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The pH of liquid water is determined by the infrequent process in
which water molecules split into short-lived hydroxide and hydro-
nium ions. This reaction is difficult to probe experimentally and
challenging to simulate. One of the open questions is whether
the local water structure around a slightly stretched OH bond is
actually initiating the eventual breakage of this bond or whether
this event is driven by a global ordering that involves many water
molecules far away from the reaction center. Here, we investigated
the self-ionization of water at room temperature by rare-event ab
initio molecular dynamics and obtained autoionization rates and
activation energies in good agreement with experiments. Based
on the analysis of thousands of molecular trajectories, we identi-
fied a couple of local order parameters and show that if a bond
stretch occurs when all these parameters are around their ideal
range, the chance for the first dissociation step (double-proton
jump) increases from 10−7 to 0.4. Understanding these initiation
triggers might ultimately allow the steering of chemical reactions.

autoionization | water | path sampling | machine learning |
ab initio molecular dynamics

Among all possible chemical reactions that occur in water,
the most fundamental is the water dissociation reaction (1),

which is of major importance in many areas of chemistry and
biology (2). Water plays an important role as a universal sol-
vent for a wide variety of chemical processes and can act both
as an acid and as a base. In aqueous solution, water will self-
ionize and form hydroxide (OH−) and hydronium (H3O+) ions
which take on Eigen- or Zundel-like structures (2–6). Experi-
ments show that the mean lifetime for an individual molecule
before undergoing autoionization is about 11 h (7, 8).

The autoionization event has not been directly probed by
experiments and the dissociation rate is obtained using the water
dissociation equilibrium constant and the rate for the much
faster recombination reaction (7, 8). The experimental chal-
lenges make the autoionization event a pertinent target for
computer simulations for which previous constrained ab initio
simulations have given important information about the mech-
anism (9–11). However, the use of constraints leads to a loss of
the spontaneous dynamics of the system and the selection of a
reaction coordinate that accurately measures the progress of the
reaction is challenging. These limitations can be avoided by path-
sampling methods such as transition path sampling (TPS) (12) or
replica exchange transition interface sampling (RETIS) (13, 14)
which are specifically designed for sampling rare events without
altering the dynamics while less influenced by the choice of the
order parameter (15). Geissler et al. (16) applied TPS with ab
initio molecular dynamics (MD) to simulate just 10 uncorrelated
autoionization events and demonstrated that the mechanism
involves transfer of protons along a hydrogen bond wire with
concomitant breaking of the wire. In their work, local solvent
properties (e.g., ion coordination numbers and the presence of
specific hydrogen bonds) were used to interpret the destabi-
lization that leads to ionization. The absence of clear visually
observable correlations led to the conclusion that the destabi-
lization is caused by rare electric-field fluctuations which arise
primarily from long-range electrostatic interactions and thus that

local order parameters are not suitable to describe the event.
Hassanali et al. (17) studied the reverse recombination reaction
(i.e., neutralization of ionized water molecules) with standard ab
initio MD and reported that this event takes place by a collec-
tive compression of the water wire bridging the ions, followed
by a triple concerted proton jump. The OH− ion which is neu-
tralized remains in a hypercoordinated state and Hassanali et
al. (17) hypothesized that it could serve, together with the com-
pression of the wire, as a nucleation site for autoionization.
This view opposes the statement of Geissler et al. (16) that the
dissociation event is primarily triggered by nonlocal structural
fluctuations. We note that concerted proton transfers and col-
lective compression of water wires have also been observed for
the recombination of a weak base in water (18).

Both of these studies give important information about the
autoionization mechanism, although they do not unambiguously
reveal the conditions that need to accompany a bond stretch fluc-
tuation to initiate the reaction. In this work, we aim to tackle
this ambiguity and quantitatively identify initiation conditions
for water autoionization. Simulating the dissociation events may
not be sufficient as the apparent initiation conditions observed
in trajectories that lead to dissociation may also be present in
trajectories with an initial bond stretch but still fail to dissociate.
Also nonreactive or “almost reactive” trajectories contain impor-
tant information as these allow for identification of effective
initiation conditions that really matter: those that discriminate
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between reactive and nonreactive trajectories. To collect this
information, we applied the RETIS method and harvested reac-
tive and nonreactive trajectories which we analyzed using the
recently developed predictive power method (19) and we built a
predictive machine-learning model (20). This allowed us to quan-
titatively examine the importance of local order parameters and
initiation conditions for water autoionization. Based on this anal-
ysis we identify important initiation triggers and calculate the full
rate of dissociation.

