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Abstract

Metabolomics is one of the newer omics fields, and has enabled researchers to complement 

genomic and protein level analysis of disease with both semi-quantitative and quantitative 

metabolite levels, which are the chemical mediators that constitute a given phenotype. Over more 

than a decade, methodologies have advanced for both targeted (quantification of specific analytes) 

as well as untargeted metabolomics (biomarker discovery and global metabolite profiling). 

Untargeted metabolomics is especially useful when there is no a priori metabolic hypothesis. 

Liquid chromatography coupled to mass spectrometry (LC-MS) has been the preferred choice for 

untargeted metabolomics, given the versatility in metabolite coverage and sensitivity of these 

instruments. Resolving and profiling many hundreds to thousands of metabolites with varying 

chemical properties in a biological sample presents unique challenges, or pitfalls. In this review, 

we address the various obstacles and corrective measures available in four major aspects 

associated with an untargeted metabolomics experiment: (1) experimental design, (2) pre-

analytical (sample collection and preparation), (3) analytical (chromatography and detection), and 

(4) post-analytical (data processing).
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INTRODUCTION

In the ideal, a metabolomic study provides a picture of every metabolite in the organism and 

provides insight into metabolic response to a biological situation or experimental 

manipulation. The assumptions are that every metabolite will be measured, and that the 

measurements will be biologically informative. In reality, there are problems with these 

assumptions and experimental design and methodology are required to overcome them 

(partially, at least). The bases of the potential problems and approaches to address these 

issues are discussed below, first in the most general sense which applies to all experimental 

systems (issues inherent in drawing inference from metabolic pool measurements), and then 

in specific aspects of mass spectrometric (MS) measurements (pre-analytic, analytic and 

post-analytic processes).

At the present time, metabolomics experiments are performed with either mass spectrometry 

(Want et al 2007; Dunn et al 2011; Reaves and Rabinowitz 2011) or nuclear magnetic 

resonance (Fan and Lane 2016; Dietz et al 2017). Nuclear magnetic resonance (NMR) has 

the potential to measure metabolite levels in intact tissues, but sensitivity is limited 

(Tognarelli et al 2015; Fan and Lane 2016), and even with increased field strength (Righi et 

al 2012; Dietz et al 2017), it is not possible to detect low abundance compounds with 

currently available technology. This manuscript only discusses liquid chromatography (LC) 

based mass spectrometry (MS) approaches to untargeted metabolomics, with emphasis on 

inborn errors of metabolism (IEM).

Targeted Versus Untargeted Metabolomics

There is some confusion and ambiguity in the application of the terms “targeted” and 

“untargeted” in metabolomics. In targeted studies, specific compounds are quantified and 

compared to established reference ranges. In practice, this corresponds to setting the mass 

spectrometer to monitor selected transitions reflecting individual target analytes (and their 

internal standards) through the time course of the chromatography. This is not different from 

what Biochemical Genetics laboratories have traditionally done in performing amino acid, 

organic acid, acylcarnitine analysis, etc. Using modern day instrumentation and stable 

isotope dilution, target analytes can be fully quantified to clinical laboratory standards, using 

formal calibration, validation, and quality control (FDA 2001), though in cases where 

absolute quantification is not necessary, a semi-quantitative approach may be useful, and is 

often used instead. On the other hand, untargeted metabolomics (Want et al 2005) seeks to 

analyze all detectable metabolites, known and unknown, to determine if one or more is or 

are significantly perturbed, and then to perform identification. Untargeted metabolomics is a 

“discovery mode” process and it relies on differential comparison between groups (Dudzik 

et al 2017) of samples (for example cases versus controls); it is not applicable to individual 

samples. In its strictest form, untargeted metabolomics is agnostic, comparing peaks as 

chromatographic “features”, and then seeking to identify the compounds. The settings of the 

mass spectrometer would reflect that (i.e. acquisition would be in scan mode), but 

identification is made on review and extraction of the data collected during the 

chromatography. Naturally, with experience, a laboratory will accrue a library of identities 

of chromatographic features and spectra, so that many peaks can be immediately identified. 
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Untargeted metabolomics however is truly intended for discovery, and is not limited to a pre-

determined list of metabolites or class of compounds, with the aim to span the breadth of the 

metabolome.

CHALLENGES/PITFALLS AND SOLUTIONS/WORKAROUNDS

Discussion of issues, pitfalls and workarounds is organized into the phases of a 

metabolomics experiment: Experimental Planning/Conceptualization, Pre-Analytical, 

Analytical, and Post-Analytical.

