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reveals the potential and limitation of
combination therapy
Antoine Buetti-Dinh1,2 , Rebecca Jensen1,2,3,4,5* and Ran Friedman1,2

Abstract

Background: The smoothened (SMO) receptor is an essential component of the Sonic hedgehog (SHH) signalling,
which is associated with the development of skin basal cell carcinoma (BCC). SMO inhibitors are indicated for BCC
patients when surgical treatment or radiation therapy are not possible. Unfortunately, SMO inhibitors are not always
well tolerated due to severe side effects, and their therapeutical success is limited by resistance mutations.

Methods: We investigated how common are resistance-causing mutations in two genomic databases which are not
linked to BCC or other cancers, namely 1000 Genomes and ExAC. To examine the potential for combination therapy or
other treatments, we further performed knowledge-based simulations of SHH signalling, in the presence or absence
of SMO and PI3K/Akt inhibitors.

Results: The database analysis revealed that of 18 known mutations associated with Vismodegib-resistance, three
were identified in the databases. Treatment of individuals carrying such mutations is thus liable to fail a priori. Analysis
of the simulations suggested that a combined inhibition of SMO and the PI3K/Akt signalling pathway may provide an
effective reduction in tumour proliferation. However, the inhibition dosage of SMO and PI3K/Akt depended on the
activity of phosphodiesterases (PDEs). Under high PDEs activities, SMO became the most important control node of
the network. By applying PDEs inhibition, the control potential of SMO decreased and PI3K appeared as a significant
factor in controlling tumour proliferation.

Conclusions: Our systems biology approach employs knowledge-based computer simulations to help interpret the
large amount of data available in public databases, and provides application-oriented solutions for improved cancer
resistance treatments.
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Background
Smoothened (SMO), a 7-pass transmembrane protein,
is a component of the Hedgehog (HH) and Patched
(PTCH) signalling network responsible for the regulation
of cell growth and embryonic development. Mutations
that affect the members of this signalling network are
associated with the development of skin basal cell carcino-
mas (BCC) [1] through Gli transcription factors that drive
an uncontrolled cell proliferation.
Amino acid mutations in SMO that lead to an unre-

strained receptor activity are called activating muta-
tions [2]. Although inhibitors such as vismodegib [3]
(Erivedgeő, FDA-approved in 2012) and sonidegib [4]
(Odozmoő, FDA-approved in 2015) that block SMO are
available [5], resistance mutations develop after a period
of few months thereby limiting the efficacy of those drugs
[6]. In addition to amino acid mutations in the receptor,
resistance can arise also by a secondmechanism that relies
on alternative signalling pathways. Biological signalling is
typically distributed over multiple components involving
converging, diverging and recursive branches of the sig-
nalling network. Under selective pressure, tumours can
reinforce an alternative signalling route as a response to
the blockage of the main signal transduction path. This
mechanism of resistance allows cancers to sustain cancer-
driving processes such as tumour proliferation despite
therapy [7, 8].
Resistance mutations provide a selective advantage to

the tumour in the face of treatment [9], but may be some-
what deleterious otherwise [10]. To examine whether
SMO resistance mutation may pre-exist treatment, or
even BCC, the 1000 Genomes [11] and ExAC (Exome
Aggregation Consortium) [12] databases were surveyed
for such mutations. Owing to the resistance mutations,
it is necessary to find therapeutic strategies against BCC
that not only rely on inhibiting SMO, but also focus on
other targets in the SMO signalling network. We had
previously developed a computational knowledge-based
framework to study signalling pathways, especially in the
context of cancer [13] and used it to study combination
therapies [14, 15]. Here, we used this approach to pre-
dict which signalling pathways need to be targeted by
combination therapy, in order to sufficiently impair the
development of BCC even if SMO resistance mutations
arise.

Results and discussion
Population occurrence of mutations in the SMO domain
make it a difficult target for therapeutic inhibition
40 mutations in 35 amino acid positions were identified
in SMO according to the COSMIC database [16]
(surveyed in February 2017). Some of these mutations
are associated with resistance to SMO inhibitors such as
vismodegib

(Table 1). This explains the limited success of these
inhibitors.
We further searched for the presence of resistance

mutations in two genomic databases that are not linked
to BCC or any other cancer, namely 1000 Genomes
and ExAC. This analysis (carried out on February 2017),
revealed that three resistance mutations were found in the
population: W281C (with calculated frequency p = 8.24 ·
10−6), D473N (p = 4.13 · 10−5) and D473H (p = 0.021,
which may be an overestimation since the sample size was
only 48). This indicated that normal genetic variation was
enough to confer resistance to SMO inhibitors. Of note, in
the vast majority of cases, resistance mutations lead to a
decrease in the drug’s affinity towards its molecular target,
which cannot be offset by a higher dose of the drug due
to toxicity and intolerance. Combination therapy there-
fore represents a potential solution to treatment-resistant
cancers. Simulation and sensitivity analysis of the SMO
signalling network were used to identify optimal signalling
targets for a combination therapy against drug-resistant
BCC.