Results and Discussion
The autoionization event was investigated using ab initio RETIS
simulations as described in Materials and Methods. For the
RETIS simulations, we used a relatively simple geometric dis-
tance order parameter, λ, as illustrated in Fig. 1: When the
system consists of only H2O species, λ is the largest covalent
O–H bond distance, and when the system contains OH− and
H3O+ species, λ is taken as the shortest distance between the
oxygen in OH− and the hydrogen atoms in H3O+. In the follow-
ing, we refer to the oxygen atom used for the order parameter
as Oλ. The type of species (OH−, H2O, or H3O+) was iden-
tified by allocating to each hydrogen a single bond connecting

A B

C

Fig. 1. The order parameter and the probability for water autoionization.
(A and B) Definition of the order parameter (λ, dashed line), taken as
the largest covalent O–H distance in the system when no ionic species are
present (A) or as the shortest distance between the OH− oxygen atom and
the hydrogen atoms in H3O+ when ionic species are present (B). A hydrogen
bond wire with four members is shown with red (oxygen) and white (hydro-
gen) spheres and the distances |OH|1, |OH|2, |OH|3 are also indicated. These
distances are used to investigate the possible concerted motion of hydro-
gen atoms along the wire. (C) The crossing probability (PA) and average
energy of trajectories (〈E〉) as a function of the order parameter. The (black)
dashed line is calculated using an alternative definition of the order param-
eter (λ′) where the trajectory length (in femtoseconds) defines the order
parameter for λ> 3 Å. The horizontal dotted-dashed line is the crossing
probability (4.0× 10−15) obtained for long paths (λ′≥ 1 ps). The activa-
tion energy is equal to the plateau value of the average energy which
approaches 17.8 kcal/mol. The shaded area (1.15<λ< 2.0) is the domain
used for the predictive power analysis.

it to the closest oxygen. Note that the definition of the order
parameter does not require a threshold for defining a chemi-
cal bond nor does it constrain the order parameter to specific
water molecules for the duration of the simulation. This means
that we compute the rate of dissociation of any water molecule
in the system instead of a single targeted O–H bond or water
molecule.

From our RETIS simulations, the water dissociation rate con-
stant, kD, can be obtained as the product of a flux, fA, and a
(conditional) probability, PA(λN |λ0):

kD = fA×PA(λN |λ0). [1]

Here, λ0 and λN are interfaces defining the initial (λ<λ0) and
final (λ>λN ) states and PA(λN |λ0) is the probability of reach-
ing the final state before (possibly) reentering the initial state,
given that the initial interface λ0 has been crossed. The flux, fA,
is a measure of the frequency of crossings with λ0. Since we con-
sider the dissociation of any water molecule in our system, we
have normalized fA by the number of water molecules present.
Typically, for rare events, the crossing probability is very small
and in practice, PA(λN |λ0) is calculated by first positioning sev-
eral more interfaces λ0<λ1< . . .<λN between the initial and
the final state. The overall crossing probability is then obtained
as a product of several (history-dependent) conditional prob-
abilities (14). The conditional probabilities are calculated in a
separate path ensemble simulation where the [i+] path ensem-
ble defines the collection of paths crossing λi . The number and
location of the interfaces alter the efficiency of the method, but
not the results.

In the present case, we placed the final interface beyond the
maximum distance obtainable in our system. All trajectories were
thus propagated until the system contained only H2O species
again. Separated ions may still recombine fast (within a few
femtoseconds) even if the separation is large (16) and this obser-
vation was confirmed in our analysis (SI Appendix, Fig. S1). To
better identify and distinguish the metastable ionized states, we
used path reweighting (21) to project the crossing probability on
an alternative order parameter, λ′, which equals the trajectory
length (in femtoseconds).

In Fig. 1, we show the calculated crossing probability from our
simulations as a function of the order parameter. In principle,
there are two potential mechanisms which lead to an increase of
the reaction coordinate λ after the first proton jump. The ionic
species can separate further by another proton jump, the so-
called Grotthuss mechanism, reassigning the H3O+ or OH− ion
to another oxygen and causing a sudden discontinuous increase
in the reaction coordinate. A second possible mechanism keeps
the first ionic species intact and lets them move away from
each other by diffusion, yielding a more gradual increase of the
reaction coordinate. Based on the completely flat intermediate
plateau region between 1.5 Å and 3.2 Å, we can conclude that
only the first mechanism is effective. For λ> 3 Å, we consider
λ′ as the order parameter and we have used a threshold of
λ′≥ 1 ps as a criterion to identify a stable dissociation event. This
choice is rather arbitrary since there is not a clear separation of
timescales for the reverse recombination reaction which would
result in another flat plateau region of the crossing probability.
With a threshold of 1 ps, the crossing probability is PA =4.0×
10−15. Combined with the initial flux, calculated to be fA =2.9×
10−3 fs−1 in our simulations, the resulting dissociation constant
is kD = fA×PA =1.1× 10−2 s−1. An alternative rate constant
not requiring any time threshold can be defined by counting
the trajectories that undergo a hydrogen swap; i.e., in the last
frame some of the water molecules have swapped their pro-
tons. The rationale behind this definition is that the proton swap
must imply a significant reorganization of the hydrogen bond
network so that the reverse reaction can be considered as an
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independent recombination reaction. Vice versa, the forward
reaction has established a quasi-stable state since it is not fol-
lowed up by a correlated reverse reaction. This definition yields
a rate of kD =0.16 s−1.

