy Teng et al. 2009).

The process of harvesting cultured cells for metabolomic
analysis involves washing to remove contaminants from cell
culture medium, quenching to stop intracellular enzymatic
activities, and extraction of metabolites. Medium-free incuba-
tion time (during washing) should be minimized, and temper-
ature changes before quenching should be avoided, as these
can cause nonspecific variation in metabolite levels. A rapid
water rinse prior to quenching improves liquid chromatogra-
phy mass spectrometry (LC-MS) sensitivity and removes con-
taminants (Lorenz et al. 2011).

A protocol incorporating all these considerations has been
optimized by Martano et al. (2015). Adherent cells are grown
on glass coverslips, and during harvesting, plates are kept on a
37 °C heat block until coverslips are removed with forceps
and washed quickly in a beaker of 37 °C H20, then placed in
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cold solvent for quenching. Cells are scraped into the solvent
and incubated 15 min on ice for extraction and subsequently
frozen with liquid nitrogen. Samples are freeze -dried and re-
extracted with an aqueous solution and mixed with a solvent
appropriate for LC-MS analysis. A similar protocol was de-
scribed by Bordag et al., but cells are grown on a Lumox®
dish, and the membrane is cut with a scalpel to fall into warm
washing buffer, followed by further washing, quenching, snap
freezing, and extraction (Bordag N et al. 2016).

Differences in efficiency of cell transfer with cell scraping
during harvesting can also introduce variation in total metab-
olite levels. To correlate metabolite levels with the number of
cells in the harvested cell extracts, Muschet et al. reported a
novel method for normalization based on correlating
fluorescence-based DNA quantification with cell number
using a small volume of the sample used for metabolomic
profiling (Muschet et al. 2016). Other methods, such as mea-
suring total protein concentration, cell count, or other methods
of DNA quantification, also have a strong linear correlation
with number of cells seeded (Silva et al. 2013). However,
those require estimation of cell number from cells grown in
parallel, rather than directly determining cell number from
samples used for metabolomics, which is faster and more
accurate.

Analytical methods

While consistent and reproducible sample preparation is im-
perative to minimize nonspecific variation in metabolite
levels, the analytical method predetermines the class(es) of
potentially observedmetabolites. The twomost common tech-
niques are nuclear magnetic resonance (NMR) and ultra-high-
performance LC–high-resolution mass spectrometry
(UHPLC-MS). The Human Metabolome Database (Wishart
et al. 2013) contains an ever-growing list of >74,000 unique
metabolites (with a number of lipid variants in the order of
100,000) with an extensive range of different chemical and
physical properties. Clearly, no single experimental setup can
reliably measure all metabolites simultaneously.

NMR spectroscopy detects nuclei based on their magnetic
properties, independent of chemical functionality, and repre-
sents a highly reproducible, relatively quick analytical method
with the possibility of direct quantification over a large dy-
namic range (without the use of specific internal standards). It
offers a considerable advantage in terms of unknown structure
determination and can be used in tracing metabolic pathways
when using substrates with stable isotope labelling. However,
those advantages come at the price of comparably low sensi-
tivity and resolution, effectively limiting the number of ob-
servable analytes and focussing on the most abundant ones.
The constant development of novel techniques (Fan and Lane
2016) and the undeniable strength in identifying isotopomers

still make NMR spectroscopy a viable technique for metabo-
lomics, especially in combination with MS.

Inmost cases,MS-basedmetabolomic experiments include
an additional initial separation step to distinguish signals from
metabolites with the same mass but different structure. The
most prevalent separation techniques are capillary electropho-
resis (CE), gas chromatography (GC), and—most important-
ly—LC. It must be noted that every separation method has a
limited dynamic range (e.g., strongly hydrophilic compounds
cannot be sufficiently separated by a hydrophobic column and
vice versa), making the choice of separationmethod one of the
first selection criteria.