Signalling pathway analysis identified PI3K/Akt and PDEs
as potential targets for treatment of BCC
The SMO signalling network was simulated in order to
identify potential molecular targets for therapy (Fig. 1).
In the simulations of the signal transduction network, the

Table 1 Known resistance mutations in the SMO domain.
Source: COSMIC http://cancer.sanger.ac.uk/cosmic [16]

Mutation Number Associated with

of samples BCC initiation

H231R 2 Yes

T241M 1 No

W281C 2 Yes

W281L 1 No

V321A 1 Yes

V321M 3 Yes

A459V 3 Yes

F460L 1 Yes

C469Y 1 No

D473G 7 Yes

D473H 2 Yes

D473N 1 Yes

D473Y 1 No

Q477E 1 Yes

G497W 3 Yes

S533N 1 Yes

W535L 10 Yes

W535R 1 Yes

http://cancer.sanger.ac.uk/cosmic
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Fig. 1 The interaction network of SMO and signalling pathway analysis. Signalling pathway analysis represents the involvement of the network
components in stimulating the tumour proliferation end-point (TumPro) upon an increase in SMO independent activity (β(SMO) = 0.001 → 0.1).
See the Methods section for a description of the components. The effect of PDEs inhibition is represented as an increase in the concentration of
cAMP (from left to right). The sizes and colour intensities of the nodes summarise the results of signalling pathway analysis and represent how the
signal is mediated from SMO to the network end-point. The node size represents the association of a node with SMO when stimulating the
end-point (the larger the node the stronger the association). The node colour indicates the signal flow (the darker the more a node can deliver a
signal downstream to it)

signals are transmitted between the different components
of the network through activation or inhibition, which cul-
minate in the cancer-promoting end-point “tumour pro-
liferation” (TumPro). The simulations were performed by
applying a coarse-grained approach [15] whereby exhaus-
tive simulations of the network states were carried out in
which each node assumed one of two possible states: “low
activity” or “high activity” (see Methods section). This
enabled us to identify the network states that were most
significant for the development of high tumour prolifer-
ation, and consequently, the signalling pathways relevant
for therapeutic intervention.

Knowledge-based simulations highlight the important role of
PI3K/Akt signalling
Analysis of the simulations suggested that upon an inde-
pendent activity increase of SMO (for example due to
an activating mutation), signalling to the tumour prolif-
eration end-point is mediated principally by the pathway
involving the PI3K and Akt kinases (left panel in Fig. 1).
The degree of association between each node and SMO’s
activity is indicated by its size in the figure. In addition,
each node’s signal flow intensity was represented propor-
tionally to the node’s colour intensity, i.e., the darker the
node the more active it was when the control node (SMO)
was highly active. Both measures indicated the PI3K/Akt
pathway as the main signalling route to stimulate tumour
proliferation. Thus, analysis of the simulations revealed

that a combined inhibition of SMO and of the PI3K/Akt
pathway branch would be an effective therapeutic strat-
egy against BCC, in agreement with other studies [5, 17].
Unfortunately, inhibition of the PI3K/Akt pathway is diffi-
cult to achieve [18, 19]. Interestingly, the simulations also
indicated Cyclic adenosine monophosphate (cAMP) as a
potential network control point for reducing tumour pro-
liferation. Cyclic nucleotide phosphodiesterases (PDEs)
are enzymes that catalyse the degradation of a phospho-
diesther bond in cAMP or cGMP, and are thus potential
molecular targets for intervention (inhibition of PDEs
leads to an increase of the concentration of free cAMP).