Comparing with experimentally determined dissociation con-
stants at 25 ◦C [kD =2.5× 10−5 s−1 (7) and kD =2.04×
10−5 s−1 (8)] we overestimate the rate constant by a factor
500 (although the simulated rate will drop and gets closer to
the experimental rate if a larger threshold is chosen). Consid-
ering all factors that play a role in the accuracy (statistical error,
functional, small system size, purely classical treatment of pro-
tons, the time threshold value) the deviation with experiments
is satisfactory and comparable to other density functional theory
studies. Depending on the functionals considered in the ab ini-
tio calculation, energy barriers may be in error by 10–20 kJ/mol
(22) which at room temperature would already correspond to a
factor 55–3,000 difference between experimental and theoretical
rate constants. Still, density functional theory generally manages
to reproduce trends and mechanistic information in reasonable
agreement with experiments (23).

We also calculated the average energy of the generated tra-
jectories as a function of the order parameter (Fig. 1). The
energy is expected to converge to the activation energy as can
be derived from the temperature derivative of the rate con-
stant (24, 25). We note that this activation energy gives a more
direct comparison with experiments than free energy barriers
which depend on the choice of order parameter. The activation
energy obtained from the average energy of the accepted paths
is approximately 17.8 kcal/mol. For comparison, an Arrhenius
plot of the experimental data of Natzle and Moore (8) results
in an activation energy of approximately 17.3 kcal/mol while
Eigen and Maeyer (7) reported an activation energy between
15.5 kcal/mol and 16.5 kcal/mol. The deviation with our result
is lower than the typical error margin mentioned above and
the fact that the experimental activation barriers are lower
than our simulation result, despite having lower rate constants,
is rather remarkable. Since experimental data on this topic
are at least three decades old, we hope that our finding will
encourage future experimental investigations on the dissociation
reaction.

Path sampling methods generate reactive (and nonreactive)
trajectories which can be used to discover possible mecha-
nisms and initiation conditions. To characterize these conditions,
we considered additional collective variables, which we label
ξ=(ξ1, ξ2, . . .). In principle, these ξis can be functions of all
positions and momenta in the system, and they do not nec-
essarily have simple physical interpretations. Since the ability
to form hydrogen bonds is one of the characteristic features
of water (26) and since previous computational studies have
demonstrated the relevance of the hydrogen bond wire con-
necting the ionized species (16, 17), we have focused on a
set of relatively simple collective variables which quantify the
hydrogen bond network and the distortion from tetrahedral
geometry.

The first collective variable we consider is the length of the
hydrogen bond wire bridging the nascent ion species. Our aim
is to predict the outcome of initiated trajectories and in particu-
lar the initiation conditions for reactive events. Thus, we cannot
define the hydrogen bond wires as connecting the ionic species,
since this is one of the outcomes we wish to predict. For a single
trajectory, we define the hydrogen bond wire as the shortest wire
containing the Oλ species and i − 1 other water species at the
first point in time when λ is greater than a given threshold value,
λt =1.15 Å. Typically, this threshold is reached within 3–6 fs in
our trajectories. This defines a wire containing i water species
whose length, wi , is obtained as the sum of the O–O distances of
consecutive members.

In addition, we have considered the following four collective
variables which describe the local structure surrounding the Oλ

species: (i) The number of hydrogen bonds accepted, na, and (ii)
donated, nd, by the water species containing Oλ; (iii) the tetra-
hedral order parameter, q , obtained using the angles defined by
Oλ and its four nearest oxygen atoms (27, 28) (by the definition
q =1 for a perfect tetrahedral structure and q 6=1 otherwise); and
(iv) an angle order parameter, qcos, defined as the smallest of the
cosine of the two internal angles in the wire. We refer to Mate-
rials and Methods for additional information on these collective
variables.

After defining the extra ξs, we analyzed the trajectories using
the predictive power method (19). This method begins by clas-
sifying the trajectories as reactive or nonreactive based on two
thresholds λr and λc defined such that λr >λc >λ0. A trajec-
tory is considered reactive if it reaches the specified λr; oth-
erwise it is considered nonreactive. At the first crossing point
with λc, we record the ξs and form two distributions using the
reactive/nonreactive classification: rλ

c,λr
(ξ), the fraction of λc-

passing trajectories that cross λc at a point ξ and reach λr,
and uλc,λr

(ξ), the fraction of λc-passing trajectories that cross
λc at a point ξ but fail to reach λr. These two distributions
give information on the relation between the additional order
parameters and the reactivity. For instance, if uλc,λr

(ξ)= 0,
it could be that ξ is inaccessible, but if we can cross λc at
ξ, the trajectory will be reactive. To quantify the importance
of the different ξs, we calculate the predictive ability, T λc,λr

