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ABSTRACT

Purpose The purpose of the study was initial evaluation of
applicability of metal organic framework (MOF) Fe-MIL-101-
NH, as a theranostic carrier of antituberculous drug in terms
of its functionality, i.e. drug loading, drug dissolution, mag-
netic resonance imaging (MRI) contrast and cytotoxic safety.
Methods Fe-MIL-101-NH, was characterized using X-ray
powder diffraction, FTIR spectrometry and scanning electron
microscopy. The particle size analysis was determined using
laser diffraction. Magnetic resonance relaxometry and MRI
were carried out on phantoms of the MOT system suspended
in polymer solution. Drug dissolution studies were conducted
using Franz cells. For MOF cytotoxicity, commercially avail-
able fibroblasts 1.929 were cultured in Eagle’s Minimum
Essential Medium supplemented with 10% fetal bovine
serum.

Results MOF particles were loaded with 12% of isoniazid.
The particle size (3.37-6.45 pm) depended on the
micronization method used. The proposed drug delivery
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system can also serve as the MRI contrast agent. The drug
dissolution showed extended release of isoniazid. MOF parti-
cles accumulated in the L.929 fibroblast cytoplasmic area, sug-
gesting MOF release the drug inside the cells. The cytotoxicity
confirmed safety of MOF system.

Conclusions The application of MOY for extended release
inhalable system proposes the novel strategy for delivery of
standard antimycobacterial agents combined with monitoring
of their distribution within the lung tissue.

KEY WORDS iron metal-organic framework (MOF) - MR
contrast agent - theranostic system - tuberculosis treatment -
inhaled dosage forms

ABBREVIATIONS

CPMG  Carr Purcell Meiboom Gill
DDS Drug delivery systems

DMF  Dimethylformamide

EDS Element Energy Dispersive Spectroscopy
FOV

Field of view

FTIR Fourier-transform infrared spectroscopy
HPMC  Hydroxypropylmethylcellulose

INH Isoniazid

R Infrared

MCT  Mercury-Cadmium-Telluride

MIC Minimum inhibitory concentration
MOF  Metal organic framework

MR Magnetic resonance imaging

MSME  Multi-Slice Multi-Echo

MTB Mycobacterium tuberculosis
NE Number of echoes

NP Nanoparticles

PBS Phosphate-buffered saline

PDT Photodynamic therapy
SD Standard deviation
SEM Scanning Electron Microscopy
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B Tuberculosis

TE Inter-echo time

TR Repetition time

WHO  World Health Organization

XRD  X-ray powder diffraction

INTRODUCTION

The use of nanotechnology for medical applications is rapidly
growing and is very promising in various branches of applied
science (1—4). Nanoparticles (NPs) are used as diagnostic im-
aging agents or as drug delivery platforms, providing targeted
or tissue-selective therapy, which may increase efficiency and
decrease the side effects of drugs. It is also possible to combine
these two functions in one particle by the design and prepa-
ration of dual-purpose nanomaterials, functioning as both di-
agnostic medical devices and drug delivery systems (5,6). This
concept of fusing diagnostics and therapy has been proposed
in 2002 and called theranostics (7). Theranostic agents have
been defined as “integrated nanotherapeutic systems, which
can diagnose, deliver targeted therapy, and monitor the re-
sponse to the therapy” (6). This integrated approach offers
great opportunities in the development of personalized med-
icine It allows for monitoring the drug release, its
biodistribution and accumulation at the target site, dose ad-
justment to individual patients and finally, monitoring the
course of a disease (5,8,9).

Freund et al. has proposed the term “atom economy”
which focuses on the design of highly active materials
possessing many functionalities that work together to serve a
specific purpose (10). Metal-Organic Frameworks (MOFs) are
excellent example to illustrate this concept and have the po-
tential to emerge as next-generation drug delivery systems
(DDS). MOFs may be of interest as carriers for theranostics,
being porous structures built from inorganic nodes, which are
single ions or clusters of ions, joined together by organic
linkers. Such design allow to gain control over the framework
architecture and, even more importantly, the pore chemistry,
enabling targeted functionalization for nanomedical applica-
tions (11). Thanks to their porous structure, MOFs seem to be
promising drug vehicles with potential high drug loading
(12—14). The control of guest release profiles can be gained
by the choice of the type of functional group of the linker and
tuning of the pore size (15).

