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Graphene superlattices were shown to exhibit high-temperature
quantum oscillations due to periodic emergence of delocalized
Bloch states in high magnetic fields such that unit fractions of the
flux quantum pierce a superlattice unit cell. Under these condi-
tions, semiclassical electron trajectories become straight again, similar
to the case of zero magnetic field. Here, we report magnetotransport
measurements that reveal second-, third-, and fourth-order magnetic
Bloch states at high electron densities and temperatures above 100 K.
The recurrence of these states creates a fractal pattern intimately
related to the origin of Hofstadter butterflies. The hierarchy of the
fractal states is determined by the width of magnetic minibands, in
qualitative agreement with our band-structure calculations.
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For electrons in solids, their ability to freely propagate through
the crystal lattice (Fig. 1A) originates from the translational

invariance of the Hamiltonian associated with a periodic lattice
potential. According to Bloch’s theorem (1), the electronic states
are dispersed in energy and described by wave functions that are
delocalized over the entire crystal lattice. This description gen-
erally breaks down in the presence of magnetic field (B), because
electrons experience the Lorentz force and become localized on
closed orbits (2–5) (Fig. 1B). However, for certain B where the
magnetic length is commensurable with the lattice periodicity
(Fig. 1C), electrons recover delocalized wave functions (6, 7) and
behave as “magnetic” Bloch states that propagate along open tra-
jectories as if they are effectively in zero magnetic field (Beff = 0).
Mathematically, this occurs for all rational fractions of magnetic flux
ϕ = SB = ϕ0p/q, where S is the area of crystal’s unit cell, ϕ0 is the flux
quantum, and p and q are integer numbers (6, 7). Physically, this is a
consequence of the Aharonov–Bohm effect so that an electron
passing across q unit cells acquires a phase shift in multiples of 2π,
which restores the translational periodicity in high B. The recurrence
of propagating Bloch states is expected to cause fractal, self-similar
behavior in the magnetotransport properties of crystalline solids (6–8).
In graphene/hexagonal boron-nitride (hBN) superlattices (9–12),

the periodic structure created by recurrent magnetic Bloch states
was previously observed in low-temperature experiments (13–18),
with most of the attention being paid to the detection of Landau
gaps in the Hofstadter butterfly spectrum (8, 19). In particular,
third-generation Dirac points (13), the anomalous quantum Hall
effect (14), and replica quantum Hall ferromagnetism (16) were
observed in the magnetic Bloch states that resided at unit fractions
of ϕ/ϕ0 = 1/q. However, this periodicity does not constitute the
complete self-similarity inherent to magnetic Bloch states (6, 7) and
Hofstadter butterflies (8, 19), where the spectra should replicate
themselves at increasingly smaller scales of B. This fractal struc-
ture can appear only due to high-order magnetic Bloch states with
numerator p > 1 and has awaited experimental confirmation.
In this article, we probe the electronic spectrum of graphene/

hBN superlattices and report the full hierarchy of magnetic
Bloch states up to the fourth order (ϕ/ϕ0 = 1/q, 2/q, 3/q, and 4/q)
using an alternative approach that is based on the use of trans-
port measurements at high temperatures (T = 100–200 K).
In this regime, magnetotransport still reflects the characteristic

properties of magnetic minibands but is not obscured by overlaying
Shubnikov–de Haas (SdH) oscillations (20). Our recent work (21)
showed that magnetic Bloch states become most prominent above
100 K, resulting in robust quantum oscillations in magneto-
conductivity (σxx). These so-called Brown–Zak (BZ) oscillations
originate from the repetitive formation of Bloch states at magnetic
fields which follow the sequence ϕ/ϕ0 = 1/q. Upon increasing B,
electron trajectories are modulated between closed and open orbits,
which cause the conductivity to oscillate. In the experiments below,
we extend the parameter space to high carrier densities (n) and B
up to 30 T, which allows the observation of a fractal pattern in σxx
originating from high-order magnetic Bloch states (p > 1).
The studied devices were fabricated using the standard approach