A ,
defined as (19)

T λc,λr

A =1− 1

PA(λr|λc)

∫
rλ

c,λr
(ξ)uλc,λr

(ξ)

rλc,λr(ξ)+ uλc,λr(ξ)
dξ, [2]

such that 1≥T λc,λr

A ≥PA(λ
r|λc). If the collective variables do not

correlate with reactivity, the lower limit is attained but if the
ξs are relevant for the reaction, T λc,λr

A >PA(λ
r|λc). We use the

ratio T λc,λr

A /PA(λ
r|λc)≥ 1 to measure how much the predictive

ability is increased when considering the extra ξs, compared with
using the crossing probability alone. Note that the definition in
Eq. 2 shows that if the overlap of the two distributions is small,
then the predictive ability increases.

We first investigated the lengths of hydrogen bond wires con-
taining three, four, and five water molecules. Comparing the
predictive abilities for these collective variables (respectively, w3,
w4, w5) we find that w4 and w5 are more correlated with reac-
tivity and that w4 is more relevant for larger λr (SI Appendix,
Fig. S2). Thus, in the following we focus on wires containing four
water molecules. For the water wires, we observe that when the
ionic species are separated by at least two water molecules, the
ionic state survives for a longer time compared with cases where
they are separated by just one water molecule. This implies that
(at least) three proton transfer events have occurred. We moni-
tored the distances of the initially covalent O–H bonds and show
these for the first (|OH|1), the second (|OH|2), and the third
(|OH|3) transferred proton in Fig. 2. As can be expected from the
Grotthuss mechanism (29, 30), the initial autoionization event is
followed by several proton transfers in which the ionic species
separate along the wire. Fig. 2 shows that this can happen in both
a concerted and a stepwise way: The transfer of the first and the
second proton occurs almost exclusively in a concerted way, while
the transfer of the third proton (if it occurs) can happen stepwise
or concertedly. This is also reflected in the waiting time between
these events (SI Appendix, Fig. S3): The waiting time distribu-
tion between the second and the third proton transfer is broader
compared with the first and the second transfer. To investigate
the stability of the wires, we also calculated the hydrogen bond
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Fig. 2. The concerted behavior of the autoionization event. (A) The distances (|OH|i) of initially covalent O–H bonds for the first (i = 1), the second (i = 2),
and the third (i = 3) proton transfer in four trajectories. The arrows show the time direction and the different trajectories exemplify different types of
hydrogen transfer: failed stepwise (dark-gray color, shown only for |OH|1–|OH|2), concerted (light-gray color), concerted only for |OH|1–|OH|2 (blue color),
and concerted stepwise (orange color). (B) Using all trajectories in the final path ensemble, densities for |OH|1–|OH|2 and |OH|1–|OH|3 have been obtained
(Left column). Right column shows the density when considering trajectories with a length tpath > 60 fs. All trajectories were collected from the final path
ensemble.

wire in time-reversed trajectories (SI Appendix, Fig. S4). We find
that trajectories are indeed starting and ending with a contracted
wire (w4< 7.6 Å) as reported by Hassanali et al. (17), but at
the end these wires do not necessarily contain the same oxygen
atoms. This might occur due to an actual breakage of the hydro-
gen bond wire or by a lesser disruption (for example, by a shift of
the selection of four consecutive oxygens within a five-membered
wire). The majority of the longer trajectories reform via another
wire, but there are still a significant number of long trajectories
(>1 ps) for which the recombination is exactly the same as
the dissociation path. This contradicts the hypothesis (16) that
a breakage of the wire is a necessary condition to reach a
metastable state. Also, visual inspection shows that relatively
long trajectories exist in which the hydrogen bond wire remains
intact except for some very short on/off fluctuations in the hydro-
gen bonds. We find the abovementioned hypothesis therefore
difficult to defend. Conversely, we can also examine whether an

actual breakage always leads to a long-lived metastable state. For
this we adopt again the assumption that all trajectories with a
hydrogen swap necessarily imply an indisputable breakage of the
hydrogen bond wire. SI Appendix, Fig. S5, shows that trajecto-
ries with a proton swap are on average longer, but can still be
relatively short (35 fs).

Comparing the additional collective variables (SI Appendix,
Figs. S6 and S7), we find that nd is less relevant than the other
variables and we do not consider it further. The other collec-
tive variables are more correlated with reactivity and in Fig. 3A,
we show the predictive ability for some of their combinations. In
Fig. 3B we show T λc,λr

A as function of λr≤ 2 Å for λc =1.16 Å
compared with the crossing probability using several combina-
tions of the collective variables. Fig. 3 A and B shows that we
can increase the predictive ability by a factor 107 compared with
the crossing probability. We note that since the crossing proba-
bility is small in this case, with a T λc,λr

A ∼ 0.4, we cannot perfectly

A B

Fig. 3. Increasing the predictive power for water autoionization by considering additional collective variables. (A) The predictive power (T λc,λr