In the case of MOF application for drug delivery, they
should exhibit stability under physiological condition, mini-
mal toxicity, biodegradability and as biocompatibility for both
metal and bridging linker ligand. MOFs as components of
drug delivery system are discussed in the context of other
nanoparticulate carriers (mesoporous silica, dendrimers) in
the work by Wuttke et al. (16). Safety of MOF as drug delivery
nanomaterials varies strongly with effector cell type.
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Therefore, it is necessary to evaluate their nanosafety regard-
ing particular application and involved cell type. Wuttke et al.
(11) discuss the effects of MIL-101(Cr) and MIL-101(Fe) on
human endothelial and mouse lung cells, a first line of defense
upon systemic blood-mediated and local lung-specific appli-
cations of nanoparticles.

Magnetic resonance imaging (MRI) has become a powerful
tool in medicine for non-invasive imaging of the internal struc-
ture and functions of living organisms as well as local proper-
ties of tissues (17). Magnetic nanoparticles may be applied as
contrasting agents providing either negative (To-weighted) or
positive imaging contrast (T';-weighted) (18). A potential MRI
contrasting agent has to fulfill several requirements related to
tolerance, safety, toxicity, stability, osmolarity, viscosity,
biodistribution, elimination, and metabolism (19).

Embedding paramagnetic cations (Gd>*, Mn**, Fe’") in
MOF structure make them possible to be used as MRI con-
trast agents. Among them, iron is the best option from a tox-
icological point of view. Nanoscale iron MOFs (MIL-53,
MIL-88A, MIL-88Bt, MIL-89, MIL-100 and MIL-
101 _NH,), with engineered cores and surfaces, have been
shown to be able to serve as drug carrier and magnetic reso-
nance contrast agent according to good ability for modifica-
tion of relaxivities (20).

Polymeric surface allows for the MOF structures modifica-
tion to implement properties such as increased chemical and
colloidal stability which enhance the cellular uptake, or dye-
labeling, which enables for example, the investigation of nano-
particle uptake into tumor cells by fluorescence microscopy
(21). It has been proved, that coated iron MOFs can retain
their MRI contrast properties. MOF NPs are frequently coat-
ed in order to prevent leakage of the drug before they reach
the target (e.g. exosome-coated MIL-88A, liposome coated
MIL-88A) (21,22). MOFs, including iron MOFs, can be
(multi)functionalized (example can be found in the work of
Roeder et al. 2017 (21)) — molecular units can be anchored
on the outer surface of MOFs.

MOFs can be used as stimuliresponsive DDS for cancer
therapy (targeted chemotherapy, gene therapy). Recent stud-
ies also shown that it is possible to develop MOF based deliv-
ery systems for photodynamic therapy (PDT) of cancer (23).

While theranostics has been intended mainly for cancer
treatments, there are numerous other therapeutic targets for
which the effectiveness of therapy could be increased by local
drug delivery and monitoring of its distribution. Among them
tuberculosis (TB) seems to be especially important.

TB 1s one of the top three infectious diseases — together
with HIV and malaria — causing morbidity and death world-
wide. According to the World Health Organization (WHO)
estimations, about 30% of the world’s population is infected
with Mycobacterium tuberculosts (MTB). Every year, about 10
million of new cases are registered and about 1.5 to 2 million
of deaths are caused by TB, according to the report by the
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WHO agency (24). TB infections frequently become multi-
drug-resistant, since the conventional treatment protocol is
based on an antibiotic therapy carried out over periods of 6
to 9 months (25).

Isoniazid (Isonicotinic Acid Hydrazide, INH) is particularly
suitable for use as a model drug in theranostic drug delivery
because it is an antibiotic used as a first-line agent in the
prevention and treatment of both latent and active tuberculo-
sis. It 1s effective against mycobacteria, especially
Mpycobacterium tuberculosis since it inhibits biosynthesis of the
mycolic acid. Oral administration of INH and long-term
therapy causes several serious side effects, which could even
force treatment discontinuation. INH is known to cause
hepatitis (26), hepatic injury and neuropsychiatric
disturbances (27) including, among others, uncontrollable
seizures (28) or polyneuropathy (29). The conventional oral
route of INH administration causes periodic decrease of its
concentration below the effective minimum inhibitory con-
centration (MIC), allowing MTB bacilli to develop resis-
tance (30). The distribution of the antituberculous drug
within the infected tissue is equally important. The studies
of Kjellsson et al. (31) on a TB infected animal model have
shown that after systemic administration the distribution of
1soniazid, rifampicin and pyrazinamide in the lung tissue is
uneven. The concentrations of drugs in pulmonary lesions
where the pathogen is located have been markedly lower
than in the surrounding lung tissue.