for making encapsulated graphene/hBN heterostructures (22) (for
details, see SI Appendix, S1). During their assembly, a rotating stage
was employed to accurately align graphene’s crystallographic axes
with the hBN substrate. The alignment resulted in a moiré super-
lattice (9–11, 23) with a period of ∼14 nm due to a slight (∼1.8%)
mismatch between the graphene and hBN crystal lattices. This step
is crucial to observe the physics described above, as it ensures that
the regime with ϕ/ϕ0 = 1 can be reached for B below 30 T. Note
that for pristine graphene (without a superlattice potential) the
above condition would be met only at ∼10,000 T. A second hBN
crystal was placed on top of the graphene to encapsulate it, ensuring
high electronic quality (24). The top hBN was intentionally mis-
aligned to avoid a competing moiré potential acting on graphene
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charge carriers. After the assembly, electron beam lithography and
standard microfabrication processing were employed to etch the
heterostructure into multiterminal Hall bar devices with quasi–one-
dimensional contacts (25, 26) (Fig. 1D, Inset). We studied five
superlattice devices and found the features described below in all of
them but they were strongest in those with the highest electronic
quality and largest moiré period.
Fig. 1D shows an example of the measured resistivity (ρxx) in

zero magnetic field as a function of n for one of our superlattice
devices. Three peaks in ρxx are observed at n = 0 and n = ±2.5 ×
1012 cm−2. The latter two peaks provide an unambiguous in-
dication of the superlattice reconstruction of graphene’s spec-
trum (11, 27, 28) and are referred to as secondary Dirac points
(DPs). Notably, the secondary DP is considerably sharper for
hole doping (negative n) than electron doping (positive n), in
agreement with the previous work (13–16) and with calculations
that have demonstrated graphene’s band structure is stronger
modified for holes (27). Rather surprisingly, BZ oscillations are
found to be more pronounced for electrons in the conduction
band (21), especially at high T. Fig. 1D (Inset) plots a map of
magnetoresistance ρxx (n, B) for electron doping at 150 K. At this
T, SdH oscillations and the corresponding Landau fans (13–16)
are completely suppressed because of thermal smearing. Instead,
we find a set of horizontal streaks across the map (highlighted by
arrows), which signifies magnetooscillations that are indepen-
dent of n. These are BZ oscillations.

Fig. 1E plots ρxx (B) for several n beyond the electron sec-
ondary DP. For n = 2.7 × 1012 cm−2 (black curve), we find that
ρxx oscillates in 1/B with a single periodicity of ϕ0/S (schematic of
Fig. 1E). As we increase n further, the oscillations start de-
veloping some extra periodicity. In particular, we find additional
features appearing between the maxima. As shown below, these
oscillations originate from the formation of magnetic Bloch
states at ϕ/ϕ0 = 2/q. Because the extra features become stronger
at higher n and higher B, whereas standard doping by electro-
static gating is limited to ∼5 × 1012 cm−2, we employed fields up
to 30 T and, at the same time, used optically induced doping, a
peculiar property of graphene/hBN heterostructures (29) (SI
Appendix, S2). These techniques allowed us to reach n as high as
∼3n0 and perform measurement for ϕ/ϕ0 ≥ 1.
It is instructive to analyze the BZ oscillations in terms of