Inhibition of PDEsmay reduce tumour proliferation
Several, selective and non-selective PDEs inhibitors are
currently available and have the effect to increase intracel-
lular cAMP [20, 21]. PDEs inhibitors have been employed
to treat several diseases [22] including different types
of cancers such as oral squamous carcinoma [23], colon
[24, 25] and breast cancer [26]. Roflumilast (Dalirespő,
FDA-approved in 2011 to treat chronic obstructive pul-
monary diseases) is a PDE4 inhibitor also used to treat
B-cell malignancies [27].
By simulating an increase in cAMP (β(cAMP) from

0.001 to 0.1), the SMO network became less branched:
the nodes GSK3b and SUFU became less involved in
conveying signalling from SMO to the tumour prolifer-
ation end-point (TumPro). In addition, the steady-state
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activity of the tumour proliferation end-point was reduced
(compare the left with the central panel in Fig. 1). Ulti-
mately, simulations of very strong PDEs inhibition, where
the resulting cAMP concentration compares to a 100-fold
higher activity with respect to the high nodes’ activity level
(β = 0.1) assumed in the network simulation, revealed a
bottleneck where the only relevant control node for the
signal flow in this extreme situation is cAMP (see right
panel in Fig. 1).

Network control analysis reveals changes in the
significance of SMO and PI3K as a function of circulating
cAMP
Sensitivity analysis of the SMO network was carried out
by simulating small variations in the activity of the SMO
and PI3K. By following earlier studies [13, 14], this enabled
us to identify activity ranges where control of tumour
proliferation is possible through inhibition of SMO and
PI3K, in combination with different levels of cAMP (cor-
responding to different PDEs inhibition strengths, see
Fig. 2).
At low cAMP (no PDEs inhibition), tumour prolifera-

tion had a high steady-state activity (not shown), and was
rather insensitive to variation in PI3K and SMO (see lower
heatmaps in Fig. 2). Increasing cAMP (i.e., applying PDE
inhibition), improved the controllability of the system by
both SMO and PI3K: a region of high sensitivity formed
between low and high SMO and PI3K activities (see left
and right panels of Fig. 2, respectively). This corresponds
to a transition zone between low and high steady-state
activity of tumour proliferation, and indicates the pres-
ence of controllable regions (with respect to variations in
SMO or PI3K). Combined inhibition that targets SMO
and PI3K in correspondence to these regions (with respect

to a maximal level of SMO and PI3K activities) is thus
suggested to be effective in reducing tumour proliferation.
Network control analysis suggested that the effect of

dual inhibition of SMO and PI3K differed depending on
the PDEs activity (see peak (maximal) sensitivity values
in Table 2 corresponding to the different conditions of
Fig. 2). At low and intermediate cAMP (β(cAMP) = 0.001
and β(cAMP) = 0.1, respectively), the system’s high-
est sensitivity values were obtained by variations in SMO
activity, i.e., the network end-point’s controllability pri-
marily depended on variations in SMO activity (0.00024
and 0.00619, respectively); and secondarily on PI3K activ-
ity variations (0.00019 and 0.00521, respectively). In con-
trast, when the cAMP level was high (corresponding to a
very strong PDEs inhibition), the end-point’s controllabil-
ity showed a stronger dependence on PI3K than on SMO
activity variations (0.02538 versus 0.01380). Therefore,
under no and moderate PDEs inhibition (β(cAMP) ≤
0.1), SMO was ∼20 more influential than PI3K for con-
trolling tumour proliferation, while at high PDEs inhibi-
tion (β(cAMP) = 10) PI3K was ∼20% more determinant
than SMO for the end-point control.

Combined inhibition of network control points revealed by
principal component analysis
Principal component analysis (PCA) was used to detect
co-activity and co-regulatory patterns (when it was
applied to steady-state and sensitivity values, respectively)
between the signalling components at the different cAMP
levels applied in the network control analysis dataset pre-
sented in section “Signalling pathway analysis identified
PI3K/Akt and PDEs as potential targets for treatment of
BCC”. Sensitivity PCA showed that by increasing cAMP
from a low level, a cluster formed that included cAMP and

Fig. 2 Sensitivity heat maps of the SMO network. Sensitivity was calculated in response to variations in SMO and PI3K activities on the xy-plane (left
and right, respectively), combined with different levels of cAMP (as in Fig. 1) on the z-axis. The regions of high sensitivity between low and high SMO
and PI3K activities (blue-red-yellow areas) correspond to a transition zone between low and high steady-state activity of tumour proliferation
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Table 2 Peak sensitivity values for the conditions represented in
Fig. 2