Hickey et al. (32) indicated the problem of dramatic in-
crease 1n extremely drug-resistant TB around the world
and highlighted that pulmonary administration offers the
ability to deliver drug directly to the infected macrophages
in the deepest part of lungs. Comparison of various dry-
powders containing anti-TB drugs for inhalation presented
by Pham et al. (33) indicates that the strategy of inhaled
therapy is the main and the most promising alternative to
traditional approach and is necessary to achieve global TB
control.

The MOF-based theranostics may be an interesting alter-
native for the standard therapy of tuberculosis. Pulmonary
route should ensure high local drug concentration (avoiding
side effects of the systemic drug action). Moreover, possibility
to generate contrast in magnetic resonance images should
allow deposition and lung clearance monitoring (34-36) —
the first tests on animals were performed in a clinical system
with a clinical nebulization setup and a low inhaled dose (34).
There are two reasons for deposition monitoring: optimiza-
tion of the dosage form at formulation stage and optimization
of therapy.

The aim of the study was initial evaluation of applicabil-
ity of MOF Fe-MIL-101-NHj as a theranostic carrier of
antituberculous drug in terms of its functionality, i.e. drug
loading, drug dissolution, MRI contrast and cytotoxic
safety.

MATERIALS AND METHODS
MOF Synthesis and Drug Incorporation

Fe-MIL-101-NHy was synthesized according to the procedure
reported by Bauer et al. (37). The MOF powder samples were
comminuted by milling in an agate ball mill for 24 h and then
sonicated for 5 min. Using a CP 130 PB (130 W, 20 kHz)
ultrasonic processor (Cole-Parmer, USA), at 70% of maxi-
mum amplitude. After drying MOF was activated under vac-
uum at 100°C for 30 min.

Isoniazid (Sigma-Aldrich, Germany) was incorporated into
the MOF matrix by mixing 1.5 mL of saturated solution of
INH in DMF with 300 mg of micronized Fe-MIL-101-NH,,
The slurry was mixed for 12 h at room temperature and the
product was separated by centrifugation and washed with
ethanol.

MOF Characterisation

The characterization by X-ray powder diffraction was carried
out using a Bruker AXS D8 Advance (Bruker, Germany) dif-
fractometer in the range 1-30° 20 using CuKa (A=
0.154178 nm) radiation.

Infrared (IR) spectra were measured in transmission mode
using Tensor 27 FTIR spectrometer (Bruker, Germany)
equipped with an MCT (Mercury-Cadmium-Telluride) de-
tector at spectral resolution of 2 cm™'. Before measurement
a sample was deposited on an IR-transparent silicon wafer
(pure for electronic purposes) by placing its ethanol solution
directly on the disc and evaporating the solvent. The wafer
was placed in an IR cell with KBr windows and slowly heated
under constant pumping (10~ Torr) to 50°C (with the drug
present) or 100°C (pure MOF).

Scanning Electron Microscopy (SEM) analysis was per-
formed using Nova Nano SEM 200 (FEI Europe B.V.)
cooperating with the Element Energy Dispersive
Spectroscopy (EDS) analyzer (EDAX Inc., U.S.A.) using
secondary electrons in low vacuum conditions (60 Pa).
Samples of MOF without treatment, MOF after milling
and MOF after milling and sonication were analyzed.

The particle size distribution of the powder samples was
measured in terms of particle diameter at 50% in the cumu-
lative distribution (Dx (38)) using laser diffraction particle size
analyzer Mastersizer 3000 (Malvern Instruments Ltd., United
Kingdom).

Drug Release
The drug release study was performed in Franz cells (39). The
donor compartment was separated from the acceptor com-

partment by a cellulose acetate filter with pore size of
0.8 pm (Sartorius, Germany) covered with 200 uL of 1%
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mucin solution simulating the mucus layer deposited on lung
epithelium (40—43). The 5 mg of composite powder was
placed in the donor compartment. The acceptor compart-
ment was filled with 5 mL of phosphate-buffered saline
(PBS) at pH 7.4 (44,45). The experiment was performed at
37°C under continuous stirring at 140 rpm. Samples of
0.4 mL were taken from the acceptor compartment at 0.5,
1,1.5,2,3,4,5,6,8, 10, 24 and 48 h and were replaced with
0.4 mL of a fresh medium. A blank was carried out by evalu-
ation of released crystalline isoniazid in quantity correspond-
ing to the content of drug in MOF. The isoniazid concentra-
tion was analyzed in an aqueous solution using a UV-Vis
spectrophotometer UV 1800 (Shimadzu, Japan) at a wave-
length A =262.0 nm.