Experimental Planning/Conceptualization

There are realities which raise challenges to the basic assumptions of metabolomics; in some 

cases, there is nothing that the experimentalist can do to overcome the challenges, but in 

others there are solutions or at least methods to minimize the problem. LC-MS methodology 

involves extraction of body fluids or tissues. The source of the material will determine which 

analytes are present, so in any given sample there may be groups of compounds which will 

never be seen at more than trace amounts. For example, certain sugar phosphates and 

nucleotides will not be expected in extracellular fluids, and hydrophobic compounds such as 

fatty acids may be seen in blood, but not in urine or CSF. The metabolomic picture will 

differ greatly depending upon the fluid studied and so it is imperative to choose the most 

relevant sample type that will demonstrate the metabolic perturbation.

It is possible that the key event and most informative biological event in metabolism will 

take place as a trigger or nucleation event and will not be evident at any time later. That may 

be the case in transient niacin deficiency which could cause defects in embryogenesis (Shi et 

al 2017) but might not be evident in the mother at a later time. It also may be true that 

through cascade effects or biochemical amplification, that a widespread change may result 

from a small perturbation in a key regulator, creating a sort of “butterfly effect,” as for 

example with microRNA species (Dorn 2013) or the trace concentration of cAMP initiating 

the cascade of glycogenolysis (Fischer 2013). That regulator may either be inaccessible in 

the study, or present at such a low concentration that it would never be measured when the 

experiment is performed. Instrumental dynamic range or interference from much more 

abundant analytes may make it impossible to monitor changes on both the regulatory and the 

bulk substrates. Performing longitudinal studies when possible can help detect transient 

changes which might not be observed in a static timepoint. In other scenarios, the levels of 

observed intermediates may not reveal a regulatory change, particularly when metabolite 

pools are defended by side reactions (such as anaplerosis), but measurement of flux could be 

mechanistically informative. In the last decade, initially pioneered through microbial 

metabolism studies (Blank et al 2005; Kummel et al 2006), researchers have used 13C 

(and/or 15N) labeled nutrients to follow the utilization of substrates such as glucose or amino 

acids, not only in cell culture, but in live mammals as well (Fan et al 2009). A bolus of stable 

iostopically labeled material can reveal altered ratios of labeled to unlabeled intermediates 

and isotopologues (containing both labeled an unlabeled atoms), and MS/MS fragmentation 

patterns can reveal changes in isotopomers (varying in the location of labeled atoms). This 

can provide insight into changes in metabolic flux in disease and allow construction of 
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metabolic network models, revealing linkage among pathways otherwise not obviously 

related.

Sample Size—A bad outcome for a metabolomics experiment would be finding no 

meaningful associations, and worse would be reaching spurious conclusions. Since 

untargeted metabolomics depends inherently on statistical comparison between or among 

experimental groups (controls vs. cases, treatment A vs. treatment B, etc.), meaningful 

results require an adequate number of samples in each group. In general, the objective is to 

predict the number of samples needed to generate a given power (e.g., 0.8) and a given 

degree of confidence (e.g. an adjusted p-value ≤0.05), given the experimental variability 

between replicate runs. One approach is to use data sets from pilot studies or from related 

samples in public data repositories. The power for a given false discovery rate (FDR) may be 

estimated for a given set of pilot data by a number of methods, including a module of the 

publically-available MetaboAnalyst package (Xia and Wishart 2016). The larger the number 

of samples, the less work in the post-analytical phase and the more definitive the results. As 

a rule of thumb, it is not practical to perform untargeted analysis with groups of less than 5–

10 individual samples per group, and it is not realistic to consider running single samples for 

untargeted metabolomics, The metabolomics standards initiative (MSI) recommends a 

minimum of 5 biological replicates in their minimum reporting standards (Sumner et al 

2007), but of course the true number required depends heavily on the intrinsic variation in 

the biological samples as well as the magnitude of the observed perturbation, all factors 

incorporated into power analysis. It is possible that a pathognomonic metabolite will by 

chance be seen in a single sample from a patient with a given disease, and Miller et al. 

(Miller et al 2015) recently demonstrated the ability to identify such elevations in 

metabolomic studies of various inborn errors of metabolism by comparison to previously 

established reference ranges. However, only known metabolites were evaluated in this single 

sample fashion, while for biomarker search, multiple patient samples were processed in 

cohorts, a key aspect of untargeted metabolomics. Novel biomarker search poses a specific 

challenge with low sample numbers, as various analytical, environmental, and even dietary 

factors may result in aberrant levels of certain features from any single sample/run, normally 

evaluated by rigorous false discovery analysis in untargeted experiments. The variation 

posed by these factors are discussed in detail throughout this review, but it is worth 

considering that colleagues’ requests to “run untargeted metabolomics on a single sample” 

or small sample cohorts should be handled with discussion about experimental design, and 

redirected to either run exhaustive targeted analysis (similar to extended Biochemical 

Genetics assays) or to extend the study population to provide appropriate statistical power.