β(cAMP) = 0.001 β(cAMP) = 0.1 β(cAMP) = 10

Variations in
SMO Activity

0.00024 0.00619 0.01380

Variations in
PI3K Activity

0.00019 0.00521 0.02538

PKA (see Additional file 1: Figures S1–S3). This analysis
thus supports the earlier conclusion that cAMP influ-
ences the signal transduction through PKA and that it
can act as a regulator in addition to the PI3K/Akt path-
way, as suggested before by signalling pathway analysis in
section “Inhibition of PDEs may reduce tumour prolifer-
ation”. Furthermore, SMO clustered with nodes directly
downstream of it (Gbg and GaiGTP) at low and inter-
mediate cAMP (see Additional file 1: Figures S1 and S2).
When cAMP was high, this cluster merged with PI3K and
Akt, suggesting that strong PDEs inhibition and conse-
quent increase of cAMP causes the network components
PI3K, Akt and SMO and their downstream partners (Gbg
and GaiGTP) to become co-regulated (see Additional
file 1: Figure S3). A combination of PDEs inhibition that
causes an increase in cAMP, together with inhibition of
the SMO and the PI3K/Akt pathway is therefore predicted
to counter tumour proliferation.

Conclusions
SMO is subject to various amino acid mutations or vari-
ations which apparently do not hamper its activity. Some
of these mutations provide a basis for developing resis-
tance mutations against therapeutic inhibitors, which is
one reason that makes SMO a challenging target for BCC
therapies. We performed simulations of the SHH/SMO
interaction network in BCC in order to identify signalling
pathways that could confer resistance to treatments. Our
approach enabled the identification of potential treatment
combinations effective against forms of BCC harbouring
resistance mutations in SMO.
The simulations suggested that upon an increase in

SMO activity, the PI3K/Akt signalling plays a crucial role
in promoting tumour proliferation. Combined inhibition
of SMO and PI3K was studied in detail together with the
effect of different levels of cAMP (PDE inhibition). Our
results indicate a complex regulation of SMO and PI3K
as a function of PDEs activity. SMO was the most impor-
tant control node of the network at no and moderate
inhibition of PDEs. However, under strong PDEs inhibi-
tion, the systems became more sensitive to both SMO
and PI3K, but PI3K became more relevant than SMO
for controlling tumour proliferation. PI3K was previously
suggested to be involved in acquired resistance to treat-
ments against refractory tumours [5, 17]. Our simulations

propose a mechanism based on activation/inhibition of
signalling components in the SMO network, where PDEs
determine the outcome of therapies that target the PI3K
signalling. These results provide quantitative insights into
the signalling network of SHH/SMO involved in BCC, and
suggest that a combined inhibition with different dosages
of SMO, PDE and PI3K/Akt inhibitors may be required to
tackle drug-resistant BCC.

Methods
Simulations of the SMO signalling network
A signalling network model of SMO and its princi-
pal interaction partners described in the literature was
constructed based on the current state of knowledge
[5, 28–36] (see Fig. 1). SMO is negatively regulated by
the transmembrane receptor PTCH. SHH derepresses
the PTCH-mediated effect on SMO. Through different
intermediates, this leads to the activation of the Gli fam-
ily of transcription factors, which in turn activate genes
involved in tumour proliferation [30, 31]. Downstream
of SMO, Gαi proteins decrease the level of cAMP upon
Guanosine-5’-triphosphate (GTP) hydrolysis (indicated as
GaiGTP); and consequently prevent the inhibitory phos-
phorylation of Gli by protein kinase A (PKA). In parallel,
Gβγ (Gbg) subunits inhibit PKA through the PI3K/Akt
(phosphoinositide 3 kinase / protein kinase B) pathway
[32, 33]. This relieves the glycogen synthetase kinase 3β
(GSK3b)-mediated inhibition of Gli proteins [34, 35]. Fur-
thermore, SMO also relieves the inhibition of the suppres-
sor of fused (SUFU) onto Gli proteins further enhancing
the tumour proliferation effect [30, 36].
The interaction network model of SMO signalling was

simulated with the computational method developed by
us previously [13, 14]. The network’s nodes represented
signalling components as a set of ordinary differential
equations (ODEs). Edges represented the interaction links
between the components (modelled as empirical Hill-
type transfer functions). This enabled the integration of
experimental information in the modelling framework in
a straightforward way using a well-established formal-
ism derived from classical enzyme kinetics. This approach
requires only the knowledge necessary to set up Boolean
models (where interaction is assumed to be binary, i.e.,
activation or inhibition). Despite its simplicity, the anal-
ysis of such simulations provides quantitative insights on
studied signalling networks, taking into account nonlinear
signalling effects such as feedbacks, pleiotropy and redun-
dancy. This way, our method allows to analyse computa-
tionally disease networks for which detailed experimental
information is not available.
The simulation procedure yielded steady-state activ-