Magnetic Resonance Imaging and Relaxometry

Nuclear magnetic resonance imaging and relaxometry
were performed using 9.4 T MRI research system (Bruker
Biospin, Germany) and TopSpin 2.0 software (Bruker
Biospin, Germany). For this purpose 0.3, 1.7, 3.3, 6.7,
13.3, 26.7 and 53.3 mg/mL MOF suspensions in 2%
hydroxypropylmethylcellulose (HPMC; Metolose, 90SH,
400 cP - Shin-Etsu, Japan) water solution were prepared.

T} and T, relaxation times were measured using Inversion
Recovery and Carr Purcell Meiboom Gill (CPMG) pulse se-
quences, respectively — number of accumulations (NA) =8
and dwell time (DW) =10 ps. For T, assessment separate
measurements with 16 logarithmically spaced inversion time
values were performed in order to sample T recovery. For
CPMG sequence the signal was acquired after 16 logarithmi-
cally spaced n* TE time intervals (where TE = 0.2 ms). The
data were fitted assuming monoexponential Ty decay (T re-
covery). Linear regression of R; (= 1/T)) and Ry (= 1/Ty) vs.
MOF concentration in suspension was performed to obtain r;
and 1y relaxivities with intercept set at Ry and Ry values of
pure polymer solution.

MR imaging was performed using Multi-Slice Multi-Echo
(MSME) imaging sequence for pure 2% HPMC solution as
well as for 26.7 and 53.3 mg/mlL MOF suspensions in 2%
HPMC solution. Two sets of images at two different repetition
time (TR), i.e. 0.7 s and 3 s were obtained with following
parameters: field of view (FOV) = 28 x 28 mm?, slice thick-
ness = 1 mm (axial cross section), image matrix size of 256 X
256, number of echoes (NE) = 256, inter-echo time (TE)=
3.5 ms, NA=2.

In Vitro Cytotoxicity
For MOF cytotoxicity study, commercially available fibro-
blasts 1929 (Sigma-Aldrich, Germany) were cultured in

Eagle’s Minimum Essential Medium supplemented with
10% fetal bovine serum (ATCC, USA). Cells were
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maintained at 37°C in a humidified incubator (ThermoSci,
Germany) with 5% COq until 70-80% confluence was ob-
tained. At passage 3 the cells were detached using 0.5% tryp-
sin-EDTA, centrifuged and suspended in the fresh growth
medium. Next, the cells were seeded at density 0.5 - 10*
cells/200 pL in 96-well culture plates (Nunc, Denmark) and
allowed to adhere. After 24 h, suspensions of milled or milled
and sonicated particles of Fe-MIL-101-NHy were added to
the culture at two concentrations: 0.625 and 1.25 mg/mlL.

Viability of L929 fibroblasts cultured in contact with MOF
suspension for 24 or 72 h was determined with resazurin-
based reagent PrestoBlue™ (Invitrogen, USA). Fluorescent
product of the reaction was detected using POLARstar
Omega microplate reader (BMG Labtech, Germany).
Obtained results are presented as the mean =* standard devi-
ation (SD) of five samples. Significant effects (p <0.05) were
determined using Student’s ttest. Cells morphology was ob-
served under contrast phase inverted microscope CKX53
(Olympus, Japan).

RESULTS AND DISCUSSION
Synthesis and Characterization of MOFs.

Fe-MIL-101-NHy of good quality was synthesied, as con-
firmed by the diffractogram (XRD pattern) (Fig. 1), which
showed a very good agreement with the calculated MIL-101
patterns published in the literature (46). The intensities of the
reflections increased considerably after washing with ethanol
of both the as-synthesized sample, containing free DMI mol-
ecules, and for the MOF sample with incorporated INH. This
1s most likely due to the common effect observed when micro-
pores are emptied from the occluded guest molecules.

Iron-containing MOF compound Fe-MIL-101-NH, was
chosen for two reasons. First, it is one of the most stable Fe-
based Metal-Organic Frameworks which has been already
reported as a carrier for bioactive (47,48) or magnetic
(49,50) compounds. Second, the presence of the -NHj func-
tional groups in the linker allows easy determination whether
guest molecules are located inside the MOT cavities,
interacting with them and changing their properties, or are
only adsorbed in the intercrystalline voids.