Another point of consideration for LC-MS experiments is
effective ioniztion of analytes. For metabolomics, soft ioniza-
tion methods, such as electron spray ionization (ESI) and
matrix-assisted laser desorption/ionization (MALDI) are
mostly used to preserve the entire molecule structure in con-
trast to harder ionization techniques, which would lead to
fragmented compounds. In practice, only a relatively small
percentage of molecules entering the ionization source are
actually ionized, depending on their chemical composition
and matrix. Accurate quantification of a compound hence of-
ten requires the use of a standard. Some classes of analytes,
such as aldehydes and ketones, are also inherently difficult to
ionize and therefore may require derivatization (Siegel et al.
2014; Miller et al. 2015). The various types of mass analyzers
and detectors differ in resolution (the ability to differentiate
between metabolites with similar masses), sensitivity (detec-
tion limit), and speed (some ionization methods require high-
speed detectors, usually at the cost of resolution) and therefore
differ in their spectrum of analytes detected.

Highly sensitive techniques, such as UHPLC-HRMS, are
susceptible to minimal experimental and temporal changes in
the system (column degradation, temperature, etc.), resulting
in deviating measurements and potentially introducing sys-
tematic errors and artefacts. As this can severely hinder sub-
sequent statistical analysis, it is recommended to analyze all
samples in one experiment in randomized consecutive runs
(Berg et al. 2013). Furthermore, authentic standards and/or
reference samples (usually a pool of all samples) can be reg-
ularly dispersed throughout the experiment to control LC-MS
stability and compare experiments from different runs
(Sangster et al. 2006).

Experiment-driven, untargeted approaches are useful for
studies with limited prior knowledge and exploration of pre-
viously uncharacterized conditions. They can be quite difficult
to interpret due to the high number of detected features and
potentially large differences in non-disease-related features
(due to factors such as nutrition, medication, age, gender),
which need to be identified and excluded from further analy-
sis. Conversely, small changes that may be pathogenic can be
missed quite easily with an untargeted approach. Targeted
designs based on hypotheses of the disease mechanism focus
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on detecting single metabolites, metabolite classes, or specific
pathways. They are generally less time consuming and often
lead to clearer results.

Data processing and interpretation

Processing and analysis of experimental data represents the
next important and challenging step in a metabolomics exper-
iment. Raw data from LC-MS experiments usually contain
thousands of features (peaks): mass-over-charge (m/z) intensi-
ties with a corresponding retention time (RT). Before data anal-
ysis, several processing steps, such as noise reduction and nor-
malization and peak alignment and peak picking are required
(Ejigu et al. 2013; Wu and Li 2016). Similarly, data generated
from NMR measurements need to be processed (Fourier trans-
formed), phased, and referenced before further analysis.

Well-established statistical tools, such as multivariate anal-
ysis, are subsequently applied to identify the most significant-
ly altered peaks between two cohorts. Due to the large number
of features detected, it is common practice to define a thresh-
old for Bmeaningful^ fold changes (Crews et al. 2009).
However, differences in the metabolome should always be
considered from a biological perspective. Concentration
ranges of metabolites can vary significantly in their natural
abundance, and the largest changes do not necessarily signify
the most biologically relevant ones, whereas relatively small
but consistent (significant) alterations can have a considerable
biological effect (Crews et al. 2009). Setting thresholds that
are too rigid can exclude small yet significant changes in the
metabolome, whereas loosely defined cutoffs can result in
data that is too complex to interpret. Choosing an appropriate
fold-change threshold must be carefully considered.

Correlating significant features to specific biologically rel-
evant metabolites (feature annotation) remains the most im-
portant and challenging step in a metabolomics experiment.
As eachmass (or NMR peak) correlates withmultiple possible
assignments, obtaining correct assignments is inherently dif-
ficult. Even the use of multidimensional MS and NMR exper-
iments, which additionally provide structural information for
the most abundant features, has only led to incremental im-
provement in this area. Traditionally, features have been com-
pared with established databases, with the goal of assigning as
many features as possible. Even though metabolite databases
are constantly expanding, coverage of the metabolome is often
still insufficient for global metabolomic experiments. In recent
years, several assignment approaches have been developed
with the aim of incorporating pathway and network informa-
tion in the annotation process (Li et al. 2013; Uppal et al.
2017; Grapov et al. 2015; Karp et al. 2002) by initially iden-
tifying relevant metabolite pathways and networks (thus lim-
iting the number of possible positive matches) before the tra-
ditional step of feature assignment. Developments in the rela-
tively young field of data mining, and constant improvement

in annotation algorithms, represent considerable advances in
feature annotation, as is indicated by growing numbers of
participants in the critical Assessment of Small Molecule
Identification (CASMI) contest (Schymanski et al. 2017).
However, feature annotation from large data sets remains a
time consuming and extremely challenging step necessary
for meaningful interpretation of metabolomic experiments.