ity levels of the different network components according
to a given set of parameters. The range of indepen-
dent activities of the different network components (β)
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is summarised in Additional file 1: Table S1 (see refer-
ence [13] for a complete list of parameters available in
our code). Sensitivity analysis was applied to the result-
ing steady-state activities by calculating the sensitivity
corresponding to each parameter change. Steady-state
simulations and sensitivity analysis were carried out using
parallel computational architectures in order to screen a
large number of conditions and identify key control points
of the network. This enabled us to methodically charac-
terise the effect of inhibition of SMO and PI3K under the
different levels of PDEs activity.

Simulation and sensitivity in signalling pathway analysis
The analysis of signalling pathways involved in tumour
proliferation consisted of enumerating all combinations of
network states with high (β = 0.1) or low (β = 0.001) ini-
tial activity state (see Additional file 1: Table S1). For each
pairwise combination of parameters (where the network
state differs by the activity of a single node), sensitivity
was calculated according to the method used in reference
[15], i.e.,

ε
SS(Ni)β(Nj)=low → SS(Ni)β(Nj)=high

β(Nj)=low → β(Nj)=high =
ln

{
SS(Ni)β(Nj)=high

SS(Ni)β(Nj)=low

}

ln
{

β(Nj) = high
β(Nj) = low

}
(1)

where SS(N) denotes the steady-state activity of a node N
and β(N) its independent activity state. The arrow (→)
indicates a change in condition.
Without considering the combined activity change

of multiple control nodes simultaneously, but only the
changes occurring subsequently one after another (as it
would be expected by point mutations affecting the activ-
ity of a protein), Eq. 1 allows to calculate the sn conditions
that represent all possible states of the network (s is the
number of states a node can assume, n is the number of
nodes in the network).
Sensitivity is subsequently computed for each pair of

simulated conditions that differ by a single parameter (i.e.,
pair of simulations where the network states are identical
except for a single node that is low in the first simulation
and high in the second, or vice versa). This resulted in a set
of calculated sensitivities derived from the coarse-grained
simulations that comprises sn · n

s · (s− 1) sensitivity values
from which signal flow graphs are computed (see Fig. 1).
The obtained sensitivity values represent the strength

of the influence exerted by a node, connected directly
or through intermediates, onto another component of
the network. A positive value for the sensitivity between
two nodes (A → B) indicates that upon the increase
of the activity of A, B’s activity will also increase. Simi-
larly, a negative sensitivity indicates that upon an increase

of A’s activity, B’s activity will decrease. Sensitivity val-
ues close to 0 indicated independence between nodes.
Signal flow graphs (see Fig. 1) were built based on the
node’s activity and on the calculated sensitivity values.
They represent how the signal travels from the control
node (node subject to an increase in independent activ-
ity) to the network end-points. Upon activation of the
control node, the statistical association of other nodes
that are influenced is represented by the graph’s node
area (the larger the stronger the association). The colour
of the nodes indicates their activity contribution (the
darker is a node, the stronger is the signal it can deliver
downstream to it).

Simulation and sensitivity in network control analysis
Based on the same mathematical principles as for in the
signalling pathway analysis, in network control analysis
the majority of the network components were assumed to
have a low (resting) activity, while few nodes, identified
by signalling pathway analysis as relevant for controlling
the network behaviour, were varied over a range of activ-
ities (β) in small steps (as explained in reference [15] and
expanded in Additional file 1: Table S1). This yielded a
more detailed characterisation of those nodes that were
critical for controlling the network end-points and conse-
quently relevant for cancer development.

Principal component analysis and hierarchical clustering
PCA was used as a multivariate analysis to reduce dimen-
sionality of the simulation dataset of the network control
analysis (the prcomp function of R was used as a part
of the computational method developed by us previously
[13, 14]). It was applied to visualise PCA loadings (corre-
sponding to the network components) of steady-state and
sensitivity data on a two-component space (as presented
in the top panels in Additional file 1: Figures S1–S3). PCA
loadings were further classified using hierarchical cluster-
ing (the hclust function of R was used) and represented
in a tree-like structure (dendrogram) whose branches
grouped network components according to their similar-
ity over the different simulations (displayed in the bottom
dendrograms of Additional file 1: Figures S1–S3).

Additional file

Additional file 1: Supplementary Material. PCA at different levels of cAMP
and model parameters. (PDF 1380 kb)
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