MIL-101 has a rigid zeotype (M'TN) crystal structure (50)
with two types of cages. Its medium size cavities with the
diameter of 2.9 nm are accessible through pentagonal win-
dows with the opening of 1.2 nm, while large 3.4 nm cavities
have hexagonal windows with the diameter of 1.6 nm (51).
The 3D molecular size for INH was determined (52) using
Chem Office Software 2008 as equal to 1.05 % 0.72 X
0.31 nm. The spacious MOF cavities together with relatively
large apertures make carrier suitable for incorporation of
bulky drug molecules.
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Fig. | XRD patterns of Fe-MIL-101-NH,: as synthesized, washed with
ethanol, after introduction of isoniazid and again washed with ethanol after
isoniazid introduction (from bottom to top)

Particle Size

Regarding particle size, according Hirschle et al. (53), MOF
NPs intended to use as drug delivery systems shoud be char-
acterized using multiple techniques — as powder and also in
dispersion. They also discuss the appropriate method for
obtaining the nanoparticle size that is meaningful in the con-
text of the desired application. In our work we evaluated the
impact of milling and subsequent ultrasonication on Fe-MIL-
101-NHy crystal size and shape. Three kinds of samples were
examined: MOF without treatment (Fig. 2a), MOF after mill-
ing (Fig. 2b) and MOF after milling and ultrasonication (Fig.
2c).

For dry powders SEM imaging and measurement of par-
ticle size distribution were carried out.

Milling the samples did not change the overall shape and
size of crystals, which appeared to be undamaged in SEM
images (Fig. 2b). It was also not able to break crystal aggre-
gates; thus this method cannot be used by itself for
micronization of the samples. For this reason, crystals after
milling were ultrasonicated, which caused breakage of the

a. Fe-MIL-101-NH,

b. Fe-MIL-101-NH,-M

aggregates resulting in very homogeneously looking SEM im-
ages of single crystals, as shown in Fig. 2c.

The measurement of particle size distribution was per-
formed using laser diffraction method. The Dx (38) parameter
for MOF samples without treatment was 6.45 um (SD: *
0.20). Dx (38) decreased as a result of milling to 5.51 pm
(SD: £ 0.21) and to 3.37 pm (SD: * 0.03) after subsequent
sonication. It indicates the possibility to adjust Fe-MIL-101-
NH, size by applying the appropriate micronization method
to obtain the desired size.

INH Incorporation

To evaluate the content of the drug inside the pores the XRD
study was conducted, and no free isoniazid crystals were evi-
dent in the XRD pattern (Fig. 1). The intensities of all XRD
reflections decreased markedly for the isoniazid-containing
MOF, almost to the same level as observed for the as-
synthesized samples filled with the solvent (DMF). Washing
the drug-MOF composite with ethanol caused partial extrac-
tion of the encapsulated isoniazid, which was indicated by
increased intensities of the XRD reflections. This suggests that
INH molecules were located inside the pores of the MOF
material.

The mode of INH incorporation was further investigated
by FTIR spectroscopy (Fig. 3). After INH introduction the
spectrum was not a simple superposition of the spectra
chearchterstic of the pure component of MOF and INH,
again suggesting that the drug molecules were located inside
the pores of Fe-MIL-101-NHy. In the pure MOF material the
—INHj groups of the structure-forming linker were character-
ized by two IR maxima at 3505 and 3390 cm ™' characteristic
of v, and vy, N-H vibrations (38,54), each split into two
components — one at the higher and one at the lower frequen-
cy. The lower frequency components (bands at 3485 and
3295 cm™ ') could be due to hydrogen-bonding of the -NH,
moieties. This would suggest that -NHy functionalities of the

10

Dx(50) = 6.45um (SD: = 0.20) Dx(50) =5.51pm (SD: £ 0.21) Dx(50) =3.37um (SD: + 0.03)

c. Fe-MIL-101-NH,-MU

Fig. 2 SEM images of Fe-MIL-101-NH, samples: (a) without treatment, (b) after milling (-M), (c) after milling and uttrasound treatment (-MU)
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Fig. 3 Drug loading: IR spectra
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tions (right) in transmission mode of: " [

pure isoniazid (a), pure Fe-MIL- <
[01-NH; (b), physical mixture of
Fe-MIL-101-NH, with isoniazid (c), d
AN

and isoniazid incorporated into Fe-
MIL-101-NH; (d). Arrows show
the red-shift of some of the IR
maxima

1664, v,, v(C=0)

1635, v,, 3(N-H)

‘;‘[ 1412, v,,, 8(0-H)

< 1142, v, (C-H)
M 995, v,,, v(ring)