Pre-Analytical

Sample Preparation—When blood is sampled, there are advantages to using plasma over 

serum, since the specimen can be immediately placed on ice prior to separation. It is 

possible to use dried blood spot (and urine) cards for some applications (Barri and Dragsted 

2013), but there is some uncertainty about extraction efficiency, depending upon the 

compound’s polarity. There is controversy regarding the choice of anticoagulant for plasma 

preparation. There may be interferences and serious matrix effects depending on the 

particular experimental setup, the specific anticoagulant (EDTA or heparin), the counter-ion 
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(Na, K2, K3, Li), and the type (glass versus polypropylene) or brand of the tube. Some 

investigators favor heparin for plasma samples and state that EDTA should be avoided (Barri 

and Dragsted 2013), whereas others favor EDTA (Yin et al 2015; Metabolon 2017). Citrate 

should be avoided when studying central metabolism. There may also be artefactual features 

from surfactants and detergents used to treat the subject’s skin (Denery et al 2011). The best 

advice is to perform pretesting, and above all, to be consistent throughout the sample 

acquisition phase of the experiment, so that all samples are handled identically. Urine 

samples, which do not require special collection tubes (and should generally not include 

additives), must also be considered carefully. Metabolite concentrations may vary 

significantly in an individual throughout the course of the day based on hydration and diet. 

Often this is managed by normalization to creatinine levels, but that process may be 

compromised in kidney dysfunction. Alternative methods for normalization that have been 

used include use of osmolality and “total useful signal” from MS-data (MSTUS), a process 

by which many (hundreds or thousands) of common ions among all samples are used for 

scaling (Warrack et al 2009). Other factors to take into account when acquiring any animal 

or human samples include control of diet (or fasting time) to prevent exogenous metabolite 

interferences and to minimize variation, in addition to variables associated with sample 

storage and repeated freeze/thawing (Alvarez-Sanchez et al 2010).

Tissue/cell harvesting, metabolite extraction, and quenching of metabolism—
Extracting and quenching metabolism is a critical factor for any metabolomics experiment. 

The need to effectively deproteinize biological sample while solubilizing the metabolome is 

of course important, but if additional metabolism or compound degradation occurs during 

this process, the readout by LC-MS may no longer be biologically valid. Certain compound 

classes are especially labile and are represented in many of the primary energy pathways. 

These include sugar phosphates (glycolysis and pentose phosphate pathways), nucleotides 

(ATP, GTP, etc.), coenzymes and cofactors whose stability, especially in terms of 

phosphorylation state, are greatly influenced by factors such as pH and temperature (Sellick 

et al 2011; Vuckovic 2012; Leon et al 2013). These are intracellular metabolites for the most 

part and are rarely considered when extracting extracellular material such as plasma (or 

serum), CSF, or urine for example. Researchers interested in bacterial metabolism and flux 

analysis have increasingly considered such issues, often employing filtration systems that 

avoid perturbation from centrifugation allowing for quick washing and sampling (Aragon et 

al 2006; McCloskey et al 2014). There may be advantages to bloodspots in limiting ex vivo 

metabolism (Hill et al 2017), but that approach may entail differences in recovery and 

stability of different classes of metabolites (Koulman et al 2014). Adherent cell lines face a 

unique set of challenges in order to limit artifactual metabolic perturbation. In general 

practice, adherent mammalian cell cultures are washed with PBS, trypsinized, harvested, and 

centrifuged for further media washing, a process that has been implicated to be poorly 

compatible with preservation of the metabolome (Teng et al 2009). This has recently led to 

alternative, creative strategies to allow for quick harvesting and quenching of cellular 

material (Lorenz et al 2011; Martano et al 2015), where the intracellular energy metabolites 

mentioned above may be critical to the study. The commonality among the methods is that 

trypsinization and centrifugation steps are avoided, and cells are quenched quickly directly 

on the surface that they are grown on. They are then scraped off manually, often after 
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freezing, before final preparation for LC-MS analysis. Validation of proper quenching can be 

performed by calculating ratios of the intact to degraded forms of labile metabolites such as 

nucleotides. For example, concentrations of ATP, ADP, and AMP can be incorporated in the 

equation for energy charge (([ATP]+0.5[ADP])/([ATP]+[ADP]+[AMP)), and then compared 

to established ranges in various cell types, generally centered near 0.9 in normal conditions 

(Chapman et al 1976).