A [ξ]) relative
to the crossing probability (PA(λr|λc)) using additional collective variables: hydrogen bond wire length (ξ= w4), the orientation order parameter (ξ= q),
the angular order parameter (ξ= qcos), and the number of hydrogen bonds accepted (ξ= na) by the Oλ species. (B) The predictive power and the crossing
probability as a function of λr for λc = 1.16 Å and different combinations of collective variables. Due to the threshold criterion for defining the wires (main
text), the probability is shifted so that PA = 1 for λ< 1.15 Å.
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predict the outcome. This indicates that there are other collec-
tive variables important for the description, possibly even non-
local ones, as suggested by Geissler et al. (16). Also, we stress
that here we are focusing only on the first concerted-jump step
of the reaction in which the order parameter increases from
1.16 Å to 2.0 Å. As is clear from Fig. 1C the vast majority of tra-
jectories reaching λ=2.0 Å will not lead to long-lived metastable
states. Predicting this from the very first snapshot seems still a step
too far since it depends on collisions between water molecules
after many MD steps far away from the initially stretched
OH bond.

Inspecting the initiation conditions in more detail, we inves-
tigate the reactive and nonreactive distributions rλ

c,λr
(ξ) and

uλc,λr
(ξ) in Fig. 4 for λc =1.16 Å and λr =2.0 Å. Here, we

examine all dissociation events, even the ones that recombine
quickly and show the distributions for ξ=(w4,na) in Fig. 4A
[see SI Appendix, Fig. S8 for the distributions for ξ=(w4, q) and
ξ=(w4, qcos)]. Along the w4 coordinate we observe a clear sepa-
ration of the two distributions which indicates that trajectories
crossing λc =1.16 Å have a larger probability of being reac-
tive for shorter wires (smaller w4). This supports the hypothesis
of a “compressed” wire as an important condition for autoion-
ization, as first suggested by Hassanali et al. (17). Along the
na coordinate we observe a higher probability of reactivity for
wires in which Oλ is hypercoordinated, which was also pro-
posed by Hassanali et al. (17). Still, the chance of not being
reactive is larger at any point (w4,na) in Fig. 4A [rλ

c,λr
(ξ)

would not be visible if it had not been normalized]. For exam-
ple, if (i) 7.15<w4< 7.6 and at the same time na =3, the
probability for a reactive event is 3.6 · 10−6, which is small but
still a factor 58 larger than the chance to be reactive from a
random point at λc . In a more extreme case, if (ii) w4< 7.3
and simultaneously na =4, the chance increases to 0.15. The
predictive ability T λc,λr

A provides a weighted average of these
chances in which the weights are proportional to the relevance
(19); since of all reactive trajectories, 45% cross λc in region i
and only 0.6% in region ii, the latter will have 75 times lower
weight.

If we consider the q coordinate, we observe that rλ
c,λr

is
shifted toward lower q values compared with uλc,λr

, which indi-
cates that a distortion from a tetrahedral arrangement around
the dissociating water species may also initiate the event. This
finding is somewhat surprising as in some other aqueous phase
chemical reactions the opposite effect was found (31). Similar
conclusions can be drawn for the distribution of ξ=(w4, qcos).
Here, there is a peak along the qcos coordinate for the reac-
tive distribution closer to a linear arrangement of the water
molecules. In Fig. 4B we show a representative snapshot,
obtained early (after 3 fs) in a reactive trajectory. Overall the
results shown in Fig. 3 report that a compression of the water
wire (measured by w4) and hypercoordination (measured by na)
or distortion (measured by q and qcos) are necessary initiation
conditions for autoionization. However, these are not sufficient
conditions as shown by the values of T λc,λr

A in Fig. 3B: Still 60%
of the trajectories starting off within the ideal ξ parameter range
fail to establish a concerted proton jump.

Machine learning (ML) applied to path-sampling data (33, 34)
is a promising approach to find important collective variables
that can easily be missed by human intuition. To explore this
possibility, we built ML models for predicting the outcome of
trajectories given the state of the water system early in the tra-
jectories. We focus on the same range as in the predictive power
analysis and we use the state of the system, when λ> 1.15 Å
is first attained, to predict the outcome. We used several ML
techniques in which every odd path ensemble was included in
the calibration and the even path ensembles were used for the
test set. An alternative split in which the data within each path
ensemble were evenly divided in two gave similar results. More-
over, as heavily skewed distributions are difficult to treat with
ML, we further omitted the reweighting of the datasets with the
statistical weights of the corresponding path ensembles. How-
ever, we applied the ML techniques as a qualitative approach
to find new parameters that could be tested quantitatively within
the predictive power method (19).