-/Jr/—\\/‘J\\A\/

C

=~

a / \'\A/\\JKJ\A_J

3800 3600 3400 3200 3000 2800

v, cm

linker may be present both as free and the intramolecular
hydrogen-bonded species even in the absence of DMF mole-
cules. After INH introduction, the IR maxima characteristic
of free -NHj disappeared due to formation of new hydrogen
bonds with the isoniazid molecules. The INH molecules were
concluded to interact via its carbonyl groups because this par-
ticular maximum was much wider in the spectrum of the
composite than in the pure, crystalline isoniazid (Fig. 3b, band
at 1664 cm™ ') and of lower frequency than expected from
vibrations of the free C=0O bond. The spectral characteristics
of isoniazid also changed considerably. The most important
changes were these in the ring breathing vibrations (Fig. 3b,
band at 995 cm ") — this band red-shifted (by 30 cm™ ') and its
intensity decreased. Such changes may be assigned to so-
called confinement effect, resulting in constrained breathing
of the aromatic ring inside the MOF pores. Similar changes,
also in the 1800-1300 cm ™' region, were observed upon in-
corporation of INH into the montmorillonite and saponite
clays (55). From the IR results it can be deduced that INH
molecules were located inside the pores of Fe-MIL-101-NHo,,
strongly interacting by hydrogen bonding via carbonyl groups
with the -NH, functionalities of the organic linker. Such
strong interaction may result in the slower release of the INH.

The study of total INH content by mixing in water during
12 h revealed that INH constituted 12% (SD: £ 0.8) of the
composite mass. This amount was considered as 100% of the
isoniazid content in the release study.

INH Dissolution

After first 6 h of dissolution inside the Franz cell 55.0% (SD:
5.2) of the 1soniazid content was released from the composite
powder, it reached 89.3% (SD: £ 1.2) after 24 h and 94.2%
(SD: *+ 4.3) after 48 h. No burst effect was observed.
Dissolution of crystalline isoniazid, not incorporated in
MOF structure, was much faster and after 3 h (94.6%; SD:
+ 6.6) no significant increase in the amount of released drug
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was observed (Fig. 4). These results allowed the conclusion
that MOF can act as isoniazid carrier for extended release.

Moreover, it has been also shown, that varying NH, to
C4H, linker ratio for MIL-101(Fe) it is possible to obtain con-
tinuum of guest molecules binding energy states (representing
specific interaction with guest molecules) and in consequence
to tune release profile. (15)

INH dissolution requires more extensive discussion. To
date there are no pharmacopoeial dissolution method for
inhalatory formulations and no single i vitro method has
emerged as the ideal choice for performing dissolution tests
and to estimate i viwo solubility in the lung fluids (56,57). The
reason is that lungs have unique features that are difficult to
replicate i vitro, such as extremely small amount of aqueous
fluid and the presence of lung mucus and surfactant (56-59).

In the current study, similar setup was used as it has been
previously presented, for example, by Kim et al. (39). Due to
the physiology of the lung and the relatively low water content
in the respiratory tract, the 5 mL Franz cells allow @ vitro
approach in comparing the drug release profiles of inhalation
dry powder formulations (60,61). Highly viscous mucus is a
major obstacle for particles to reach the respiratory airway

120.00

100.00

T
40,00 ‘M{T //——‘%

I
z
3 /
2 60.00 il
K
[
‘e 40.00 -
X
20.00 f
0.00 « T T T T T ]
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—o—% of released INH (MOF) _—o—% of released crystalline INH

Fig. 4 Isoniazid dissolution: Comparative in vitro dissolution (drug re-
lease) profile of INH from Fe-MIL-101-NH, (blue) and crystalline INH (red)



Pharm Res (2018) 35: 144

Page 7 of 11 144

(41) thus, similarly to Terzano et al. (40) in our study the
mucin solution imitating mucus barrier was used.

Observation made by May et al. (62) revealed that dissolu-
tion profiles obtained in Franz cell never reached more than
90% of recovery rate which might be caused by not homog-
enous contact area to dissolution medium under membrane
due to small air bubbles or wrinkles in the membrane.
Similarly, in our study incomplete dissolution (~95%) can also
be observed for both crystalline isoniazid powder and INH
incorporated in MOF.

Nuclear Magnetic Resonance Relaxometry
and Magnetic Resonance Imaging

The spin-lattice relaxation rates (1/T} or R;) and spin-spin
relaxation rates (1/T5 or Ry) versus concentration of MOF in
the suspensions are presented in Fig. 5a. The relaxation rates
R; and Ry increased linearly with the concentrations of
suspended material (R” =0.9926 and R? =0.9948, respec-
tively). The relationships between relaxation rates and con-
centration of Fe-MIL-101-NHj in the suspensions were found
to be equal to:

Rip=rC+1i) (1)

Where C is the concentration of Fe-MIL-101-NHy in the
suspension, expressed in mg/mL. The values of relaxivity
r; =24 (mg/mL)"" 5" and intercept i; = 0.4 s~' for T, re-
laxation while 1, =22.6 (mg/ml)”" 5" and intercept i, =
0.64 s~' for Ty relaxation were found, respectively. These
results suggested that Fe-MIL-101-NH, could be used as an
effective contrast agent.