A variety of extraction/quenching methodologies have been compared for tissue that has 

been excised or biopsied from animals. Issues that have warranted extensive investigation 

include the need to cryo-freeze tissue, the use of freeze clamping, as well as variables 

associated with animal anesthesia and euthanasia methods (Belanger et al 2002; Want et al 

2013; Overmyer et al 2015). In addition, the extraction solution used can have a major 

influence on the scope of the metabolome observed. For an untargeted metabolomics 

experiment that assumes many compound classes will be represented, it is critical to test 

extraction efficiency of both highly polar metabolites such as organic and amino acids, as 

well various lipid classes with varying hydrophobicity. For extraction methods that 

solubilize both polar and hydrophobic compounds, biphasic strategies such as the Bligh 

Dyer (Bligh and Dyer 1959) or Folch (Folch et al 1957) method, or several variations (Rose 

and Oklander 1965; Jensen 2008) are commonly used. These primarily use a combination of 

chloroform, methanol, water, and in some cases acid, resulting in a separation of the aqueous 

and organic layers of solvent with a protein/DNA layer in between. More recently, a new 

method that utilizes methyl-tert-butyl-ether (MTBE) instead of chloroform has improved 

two important aspects of biphasic extraction (Chen et al 2013): 1) MTBE is less toxic than 

chloroform and safer to handle, and 2) the DNA/protein pellet from extraction is localized to 

the bottom of the tube following centrifugation. This allows for a simple removal of the two 

phases without contaminating the lower phase with the insoluble material. A variety of 

monophasic methods are also widely used and include solvents such as methanol, 

acetonitrile, ethanol, perchloric acid, as well as others, either in cold or boiling conditions, 

and are preferred for certain classes of compounds (Kolarovic and Fournier 1986; Canelas et 

al 2009; Dietmair et al 2010; Yanes et al 2011). It is important to note that there are 

significant differences in the coverage of the metabolome when comparing the various 

extraction methods, muddying the true definition of “untargeted” metabolomics.

Analytical

Once sample acquisition and extraction has been achieved, the analytical aspects associated 

with LC-MS analysis are the next key part of a successful experiment, and though seemingly 

straightforward, it contains a number of permutations that the experimenter must choose. As 

with the extraction steps described above, none of these will be perfect for all subsets of 

metabolites. The analytical choices, which include sample resuspension, chromatography 

and instrumentation, will determine the breadth of the metabolome covered and the degree 

of reliability in the collected data. The following section will highlight some of the major 

areas where major consideration must be applied.

Importance of Chromatography—Though several groups have published methods that 

utilize direct injection into mass spectrometers for analysis of metabolites (Madalinski et al 
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2008; Fuhrer et al 2011), the vast number of researchers utilize inline chromatography in 

their platforms to minimize ionic suppression and increase both sensitivity and specificity of 

the analytes they report. Added complexity, be it in the form of non-volatile salts, buffers, or 

even metabolites can greatly influence the ionization efficiency of any given compound and 

cause interfering compounds that will convolute the accurate reporting of data, issues that 

can be greatly alleviated with successful chromatographic methods. From the early days of 

untargeted LC-MS based metabolomics dating back a little over a decade ago, C18 reverse 

phase columns have been a stalwart of many platforms. There are many iterations of C18 

columns and nearly every manufacturer sells a version of these, though with sometimes 

distinguishing features that result in varying degrees of performance. Differences in particle 

technology, particle size, uniformity, column dimensions and other factors will affect 

binding, separation, and elution properties, as well as back pressure. Smaller particle sizes 

result in increased column efficiency but cause an increase of back pressure that necessitates 

ultra high performance LC (UHPLC) systems and fast acquisition mass spectrometers to 

match narrow elution profiles (Guillarme et al 2010). Ultimately though, their frequent use 

throughout the LC-metabolomics era is based on their high reproducibility, which is a 

necessity for accurate run-to-run alignment, their versatility in retaining many non-polar and 

hydrophobic compound classes, and the simple mobile phase compositions (often 

acetonitrile/water or methanol/water gradients with small amounts of additives such as 

formic acid) required for their use. The latter factor ensures ideal compatibility with 

electrospray (ESI) and atmospheric pressure chemical ionization, the two primary LC-MS 

ionization techniques. The weakness of these columns is in the polar regime of the 

metabolome, and many such compounds will have poor retention, eluting near the solvent 

front of a run where the greatest amount of ionic suppression and potential interferences 

reside. Unfortunately, many of the metabolites of interest, especially in the realm of primary 

energy metabolism (e.g. organic acids and amino acids) related to both human disease as 

well as intracellular studies are highly polar. An example of this was an early study 

involving our group to demonstrate the utility of untargeted metabolomics to detect known 

biomarkers of IEM (Wikoff et al 2007). In this study of a small group of patients with 

propionic acidemia, methylmalonic acidemia and controls, the controls were of course 

distinguished from propionic and methylmalonic acidemia by an elevation of propionyl-

carnitine and related acylcarnitines The distinction between methylmalonic and propionic 

acidemia, however, was less clear, because methylmalonyl-carnitine was not detected 

(presumably attributable to a lack of suitable stationary phase ideal for such a highly polar 

compound). That study demonstrated feasibility, but also limitations: no single 

chromatography will permit “global” untargeted metabolomics.