longitudinal conductivity σxx (B) = ρxx/(ρxx2 + ρxy2), where ρxy is
the Hall resistivity. This is because σxx exhibits local maxima at
those Bs where magnetic Bloch states emerge (ϕ/ϕ0 = p/q) and
quasiparticle trajectories in the superlattice potential become
effectively straight again, mimicking transport at zero field (30–
32) (Fig. 1C). In addition, the use of the dissipative conductivity
σxx simplifies our analysis by avoiding a nondissipative (Hall)
contribution caused by topological properties of the magnetic
minibands that can have nonzero Chern numbers (33–36). Fig. 2A
plots σxx as a function of ϕ0/ϕ, which emphasizes the 1/B period-
icity of BZ oscillations. Here, we find local maxima in σxx located
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Fig. 1. BZ oscillations in graphene/hBN superlattices. (A–C) Schematic illustration of electron trajectories for different magnetic fields. The blue spheres (A and B) are
electrons propagating along trajectories indicated in blue. Graphene’s crystal lattice is shown as gray hexagons. The red sphere (C) represents a quasiparticle (magnetic
Bloch state) propagating along a straight trajectory on a lattice of supercells (red hexagons), as if in zero effectivemagnetic field. Note however that in the presence of
an electric field, trajectories in C may become curved and develop into chiral edge states because of nontrivial topology of the magnetic minibands (33–35, 39). (D)
ρxx(n) for a graphene superlattice with the period of ∼14 nm. (Inset) Map ρxx(n,B) for electron doping. Logarithmic gray scale: white 80 Ω; black 1,200 Ω. (Lower Inset)
Device and measurement schematics. (E) ρxx (B) at 150 K for three carrier densities above n0. (Inset) Illustration of a graphene/hBN moiré superlattice. For n = 2.7 ×
1012 cm−2, the oscillations exhibit a single periodicity, which corresponds to one ϕ0 piercing the moiré unit cell (outlined by the black hexagon).
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at unit fractions of ϕ/ϕ0 = 1/q, in agreement with the previous
report (21). In addition, several other maxima become clearly
visible at fractions of ϕ/ϕ0 = 2/q and 3/q. For high B, maxima at
ϕ/ϕ0 = 4/q can also be discerned (Fig. 2 A and C, Inset).
To better visualize the additional maxima with p > 1, we ex-

ploit one of the defining features of BZ oscillations, namely that
their frequency is independent of n. Fig. 2B plots a map of σxx (n,
ϕ0/ϕ), which reveals a set of dark vertical streaks. They can be
seen more clearly if we plot the second derivative of σxx with
respect to B (Fig. 2C). The differentiation procedure effectively
removes the smooth background and highlights the extra features
by sharpening local maxima. The vertical streaks indicate the extra
features appearing at the same B for all n. Even the maxima for
p = 4 become clearly distinguishable as faint gray features in-
dependent of n (green arrows in Fig. 2C). The observed behavior

signifies that the additional maxima are caused by high-order
magnetic Bloch states. Note that several p = 2 maxima can also
be observed for hole doping (Fig. 2D), despite the poor visibility of
BZ oscillations in graphene’s valence band (21).
For certain ranges of n and B, we were able to identify all of

the magnetic Bloch states up to a fourth order which can occur
within the field interval 1/(q + 1) < ϕ/ϕ0 < 1/q. This is illustrated
in Fig. 3 for q = 2. At 100 K (black curve), the hierarchy of
magnetic Bloch states creates a fractal pattern in the magneto-
conductivity, that is, the behavior of σxx close to zero applied mag-
netic field (Fig. 3, Inset) is replicated multiple times at increasingly
smaller scales of B. As T increases, the fractions with large p become
smeared and only those with p = 1 remain (Fig. 3).
To understand the observed hierarchy of states, let us first

recall how the energy spectrum of graphene superlattices looks

D

C

B

A

Fig. 2. High-order magnetic Bloch states. (A) σxx as a function of B expressed in units, ϕ0/ϕ. (Inset) Same data on a logarithmic scale to emphasize weak
features; the same horizontal axes. (B) σxx(ϕ0/ϕ,n) for high electron doping in B up to 30 T (ϕ > ϕ0) where fractal features are most visible. Logarithmic gray
scale: white 0.05 mS; black 5 mS. (C) Second derivative d2σxx/dB2 of the data in B. Gray scale: white 0 mS/T2; black −0.05 mS/T2. (D) Same as in C but using
another data set obtained in B up to 15 T. The black, red, blue, and green arrows mark fractions with p = 1, 2, 3, and 4, respectively. The schematic in D
illustrates the fractal state ϕ/ϕ0 = 2/5, which involves an extended unit cell of five original moiré unit cells that share two flux quanta between them.
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in quantizing magnetic fields (13, 37–39). Fig. 4A plots the
computed density of states in the conduction band as a function
of energy and B, producing an image often referred to as the