To demonstrate the possibility to use Fe-MIL-101-NH,
as an effective contrast agent, MR images were obtained
using multi-echo pulse sequence with inter-echo time of
3.5 ms and with two different repetition times, i.e. 0.7 and
3 s. Therefore, two sets of images were obtained. Images
demonstrating positive and negative contrasts were chosen
from these two image sets, and are presented in Fig. 5b.
Sample No. 1 was a 2% HPMC solution. Two other sam-
ples were 26.7 and 53.3 mg/ml MOF suspensions in 2%
HPMC solution, i.e. samples No. 2 and 3 respectively.

When working with short repetition time of 0.7 s at the st
echo (3.5 ms), positive contrast was obtained (Fig. 5b, left
image). In this case, the image intensity for samples No. 2
and No. 3 was higher than for sample No. 1 and it increased
with MOF concentration. An image obtained at the 2nd echo
(echo time of 7 ms) of this image set also demonstrated positive
contrast compared to the reference sample, however the dif-
ference in image intensity between samples No. 2 and No. 3
was negligible (data not presented). When working with the
long repetition time of 3 s (Fig. 5b, right image) negative con-
trast was achieved. As an example, the image obtained at 6th

echo (echo time of 21 ms) is presented. In this case, image
intensity for samples No. 2 and No. 3 was lower than for
reference (sample No. 1 — pure polymer solution) and it de-
creased with increasing MOF concentration.

Only small number of ex vwo and one in vivo study showed
that regional distribution/deposition of aerosol, containing
MRI contrast agents (iron oxide, Gd-DOTA) in rat lungs
can be successfully monitored using MRI (34,35). The results
of these studies suggest that the approach to combine drug
delivery with contrast agent (theranostic) is promising for such
demanding application.

In Vitro Viability/Cytotoxicity

The viability of fibroblasts cultured for 24 h with both con-
centration of Fe-MIL-101-NH, (0.625 and 1.25 mg/mL) did
not differ between samples and between samples and the con-
trol (Fig. 6). No cytotoxic effect of MOF was observed for this
series. After 72 h the viability of cells cultured with MOF
samples was significantly (p < 0.05) lower in comparison to
the control, but the number of cells was still higher than ob-
served after 24 h, which means that the addition of MOF did
not inhibit their proliferation. It was also shown that
micronization of MOF crystals did not influence their
cytotoxicity.

The morphology of 1.929 fibroblasts after 24 h culture with
the addition of two concentrations of milled or milled and
sonicated particles of Fe-MIL-101-NHy is presented in Fig.
6b. In the case of 1.25 mg/mL MOF concentration, the cells
were eclipsed with the particles. MOF particles in lower con-
centration (0.625 mg/mlL) were mostly phagocytosed and were
clearly visible inside the cells. It proved that Fe-MIL-101-NH,
particles could release drug inside cells. Tubercle bacilli after
reaching the alveoli are phagocytosed and accumulate in alve-
olar macrophages to form tubercles. It implies that delivery of
isoniazid directly to the cell increase the effectiveness of thera-
py. In our study, no damage in 1.929 cells’ morphology (shape
and appearance) after treatment was observed. Majority of cells
had elongated shape, characteristic for fibroblast that proved
the cells’ viability. Cytotoxicity results described above are the
first results for Fe-MIL-101-NHj — to the best of our knowledge
such study has not been published previously. Moreover, stud-
1es on MOF materials toxicity are scarce. The benefits of MOTF
miniaturization, apart from their proven effectiveness in
cellurar uptake, defined their i viwo fate and consequently, their
toxicity/activity (63).

Woattke et al. conducted cytotoxicity study for MIL-100(Fe)
and MIL-101(Cr) nanoparticles with and without lipid (1,2-
dioleoyl-sn-glycero-3-phosphocholine) layer on human endo-
thelial cells (HUVEC and HMEC), alveolar epithelial cells
(MLE12) and mouse alveolar macrophages (MH-S). Results
revealed that both MOFs are well tolerated by endothelial
cells whereas the MIL-100(Fe) with a lipid layer caused some
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Fig. 5 Nuclear Magnetic a
Resonance Relaxometry and

Magnetic Resonance Imaging:

(@) The quantitative linear

correlation between relaxation rates 120 -
(R}, Ry) and concentration of Fe-

MIL-101-NH, in a suspension. (b) 100
MR images of FeMIL-101-NH,
showing the examples of positive
(left image) and negative

(right image) contrast due to
differences in imaging sequence
parameters (TR =0.7 s, TE 40
=35msand TR=35, TE
= 21 ms respectively)
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apoptotic cell death. Alveolar epithelial cells tolerate only
lipid-coated MOY at lower doses of up to 50-100 pg mI-~1.
Alveolar macrophages appear to be particularly sensitive to
iron MOF, which cause pronounced induction of a cellular
stress response.