Normal phase and HILIC columns, with stationary phases containing polar groups such as 

amino, cyano and silica among others, are now frequently employed for additional runs to 

analyze the polar chemical realm (Jandera and Janas 2017; McCalley 2017). In the past, 

these columns were more difficult to use reproducibly, as they generally required longer re-

equilibration times and more complex mobile phases that also incorporated buffers and 

higher ionic strength for efficient metabolite elution. A more recent alternative to using 

normal phase is the use of reverse phase stationary phases containing polar groups such as 

pentafluorophenyl (PFP) columns (Csató et al 1990), which we have previously validated for 
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use in a combined targeted/untargeted metabolomics platform (Gertsman et al 2014). 

Various versions of these exist, including with a propyl (PFPP) linker (manufacturers include 

Phenomenex, Resetek, ES industries, and UCT) or even combined with a C18 stationary 

phase for a mixed mode effect (Mac-Mode). Mixed mode columns, which generally utilize 

both non-polar and polar stationary phases to extend versatility in metabolite selection, can 

often be used in standard reverse phase conditions and have been a preferred choice in some 

untargeted studies (Yanes et al 2011; Gertsman et al 2015). This is not to say that drawbacks 

do not exist in these columns as well, and weaknesses can include poor elution of polar 

lipids or other compound classes that carry both polar and hydrophobic moieties.

Yet another important aspect of chromatography lies in the ability to separate isomers, 

isobaric compounds, and other interferences. An example of an unexpected interference 

often ignored is a co-eluting compound that actually has a different parent mass, but 

undergoes an in-source fragmentation that contributes to the signal of the other. This can 

occur for the organic acids fumarate and malate for example, where a water loss from malate 

(m/z 133.014) during electrospray ionization in negative ion mode will cause a m/z 115.004 

ion to appear that is indistinguishable in MS and even MS/MS profiles from fumarate (Fig. 

1a). If chromatography cannot distinguish these two, fumarate, a very critical TCA cycle 

intermediate, will be falsely reported. An example of necessitating chromatographic 

distinction of isomers can be seen in Fig. 1c, where a certain C18 column was unable to 

resolve 2- and 3-hydroxybuturate under a typical reverse phase gradient, while a C18-PFP 

column successfully could (Fig. 1b). Though it will be nearly impossible to qualify the 

separation all such possible pairs or isomers from each other, it is worthwhile to qualify a 

platform for the critical metabolites that are routinely measured and reported (e.g. major 

energy pathways). In the above example, 2- and 3-hydroxybutyrate stem from completely 

different metabolic pathways (threonine/methionine metabolism and fatty acid metabolism 

respectively), and their combined signal will obscure potentially significant results from 

either of these.

Analytical Variation: The Case for Internal Standards and/or QC’s—An obstacle 

in comparing peak area differences from one run to another is that signal variation occurs for 

any given compound of interest. Some of this is likely due to small but noticeable 

differences in signal intensity that may vary during the course of a batch, while other factors 

include slight differences in the matrix of one sample compared to another, resulting in 

differences in ionic suppression (especially with different sample types, e.g. plasma vs. 

urine). We show a clear example of variation in Fig. 2 (unpublished data from one of our 

own studies), that shows the difference between comparing non-normalized (no stable 

isotope) palmitoylcarnitine (C16-carnitine) to peak areas normalized to a deuterated version 

of the compound that was spiked in during extraction. The figure shows that one of the lower 

values in the un-normalized estimate (peak area) was actually one of the higher 

measurements for that group when normalized appropriately (Fig. 2b). Overall, omitting a 

stable isotope for comparison would not have changed the mean value of the metabolite in 

this cohort, but the concentration would have been underestimated if the single sample were 

studied individually. Appropriate stable isotopes can be especially useful in instances where 

sample numbers are low, or where compounds fall in chromatographic regions with known 
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ionic suppression. Many groups are more commonly making use of stable isotope dilution in 

untargeted experiments, which not only comes in handy for the potential normalization of 

endogenous compounds, but can be used for assessing drift in both signal intensity and 