In addition, to avoid a potential risk of overinterpretation
we opted to restrict the complexity of the ML decision pro-
cess and imposed a maximum of four order parameters when

A B

Fig. 4. Initiation conditions and local collective variables. (A) Reactive (rλ
c,λr

(ξ)) and nonreactive (uλc,λr
(ξ)) distributions for ξ= {w4, na} and λc = 1.16 Å

and λr = 2.0 Å. For visualization purposes, the depicted distributions are normalized [implying magnification of 107 for rλ
c,λr

(ξ)]. Top and Right Insets
show the one-dimensional projections of the distributions. A clear separation of the two distributions can be seen along the w4 coordinate, indicating that
reactive trajectories are more compressed compared with nonreactive trajectories. In addition, the oxygen atom used in the order parameter calculation
(Oλ) accepts on average a larger number of hydrogen bonds in reactive trajectories, compared with nonreactive trajectories. (B) Illustrative snapshot from
a reactive trajectory where Oλ is shown in blue. The four surrounding oxygen atoms which are used for the calculation of the tetrahedral order parameter
q are shown in orange. The water wire is highlighted with a yellow line (and gray transparent spheres) and the angle parameter qcos is indicated. In this
snapshot, the water wire is compressed, q exhibits deviation from a tetrahedral structure, qcos indicates that three oxygen atoms are lining up in the wire,
and Oλ accepts three hydrogen bonds and donates one (shown with green lines).
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computing T λc,λr

A . For instance, excellent predictive perfor-
mances (>90%) were obtained using the ensemble-based
gradient-boosting machines (35, 36). However, the interpreta-
tion of the model is problematic since an ensemble of 100–150
deep decision trees (added in a sequence) is used. Although the
performance is improved, the chance of overfitting with acciden-
tal correlations increases. We have therefore restricted ourselves
to the single-tree–based decision models based on classification
and regression decision trees (CART) (20). The restriction to
four order parameters for the T λc,λr

A function is based on simi-
lar reasons. Adding more parameters gives more sparse matrices
representing the reactive/nonreactive distributions, and, as a
result, numerical integration for computing the overlap between
these distributions becomes very sensitive to the bin size and
could underestimate the overlap due to bins being empty by
insufficient statistics.

We considered 138 collective variables consisting of oxygen–
oxygen distances; oxygen–hydrogen distances for initially bound
water molecules; all angles formed by Oλ and its four closest oxy-
gen neighbors; and the Steinhardt order parameters of orders 3,
4, and 6 (32) (see Materials and Methods for more details). In
addition, the order parameters already considered were added.
Fig. 5A shows the resulting decision tree. Remarkably, of all of

the input parameters, the w4 parameter is both on top of the
decision tree and the most important variable as measured by
the reduction in the classification error attributed to each vari-
able at each split in the decision tree (20) (SI Appendix, Fig.
S9). Also the tetrahedral ordering and the number of accepted
hydrogen bonds appear in the decision tree. To describe the
first effect, the ML approach prioritized the Steinhardt q4 order
parameter above the similar q parameter previously used by
us. Some distances that also appear in the decision tree like
d25, the distance between Oλ and its 25th closest oxygen, are
most likely due to accidental correlations caused by the limited
size of the dataset. This is verified by inspecting the impor-
tance of this variable: d25 does not appear among the 20 most
important variables (SI Appendix, Fig. S9), and, in fact, other
similar variables (e.g., d24) are ranked higher, albeit with low
importance. A more important and intuitively sound parameter
that is suggested by the ML approach is λ2, the OH distance
between the oxygen closest to Oλ and its hydrogen with the
largest intramolecular bond. Recomputing the predictive abil-
ity using parameters from the ML tree (Fig. 5B) did not yield
higher performances than the combination w4, q , na, and qcos,
but should be conceived as equally good, considering statistical
uncertainties.

C

A B

Fig. 5. Results from the machine-learning analysis. (A) Classification and regression tree for predicting the outcome of initiated trajectories. Here, we
considered several additional collective variables (description in Materials and Methods), but only a small subset is eventually needed for constructing
the tree: w4, q4 [the Steinhardt fourth-order parameter (32)], λ2 (the length of the stretched hydrogen bond in the water molecule closest to the Oλ

species), di (the distance from Oλ to the ith closest oxygen), and di (the average distance considering the i closest oxygens). The notation for the nodes
is explained with the stand-alone node in the top left corner. This tree predicts trajectories to be reactive, i.e., reaching a λ≥ 2, or nonreactive based on
the collective variables obtained at the frame in the trajectories when λ is first ≥1.15. The nodes predicting reactive trajectories are colored blue (class 1)
while the nodes predicting nonreactive trajectories are colored green (class 0). Note that the percentages at the bottom of the squares do not reflect the
physically correct fractions since path ensembles were not reweighted using their statistical weights. The rules are textual representations of traversing the
tree; for instance, rule 5 (which predicts reactive trajectories) can be expressed as w4≥ 7.6 and λ2≥ 1.1. These rules give different initiation conditions,
and they are listed in SI Appendix, Table S1, for the bottom row of nodes. (B) The predictive power and the crossing probability as a function of λr for
λc = 1.16 Å and different combinations of collective variables. Here we compare the predictive power using collective variables we identified with variables
marked as important by the machine-learning analysis. (C) Reactive (rλ