Multiomic studies in rare neurological disease

Several studies, including ours, have used a Bmultiomics^
approach using NGS in patients with undiagnosed neurolog-
ical disease and untargeted or targeted metabolomic profiling
to examine the effects of mutations on the metabolome (Abela
et al. 2016; 2017; Sirrs et al. 2015; Tarailo-Graovac et al.
2016). This multidisciplinary and often multicentric approach
has enabled elucidation of etiology in several cases of undi-
agnosed rare neurological disease and led to identification of
novel potential biomarkers or metabolic profiles with potential
diagnostic utility. Furthermore, identification of potentially
disease-causing mutations and subsequent metabolomic anal-
ysis of patient samples, patient fibroblasts, or mouse models
has demonstrated metabolic perturbations relevant to identi-
fied mutations in candidate genes and provided evidence of
disease causality (Ait-El-Mkadem et al. 2017; Ouyang et al.
2016).

Biomarker identification

In combination with whole exome sequencing of patient co-
horts, metabolomics has been used to identify potential bio-
markers or metabolomic fingerprints which could be useful
for diagnostics. To be successfully used in a clinical setting,
biomarkers need to be disease-specific, sensitive to patholog-
ical changes and highly reproducible. Potential biomarkers
identified in metabolomic studies subsequently require confir-
mation and validation through standard analytical methods
before being used in clinical routine. Biomarkers can then be
used in multiple different clinical applications, from screening
and diagnosis to prognosis and prediction as well as
monitoring.

From a cohort of patients with epileptic encephalopathy,
we identified two patients with mutations in the spermine
synthase (SMS) gene, causing Snyder–Robinson syndrome
(SRS) (Abela et al. 2016). Spermine synthase converts
spermidine to spermine, and previously diagnosis of SRS
was performed by sequencing the SMS gene and/or determin-
ing the spermine/spermidine ratio in lymphoblasts (Sowell
et al. 2011). In plasma from three patients from two families,
we detected elevated spermidine and identified elevated levels
of N8-acetylspermidine and isoputreanine, which are derived
f rom spermid ine and put resc ine . As such , N8-
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acetylspermidine was identified as a novel potential plasma
biomarker for SRS.

We also identified a metabolic profile for aconitase defi-
ciency, which is potentially useful for diagnosis (Abela et al.
2017). After identifying a patient with mutations in ACO2
from the epileptic encephalopathy cohort described above,
we examined the metabolomic profile of five Aco2-deficient
patients from four families and identified a disease-specific
metabolic fingerprint of decreased isocitrate, cis-aconitate,
and α-ketoglutarate, with unchanged succinate, fumarate,
and malate levels, in plasma. This study also demonstrates
the utility of metabolomic analysis in examining the effect
of mutations on enzyme function, demonstrating that the func-
tion of Aco2 was affected by the variants detected by whole
exome sequencing.

Confirmation of disease causality of mutations
and treatment indications

Apart from use of a multiomics approach for biomarker dis-
covery, multiomic studies have also provided evidence
supporting disease causality of mutations identified in pa-
tients with rare neurological disease, elucidated pathogenici-
ty, and in some cases indications for potential treatment strat-
egies. In a recent study by Ait-El-Mkadem et al., sequence
variants inMDH2 were identified by WES in three unrelated
patients with early-onset mitochondrial phenotype with gen-
eralized hypotonia, psychomotor delay, and refractory epilep-
sy (Ait-El-Mkadem et al. 2017). Metabolomic analysis of fi-
broblasts from one patient demonstrated accumulation of the
substrate of MDH, malate, and its precursor in the Krebs cy-
cle—fumarate. Elevatedmalate and fumaratewas also detect-
ed in plasma fromone patient. As such, metabolomic analysis
identified metabolic perturbations associated with the variant
inMDH2.