retention time. (Sysi-Aho et al 2007; Miller et al 2015). Stable isotope dilution is especially 

helpful in longitudinal studies acquired over years, where there may be large differences in 

instrument performance, different column batches, or even different operators. However care 

must be taken to ensure standards are adequately assessed for stability and degradation 

during storage times relevant to the breadth of the study. Also, if one is to use internal 

standards for untargeted studies, it is necessary to match the chemically diversity of the run 

with the standards selected, also making sure to cover the width of the chromatographic run, 

as intensity drift may not affect all compounds or sections of the run equally. As this can be 

cost prohibitive or an otherwise burden, alternatives to internal standards are used for 

compensating for analytical errors. These include the use of replicate samples or QC’s that 

can be run throughout different intervals of a batch (Dunn et al 2011; Wehrens et al 2016), 

and in one method, used in a serially dilute form throughout to test for signal linearity of 

different compounds (Kouassi Nzoughet et al 2017). A variety of processing tools have also 

been developed to also deal with issues of signal and retention time drift, as well as batch 

effects and outliers that can plague data analysis, as discussed in the post-analytical section 

of the review (Salerno et al 2017; Thonusin et al 2017).

Post-Analytical

Pre-processing—Following the completion of the mass spectrometry runs, a number of 

pre-processing and post-processing tools are available for identifying analytes of interest 

from untargeted data sets. Though many researchers incorporate specific target compounds 

in such runs that are always integrated and compared, the general processing strategy in 

untargeted workflows is to focus on compounds that are statistically altered. The runs must 

be first properly aligned, either with the aid of several freely available software packages 

(Lommen 2009; Tautenhahn et al 2012; Li et al 2017) or the many propriety software 

packages often distributed by MS vendors. Non-linear alignment is preferred in pre-

processing as chromatographic shifts are often non-uniform throughout the run, and 

improved alignment enables more accurate peak selection and integration when unique 

analytes with similar m/z have small deviations in elution time. Metabolomics software 

packages often allow signal normalization as a pre-processing tool, either with the use of 

internal standards, or by other methods. Other pre-processing options prior to thorough 

statistical analysis include the removal of outliers and other batch effects. The following 

section highlights some of the intricacies and bottlenecks associated with the processing and 

analysis of pre-processed data.

Compound Identification—Identification of unknown compound in untargeted 

metabolomics is considered the greatest bottleneck of data interpretation and requires a 

number of tools and proper instrumentation to successfully overcome. A high resolution 

mass spectrometer (Q-TOF, Orbitrap, or FT-ICR instruments) using a standard reverse phase 

platform may lead to the observation of many thousands of peaks from a single run, the 

number depending on instrument sensitivity, solvent composition and purity, matrix 

complexity, and in-source fragmentation as possible factors. Each peak does not necessarily 
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represent a unique metabolite though, and a single feature may be represented in a dozen or 

more forms that include adducts (salt or solvent complexes), dimeric or even trimeric states, 

and even fragments produced during ionization or transmission of ions. For compounds of 

interest, it is therefore important to identify the elemental composition of the ion, and some 

useful guidelines have been published to narrow down the possibilities for any given ion 

(Kind and Fiehn 2007; Watson 2013). Common considerations to reduce the number of 

possibilities include: 1) the nitrogen rule (better suited for masses <500 Da), which dictates 

that a compound with an even nominal mass will have an even number of nitrogen atoms, 

and with an odd mass will have an odd number of nitrogens, 2) likely hydrogen/carbon 

ratios and elemental probability analysis, and 3) isotopic distributions of the analyte, as 

atoms have different isotopic abundances. In addition, since atoms have unique mass defects 

due to differences in nuclear binding energy (e.g. common isotopic form of Sulfur, 32S, has 

mass of 31.972, while 12C Carbon is 12.000), high resolution mass spectrometry can use 

such properties to narrow down the possibilities. In Fig. 3, we show the parent mass of 

oxidized glutathione analyzed on an Orbitrap Lumos instrument collected at three different 

resolution: 30,000, 120,000, and 500,000. Most current Q-TOF instruments have ~30,000 

resolution, and at this resolution (along with accurate mass) we demonstrate that the third 

peak (M+2) for oxidized glutathione (GSSG) has a lower non-integer mass than its previous 

two isotopic forms due to the mass defect of 34S, which is next most prominent form of 

sulfur after 32S. This shift to the left can be identified by Q-TOF, but the distribution of the 

atoms with isotopic forms in this peak are not clear. When increasing the resolution to 120K, 

one can see a bump next to that peak that distinguishes the Carbon and Nitrogen isotopes 

from the Sulfur, the latter being more predominant. When one uses ultra high resolution of 