c,λr
(ξ)) and nonreactive (uλc,λr

(ξ)) distributions for ξ= {λ2, d2} and λc = 1.16 Å
and λr = 2.0 Å. For visualization purposes, the depicted distributions are normalized. Top and Right Insets show the one-dimensional projections of the
distributions.
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Conclusions
We investigated the autoionization of water at room temper-
ature, using an unconstrained ab initio rare-event simulation
method. Our simulations sample reactive events that happen on
the timescale of minutes and we demonstrated that autoioniza-
tion can be initiated by the hypercoordination of a stretched OH
bond and the compression of a hydrogen bond wire as suggested
by Hassalani et al. (17). However, these are not sufficient con-
ditions. Only when the wire is strongly condensed (<7.3 Å) and
the stretched OH bond accepts four hydrogen bonds, does the
reaction probability become significant (0.15), but only 0.6% of
the reactive trajectories start off with such extreme conditions.
The vast majority of reactive paths start with milder initial values
for these two parameters. In this region of parameter space the
reaction probability is largely enhanced compared with an arbi-
trary case, but still extremely small. Hence, the reaction takes
place when additional structural parameters have values inside
the right range. We identified additional structural parameters
which correspond to the alignment of the hydrogen bond wire
and the distortion from a tetrahedral arrangement. Hence, we
showed that the local order parameters can be used to predict
the self-ionization event, although it requires a combination of
several conditions.

Due to the multiple correlated factors that influence the
water autoionization, we combined our analysis method with
ML techniques which identified additional parameters not con-
sidered before, in particular the O–H stretch of the oxygen
closest to Oλ. Even though the ML result did not outper-
form the level of predictiveness by the human effort based
on intuition, visual inspection of many molecular movies, and
intensive trial-and-error approaches, the ML approach found
all previously identified parameters very efficiently and, in addi-
tion, revealed some equally important parameters that were
overlooked. We therefore believe that ML applied to path
sampling has a great potential especially since data limitations
will become less of an issue in the future due to the further
expected increase of high-performance computing, a better par-
allelization scheme of sampling unequal trajectory-length path
ensembles, and the use of more efficient Monte Carlo (MC)
path-generating moves (37). It would therefore be promising to
apply the same method to other aqueous-phase chemistry stud-
ies which so far have mainly been based on biased dynamics
(31, 38).

The fundamental understanding of reaction triggers that can
be gathered by this approach could open up avenues of practical
applications. For instance, even if not all identified parameters
correlating with reactivity will necessarily imply causal corre-
lation, it is plausible that an intelligent manipulation of their
equilibrium distribution via external electric fields (39) or inclu-
sion of additives might lead to catalytic ways to steer reactions
and in particular water dissociation.

Materials and Methods
Simulation Methods. The MD simulations required by the RETIS algorithm
(14) were performed with the Born–Oppenheimer MD capabilities of the
CP2K program package (40). We used the Becke–Lee–Yang–Parr (BLYP) func-
tional with a DZVP-MOLOPT (41) basis set and a plane-wave cutoff of 280 Ry.
The BLYP functional gives a reasonable description of the structure and
dynamics of liquid water (42, 43) and the absence of dispersion corrections
(44) is likely of minor importance for ion–water interactions where the dom-
inant interactions are mainly electrostatic. However, we note that the BLYP
functional is known to give an overstructured description of liquid water
with a low diffusion coefficient (45). Previous studies on the recombina-
tion mechanism for water (17, 46) and for weak bases in water (18) have,
however, found that the collective compression of the hydrogen bond wire
and the motion of the protons are reproduced with different choices of the
functional and basis set.

The initial system consisted of 32 water molecules placed in a cubic sim-
ulation box of 9.85× 9.85× 9.85 Å3. All MD simulations were carried out

under constant energy (microcanonical) dynamics, with a time step of 0.5 fs
and periodic boundaries.

The transition region was divided into 20 path ensembles by position-
ing RETIS interfaces at λ= {1.07, 1.10, 1.13, 1.16, 1.19, 1.22, 1.25, 1.28,
1.31, 1.34, 1.39 1.43, 1.48, 1.52, 1.56, 1.80, 2.00, 2.50, 2.90, 3.29} Å.
In addition, a final interface was placed at λ=∞ such that all trajec-
tories were propagated until they reached the pure water state again.
After generating an initial path for each path ensemble (this was done
by repeatedly modifying the momenta of the particles and evolving the
system forward in time until valid paths were obtained) the RETIS algo-
rithm attempts to either swap paths between different path ensembles or
generate new trajectories by the so-called shooting or the time-reversal
move. In our simulations the probability of performing a swapping move
was set to 50% while the probabilities of the two other moves were both
set to 25%. New velocities for the shooting move were drawn from a
Maxwell–Boltzmann distribution corresponding to an average temperature
of 300 K.