Hofstadter butterfly (8) (SI Appendix, S3). In general, the spec-
trum is dominated by localized states which are caused by Landau
quantization. They occur at irrational values of ϕ/ϕ0 and appear as
numerous discontinuous regions marked by black dots. However,
at rational ϕ/ϕ0 = p/q the spectrum becomes continuous due to the
emergence of magnetic Bloch states (6, 7). These are represented
by solid vertical lines in Fig. 4A and appear each time when p flux
quanta pierce a so-called supercell that has an area q times larger
than the moiré unit. For example, a magnetic Bloch state at
ϕ/ϕ0 = 2/5 (red line in Fig. 4A) arises if two flux quanta penetrate
through a supercell that is five times larger than the moiré unit cell
(Fig. 2D, Inset). We also note that, for n < n0, the superlattice
spectrum is gapped over a wide range of B. This behavior is
specific to Dirac electrons (37–39) and explains why BZ oscilla-
tions and high-order maxima in σxx are absent at low n (Fig. 2D).
The visibility of a particular magnetic Bloch state is de-

termined by both the number of flux quanta (p) and the number
of unit cells (q) associated with the state. As q increases, its
visibility is expected to decrease because the Bloch state involves
an increasingly larger supercell that might not be fully travers-
able by electrons because of their limited mean-free path. This
explains why first-order states that follow the sequence ϕ/ϕ0 = 1/q
(that is, BZ oscillations) tend to be more prominent (Fig. 1 D
and E). Note that this tendency does not always hold (see Fig. 2A
for ϕ/ϕ0 approaching unity and the discussion below). As for the
p dependence, its details are more subtle. When the supercell
size is fixed by q, the maxima in σxx still become progressively
smaller with increasing p. This is evident from the sequence
ϕ/ϕ0 = p/5 shown in Fig. 2A (highlighted by the colored arrows).
To understand the p dependence, we recall (30–32) that trans-
port of Bloch electrons also depends on their group velocity (v)
as σxx ∝ v2τ, where τ is the scattering time. Assuming that τ is
independent of B (32), maxima in σxx should be determined by
the value of v, which reflects the width of the energy bands of the

Fig. 3. Temperature dependence of high-order states. Longitudinal conduc-
tivity after subtracting a smooth background, Δσxx (ϕ0/ϕ). Three different T for
n = 2.2 n0. The arrows indicate fields where the fractal magnetic Bloch states
with p = 2, 3, and 4 are expected. The curves are shifted vertically for clarity.
(Inset) Standard behavior of σxx (B) for metallic systems near zero magnetic
field, either applied (B) or effective (Beff). The shape is described by the classical
expression σxx ∝ 1/[1 + (μB)2], where μ is the charge carrier mobility (31, 32).