Grall et al. (64) have recently investigated in vitro cell tox-
icity of Fe-MIL-100 nanoparticles and their Cr and Al ana-
logue nanoparticles on lung (A549 and Calu-3) and hepatic
(HepG2 and Hep3B) cell lines. Authors proved that

@ Springer

pulmonary, ingestion or intravenous exposure modes were
not toxic to the investigated cell lines. The examples above,
reveal that the tested MOT show differential toxicity and
bioresponse in different effector cells tested, which indicate
their differential suitability for specific medical purposes (11).
In the study by Baati et al. (65), it has been demonstrated, that
high doses (220 mg/kg) of Fe-MOFs (MIL-100, MIL-88A and
MIL-88B-4CHj3) have shown no severe i viwo toxicity when
administered intravenously to rats (63).
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Fig. 6 MOF cytotoxicity: (a) a

Dependence of fluorescence (in 3500y
relative fluorescence units) on the 30004
concentration of Fe-MIL-101-NH, 2500.

contacted with L929 fibroblasts for
24 and 72 h. M —milled and MU —
milled and ultrasonicated samples.
C - control. (b) Photomicrographs
of morphology of L929 fibroblasts
after 24 h culture with addition of
0.625 mg/ml or .25 mg/ml of Fe-
MIL-101-NH; MOFE M — milled
and MU — milled and ultrasonicated
sample

2000-
1500-
1000

500+

Relative Fluorescence Units

Fe-MIL-101-NH,-M 0.625 mg/ml

=24h =72h

M MU M MU C
0.625 mg/ml 1.25 mg/ml

Scale Bar = 100um Scale Bar = 100um

Fe-MIL-101-NH,-M 1.25 mg/ml

Fe-MIL-101-NH,-MU 0.625 mg/ml

Similarly to previous studies performed on various mem-
bers of the MIL family, the results presented in the current
study revealed the low cytotoxicity of investigated Fe-MIL-
101-NHy material. It proves safety of Fe-MIL-101-NH, as a
potential drug carrier.

CONCLUSIONS

This work shows that Fe-MIL-101-NHy; Metal-Organic
Framework can be an effective carrier for first-line anti-tuber-
culosts antibiotic — isoniazid. The developed material assured
sustained drug release in opposite to fast dissolution of crystal-
line isoniazid powder. Additionally, magnetic resonance im-
aging and relaxometry on phantoms of the MOF system
suspended in HPMC solution proved that proposed drug de-
livery system based on iron-MOY can also serve as the MRI
contrast agent. These two features: drug delivery and imaging

Scale Bar = 100pm
Fe-MIL-101-NH,-MU 1.25 mg/ml

Scale Bar = 100pm

properties, combined in one carrier allow to classify Fe-MIL-
101-NHjy as theranostic agent.

According to performed in vitro cytotoxicity study the ma-
terial was found to be safe. It has been observed that Fe-MIL-~
101-NH,, particles were accumulated in the cell cytoplasmic
area and were able to release drug inside cells, which makes
them promising drug delivery system for local TB therapy. It
can be expected that local drug action accomplished this way
should increase therapy effectiveness, due to direct drug deliv-
ery to the M'TB bacilli locations and diminish clinically assessed
side effects of traditional systemic drug administration.

Presented results are the first step in development of
inhalable drug delivery system based on iron-MOF. The ob-
tained results suggest that it will be possible to optimize flow
properties of the system to assure drug loaded MOF particles
to reach alveoli level. Incorporation of other anti-TB drugs
into MOF structure seems to be promising to ensure multi-
therapy and in consequence, prevent the development of
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MTB bacilli resistance. Illes et al. (22,66) indicated the appli-
cability of MOF in multi-drug therapy which has proven to be
more effective than single-drug therapies in cancer treatment
and 1n tuberculosis therapy is even obligatory.

In the advent of feasible translation of inhalable, pulmo-
nary deposition monitoring to human (34), the application of
MO for extendedrelease inhalable system proposes the novel
strategy for delivery of standard antimycobacterial agents
combined with the monitoring of their distribution within
the lung tissue.
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