500,000 the two forms are very clearly separated and can actually be integrated accurately, 

enabling one to both implicate and rule out various combinations of atoms present in the 

analyte. In addition to resolution, high mass accuracy can help to further narrow down 

possible elemental compositions, a common attribute found in most instruments used for 

untargeted metabolomics (<~2–3 ppm mass accuracy). A number of chemical libraries can 

be searched for annotated compounds that match a possible elemental composition, and 

include: METLIN (Tautenhahn et al 2012), HMDB (Wishart et al 2009), Chemspider 

(Williams and Tkachenko 2014), Pubchem (Wang et al 2009)), GnPS (Wang et al 2016)), 

Lipidmaps (Sud et al 2012), Massbank (Horai et al 2010), Metabolomics Workbench (Sud et 

al 2016), and MetaCyc (Caspi et al 2014).

An important experiment for Identification of unknown compounds involves the 

fragmentation of isolated ions of interest. Depending on the instrument, either collision 

induced dissociation (CID), electron transfer (ETD) or electron capture dissociation (ECD) 

is used to facilitate this experiment. Many workflows allow for an automatic selection of a 

number of ions during each scan cycle for fragmentation (data dependent acquisition) to 

provide a library of MS/MS spectra that can later be used for compound identification. For 

trap instruments, MSn can be useful for more thorough fragmentation and improved 

structure elucidation, where daughter ions are isolated and further fragmented (Rojas-Cherto 

et al 2012; Vaniya and Fiehn 2015). Several of the repositories mentioned above, including 

METLIN, HMDB, Lipid Maps and GnPS have libraries of MS/MS data for matching 

unknown spectra. XCMS2, an updated version of the very widely used XCMS metabolomics 
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software package, enables fragments from MS/MS spectra to be searched against the 

METLIN library during data processing, and scored for their similarities to known product 

ion spectra to enable compound identification (Benton et al. 2008), while an online version 

can also be used for both analysis and spectral library searches (Tautenhahn et al 2012). 

GnPS, a recently established repository for natural products, allows the metabolomics 

community to upload data acquisition files online, which can be searched against already 

identified product ion spectra from previous data collections, and scored for possible 

matches (Wang et al 2016). The MS community can update the annotations and grade the 

quality of spectra submitted in this database. These automated search tools greatly help to 

reduce the time required to manually compare new data to existing spectral libraries. The 

future of quick compound identification and thorough untargeted metabolomics analysis will 

in large part be tied to the advancement of such spectral libraries and how they add, share, 

and search spectral data with fellow researchers, as this bottleneck is much too large to 

tackle independently.

If an unknown can be matched by some of the methods listed above, such as accurate mass, 

isotopic distribution, and fragmentation pattern, other factors should also be considered as 

well, such as: whether the elution time of the unknown likely correlates with the chemical 

class of the candidate compound, and whether the sample type is likely one to have such a 

metabolite present. At this stage purchasing an internal standard is the best way to fully 

confirm identity, which is often difficult or cost prohibitive if custom synthesis is required. 

Nonetheless, such an investment is often necessary for targeted quantitation or further study 

of the compound of interest. Misidentification is obviously a major pitfall for data 

interpretation and though compound matching using the tools described above can be very 

helpful, issues like isobaric or even isomeric species will often cause an additional hurdle to 

overcome. Having effective chromatography for the compound class of interest that can 

distinguish potential isomers is critical for final confirmation. Standards and guidelines for 

reporting identification or annotation of compounds have been authored by the 

metabolomics standard initiative (MSI), which have outlined criteria for reporting new 

compound identities in the literature (Fiehn et al 2007; Salek et al 2013). Within these 

reports, the MSI outlines the recommended levels of compound identification, ranging from 

the highest (level 1) where properties of an authentic standard are compared to experimental 

data, down through putatively annotated and characterized compounds (levels 2 and 3), and 

finally unknown (level 4). De novo identification of a compound that does not have an 

accessible fragmentation pattern is especially difficult, but is unfortunately the case for most 

analytes from a typical metabolomics study. In addition to elemental structure identification, 

a mass spectrometrist can also use tools to perform mock fragmentations of candidate 

structures, focusing especially on functional groups that are likely to fragment and ionize 

well, and then match these to the acquired MS/MS spectra.