Ouyang et al. identified mutations inGPT2 in patients with
intellectual and developmental disability from two large con-
sanguineous kindreds by WES and then studied the effect of
GPT2 deficiency in mice using targeted MS-based metabolo-
mics and metabolite-set enrichment analysis (Ouyang et al.
2016). GPT2 encodes for glutamate pyruvate transaminase
2, which catalyzes the reversible addition of an amino group
from glutamate to pyruvate, yielding alanine and α-
ketoglutarate. Metabolomic analysis demonstrated abnormal
profiles involving the tricarboxylic acid (TCA) cycle (alanine,
citrate, isocitrate, succinate, fumarate, and malate) and neuro-
protective mechanisms [glutathione, glutathione disulfide,
cysteine, nicotinamide adenine dinucleotide phosphate, re-
duced (NADPH), nicotinamide adenine dinucleotide phos-
phate (NADP+), cystathionine, and folate] in Gpt2-null mice.
A loss of function mutation in GPT2 had previously been
identified in three siblings with intellectual disability from
one family, and apart from low plasma alanine, all amino acid

levels were normal (Celis et al. 2015). While the mouse stud-
ies demonstrated effects of Gpt2 deficiency on brain growth
during postnatal development, the different amino acid pro-
files in mice and humans demonstrate that effects seen in mice
do not necessarily occur in humans (Celis et al. 2015; Ouyang
et al. 2016).

In a study by Tarailo-Graovac et al. (2016), a multidisci-
plinary approach was used to identify and characterize causal
variants in patients with intellectual development disorder and
unexplained metabolic phenotype. NGS on samples from 47
patients identified disease-causing or potentially disease-
causingmutations in 68% of patients. In several of these cases,
targeted metabolomics played a role in confirming pathoge-
nicity of mutations detected by WES and identifying new
causes of IEM, such as variants in FAA2H or NANS.

In one patient in the same study with autistic features be-
fore the age of 2 years, a rare missense mutation was detected
by WES in FAAH2 encoding fatty-acid amide hydrolase 2
(FAAH2), which has a role in lipid metabolism and mediates
degradation of endocannabinoids but had not been linked to
neurological disorders. An abnormal whole-blood
acylcarnitine profile was seen, with ten-fold elevations in
medium-chain species, and targeted quantitative lipidomics
showed perturbations inmultiple lipid species in patient serum
compared with ten controls, including elevations in many
long-chain species (Tarailo-Graovac et al. 2016; Sirrs et al.
2015). Studies using fibroblasts from the patient demonstrated
reduced FAAH2 ac t iv i t y and a l t e r ed l eve l s o f
endocannabinoid metabolites.

In another patient with epileptic encephalopathy and dys-
morphic features, sequence variants were identified in the
NANS gene (encoding for N-acetylneuraminic acid phosphate
synthase) and correlated with increased levels of the NANS
substrate N-acetylated mannosamine in urine, plasma, and
CSF. Animal models of NANS deficiency were amenable to
treatment with N-acetylneuraminic acid (Tarailo-Graovac
et al. 2016). As such, WES and detection of metabolic pertur-
bations elucidated pathogenicity and provided indications for
possible treatment.

Conclusions

Recent studies have demonstrated how the combined use of
genomics with metabolomics can assist with the significant
challenges each method faces in identifying pathological mu-
tations and metabolic perturbations in rare neurological dis-
ease. This combined approach has the potential to meet the
significant challenges of diagnosing rare neurological disease.
Bioinformatic integration and analysis of raw data obtained
from multiomics techniques (any combination of genomics,
proteomics, and metabolomics) would represent a huge devel-
opment with potential for large-scale studies and lead to
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significant advances in elucidating causes of rare disease and
identifying biomarkers. However, as described in this review,
genomics, proteomics, and metabolomics still require exten-
sive and time-consuming human input for correct and reliable
data interpretation. The omics technique gives categorically
different outputs that are not linearly relatable (gene mutation,
protein expression, metabolite concentration changes) and are
therefore inherently difficult to compare directly and incorpo-
rated bioinformatically. A truly combined bioinformatically
integrated omics approach is not yet feasible, and individual
techniques are optimally used in a complementary manner.

The multiomics approach is increasingly providing knowl-
edge and diagnostic tools, such as biomarkers, that are invalu-
able in rare diseases. The use of these methods is rapidly
expanding, and technologies are continually being improved,
indicating that the future for the omics, and its application in
diagnosis and usefulness in studying rare diseases is bright.
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