B

A C

Fig. 4. Computed hierarchy of magnetic Bloch states. (A) A part of the Hofstadter butterfly for electrons in graphene/hBN superlattices (21, 39). The black and
white regions signify allowed states and energy gaps, respectively. The red and blue vertical lines highlight the Bloch states at ϕ/ϕ0 = 2/5 and 3/5, respectively. Note
that the white vertical stripes around ϕ/ϕ0 = p/q indicate regions omitted in the calculations for technical reasons (too-dense spectrum) (21, 39). (B) Energy dis-
persions for the Bloch states with ϕ/ϕ0 = 1/5, 2/5, and 3/5 over an energy interval from 0.2 to 0.3 eV, which approximately reflects the doping level in our
measurements. (C) Average group velocity <v2> for n/n0 = 1.7. The values are normalized by graphene’s Fermi velocity. Fractal states with different p are color-
coded. The black, red, and blue arrows indicate the 1/5, 2/5, and 3/5 states shown in B. (Inset) <v2> as a function of n/n0 for those three states.
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corresponding states. Broad bands imply higher electron veloc-
ities than flat bands (31). With this in mind, Fig. 4B shows the
energy dispersion for the magnetic Bloch states at ϕ/ϕ0 = 1/5, 2/
5, and 3/5 (same q but different p). In general, the minibands
contain many closely spaced subbands that either overlap or are
separated by small gaps. As p increases, the minibands become
flatter and the gaps separating them more pronounced. This
suggests that v is smaller for magnetic Bloch states with larger p.
For further analysis, we calculated the group velocity for dif-

ferent magnetic Bloch states and, to account for the relatively
high T of our measurements, took an average over the interval of
thermal smearing (SI Appendix, S4). Fig. 4C plots the resulting
mean-square velocity <v2> as a function of rational ϕ/ϕ0 at a
fixed n for p = 1, 2, and 3 and various q. Clearly, the states with
larger p have a systematically smaller v. For example, the average
velocity for ϕ/ϕ0 = 2/5 is 10 times smaller than that for ϕ/ϕ0 = 1/5.
This proves that magnetic Bloch states with flatter bands exhibit
lower average v and, therefore, lower σxx. The latter makes it
harder to resolve the states experimentally and explains the ob-
served p dependence of the local maxima in Figs. 2 and 3. We
note that the calculated <v2> shows the same trend with p for
hole doping in the valence band (SI Appendix, S5). Furthermore,
at small q, local maxima in σxx become dependent not only on the
supercell size (defined by q) but also on details of the miniband
structure, that is, on <v2>. For example, the nonmonotonic de-
pendence of the first-order peaks in Fig. 2A (ϕ/ϕ0 = 1/q) can be
attributed to the interplay between the supercell size and <v2>.
Although magnetic Bloch states are formed more easily at small
q (high B), their average speed becomes significantly smaller
(Fig. 4C), which reduces the local maxima in σxx.
Finally, we consider the n dependence of high-order fractal states.

Fig. 4C (Inset) plots <v2> as a function of n/n0 for the minibands
shown in Fig. 4B (ϕ/ϕ0 = p/5). For all of the fractions, <v2> in-
creases with n, in agreement with our experiment that shows more

prominent fractal features at higher doping. The origin of
higher <v2> in this case stems from the fact that the minibands
become closely spaced at higher energies (Fig. 4 A and B). Ac-
cordingly, the Fermi level becomes smeared over an increasing
number of minibands, which in turn increases σxx and, therefore,
the visibility of magnetic Bloch states at high n. Note that some of
the minibands are likely to have nonzero Chern numbers that can
result in nonzero Hall conductivity in zero Beff and, at low T, in
chiral edge states (33, 34). However, the topological properties
should not affect the discussed dissipative σxx in the linear re-
sponse to the current-driving electric field.
To conclude, in addition to BZ oscillations that are periodic in

1/B and correspond to ϕ = ϕ0/q, magnetotransport in graphene
superlattices exhibits a fractal pattern due to high-order mag-
netic Bloch states that are in principle expected for all rational
ϕ/ϕ0 = p/q and are clearly observed in our experiments for p = 2,
3, and 4. These high-order states require sufficiently high elec-
tron doping to become visible experimentally, and their hierar-
chy is associated with increasingly flatter Bloch minibands at
higher p. Further work is required to understand the effect of
topology and nonzero Chern numbers associated with magnetic
minibands (39) on transport properties of graphene superlattices.
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