We performed 24,000 MC moves for each path ensemble, using the RETIS
algorithm. This generated between 8,000 and 18,000 distinct trajectories in
each path ensemble. The length of the trajectories ranged from 13.5 fs to
1,365 fs and we disregarded the first 400 trajectories in our analysis.

Analysis of Trajectories. Crossing probabilities along the reaction coordinate
λ were computed by matching the results of the different path ensem-
bles. Projection of the crossing probability along λ′ was obtained using
the reweighting scheme of Rogal et al. (21) for the path ensembles in the
transition interface sampling framework.

For trajectories harvested with the RETIS algorithm we calculated addi-
tional collective variables: the hydrogen bond wire length (wi), the number
of hydrogen bond donors (nd) and acceptors (na), the orientation order
parameter (q), and the angle formed by Oλ and its closest oxygen neigh-
bors (qcos). Using the first configuration in each trajectory, hydrogen atoms
were assigned to the closest oxygen atom and this defined the initial H2O
molecules. Then, the hydrogen bond network was obtained for each config-
uration in the trajectory. Hydrogen bonds were identified using the criteria
of Luzar and Chandler (47) and all (shortest) hydrogen bond connections
between all pairs of water molecules were determined using the Floyd–
Warshall algorithm (48). This allowed us to represent the hydrogen bond
structure as a graph. Next, the oxygen atom (Oλ) used in the definition
of the order parameter was identified. With no OH− present, this is the
oxygen atom for which the covalent O–H distance is largest and when
we have OH− present in the system, this is the OH− oxygen atom. After
identifying Oλ, we obtained the number of hydrogen bonds accepted (na)
and donated (nd) by the water species containing it. The relevant hydro-
gen bond wire was obtained using the following criteria: (i) The wire
should contain the oxygen atom used for the order parameter (identified
as explained above) when the order parameter first crossed 1.15 Å, (ii) the
wire should contain i water species, and (iii) the wire should be the short-
est of the wires where two criteria i and ii are met. The length of the wire
was defined as the sum of the O–O distances of consecutive molecules in
the wire.

The orientation order parameter measures the distortion from a tetrahe-
dral orientation of four water molecules around a central molecule and is
defined by (27, 28)

q = 1−
3

8

3∑
j=1

4∑
k=j+1

(
cosψjk +

1

3

)2

. [3]

Here, ψjk is the angle formed by the central oxygen and its four nearest
oxygen neighbors. The central oxygen is always Oλ or the oxygen with the
largest OH bond for pure water or the OH− oxygen if it is present. For a per-
fect tetrahedral orientation q = 1 and it is q 6=1 otherwise. The angle order
parameter, qcos, was obtained directly as qcos = min(cosα, cos β), where α
and β are the two internal angles in the wire.

After calculating these additional collective variables, we analyzed the
trajectories using the methodology of van Erp et al. (19). For the analysis
we used 100 subinterfaces for both λr and λc for the range 0<λ/Å< 6.4.
The histograms in the collective variable space were constructed using 20
bins for 4.0≤w3/Å≤ 7.0, 7.0≤w4/Å≤ 9.6, 9.0≤w5/Å≤ 12; 20 bins for
0≤ q≤ 1; and 25 bins for −1≤ qcos≤ 1, while the bins (midpoints) were
placed at −0.5, 0.5, 1.5, . . . , 6.5 for both na and nd.

The classification models were constructed using CARTs (20) available
within the R (49) software package. The mean of sensitivity and specificity
was used as the classifier performance measure (50).
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For the CART models we considered several sets of collective variables
and we obtained these variables at the frame in the trajectories where
the order parameter first crossed 1.15 Å. The trajectories were classified as
reactive if they reached a λ≥ 2 and as nonreactive otherwise. The first set
of collective variables consisted of all 4,560 atom–atom separations in the
system, which gave a model in which the oxygen–oxygen distances were
most important. This model did not lend itself to an easy interpretation
and we next considered several models with a reduced number of collective
variables.

In the best-performing model (performance measure for training 0.89
and for testing 0.88) we considered 138 collective variables: all oxygen–
hydrogen distances for initially bound water molecules, all oxygen–oxygen
distances involving Oλ, the averaged distances between Oλ and its i =
{2, 3, . . . , 31} oxygen neighbors, the cosine of all angles formed by Oλ

and its 4 closest oxygen neighbors, all of the collective variables considered
in the predictive power analysis, and the Steinhardt order parameters of
order 3, 4, and 6 (32). When performing the predictive power analysis for
the collective variables used by the CART analysis, we used 20 bins in the
range [0.7, 2.0] for oxygen–hydrogen distances and 20 bins in the range
[1.0, 4.2] for oxygen–oxygen distances, and for angles and the Steinhardt
order parameters we used similar bins to those for qcos and q given above.
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