Statistical Analysis—Untargeted metabolomics experiments generally use a combination 

of univariate and multivariate analysis to help identify compounds and pathways that are 

altered between cohorts. The are many different commercial as well as freely available 

statistical packages that can perform these functions, but in recent years several freely 

available online tools have been made available that carry a wide range of analysis features 
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geared specifically towards metabolomics analysis. Two widely used online platforms 

include Metaboanalyst and the Metabolomics Workbench, mentioned above. Data can be 

uploaded to these sites, normalized and scaled as necessary, and then analyzed by tools such 

as: T-tests, ANOVA, Principal component analysis (PCA), as well as partial least squares 

(PLSDA), and orthogonal projections to latent structures (OPLSDA) determinant analysis, 

heatmaps, dendograms, volcano plots, and correlation analysis among other useful tools for 

data reduction and chemometrics.

Both univariate and multivariate analyses require special considerations to limit false 

interpretation from metabolomics data. Multivariate analysis is often a useful strategy for 

differentiating cohorts based on the covariances, or correlations of the many independent 

variables. Prior to using such methods, the signals of the analytes are often scaled so that 

high intensity ions do not overly bias the modeling. Several common scaling methods such 

as mean centering or Pareto scaling (Tugizimana et al 2016) are often used, depending on 

whether one favors treating all analytes equally, regardless of intensity (mean centering), or 

if one believes that high intensity analytes (compounds that either have high concentrations 

and/or high ionization efficiencies by ESI-LC-MS) should still have greater weight due to a 

higher confidence measurement (Pareto). An unbiased, or unsupervised method that is 

usually used as a first pass in evaluating metabolomics data is principal component analysis 

(PCA), which reduces the dimensionality of the many variables into primary eigenvectors 

that capture variance (Jolliffe and Cadima 2016). In PCA, the processing is blind to any 

classification in the data, and since it considers the relationships of all the independent 

variables simultaneously, it is generally not useful as a modeling tool in comprehensive 

metabolomics studies, where most of the variables are irrelevant. For generating models that 

are more apt to finding the independent variables that best discriminate the classifiers 

(dependent variables), researchers most often use partial PLSDA or OPLSDA. These are 

termed supervised methods, as the user inputs the classifiers (Y) along with the independent 

variables (X) that are projected in multi-dimensional space to enhance the variation In Y 

(Barker and Rayens 2003). OPLSDA differs from PLSDA in that it separates the 

uncorrelated variation in X from the predictive, whereas in PLSDA, variation not correlated 

with the Y-classifiers is still present in the data (Trygg and Wold 2002). The predictive 

power of both methods is thought to be the same, though (Bylesjö et al 2006).

The pitfall in theses supervised methods though are generally associated with overfitting. 

These methods will often show distinction of cohorts from just randomly generated data, as 

these tools are designed to accentuate any co-variances that differentiate the response (Y) 

variables, and with multicomponent testing using large numbers of independent variables 

with relatively low numbers of replicates, false positives are a given. From PLSDA plots for 

example, a VIP (variable importance parameter) describes the loadings that fit the model, 

and help researchers determine which analytes should be left in further iterations, and those 

that should be removed (not related to variation of cohorts). This process can lead to further 

overfitting of a model. It is therefore critical to perform validation analysis when generating 

these models to better ensure that false relationships between metabolites are not causing 

misinterpretation of the data. Permutation tests can analyze whether the assigned classes 

from the experiment are any more significant than randomly assigned class distinctions 

applied to the different samples (Golland and Fischl 2003). Cross-validation is an important 
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process for model development and refinement, where the cohorts are split up into smaller 

subsets, and the model is further fitted with exclusion of various subjects (Westerhuis et al 

2008; Wheelock and Wheelock 2013). Ideally, the samples can be randomly divided into a 

training set, validation set, and test set, where individual models can be tested and evaluated 

on unique sample subsets, and then applied to both other samples groups as well as the 

entire sample set. A cross-validated correlation (Q2) after subsequent iterations of such 

modeling can be assessed and compared to the R2 of the total model fitting (Wheelock and 

Wheelock 2013). One point often not discussed in modeling from untargeted metabolomics 

is the use of unidentified metabolites in the model. Though one can try to eliminate 

contaminants, adducts and other multiply represented features during pre-processing, a 

number of unknown features may persist, many of which are not biologically relevant, and 

which are thought to comprise the majority of features from an untargeted metabolomics run 

(Benton et al 2015). Some of these may be critical to the findings and are often part of the 

reason for choosing untargeted metabolomics in the first place. True unknowns that are 

significant to a data set should be attempted to be identified, but as mentioned previously, 

this is often a difficult task. If the unknowns cannot be identified, one is left to wonder how 

they should be considered in a published multivariate model.

Univariate analysis is one of the most common approaches to identify specific analytes that 

are significantly altered between cohorts. Assessment of normal distribution (parametric vs. 

non parametric) can be done prior to choosing the univariate method, most often with either 

student t-tests or ANOVA. Assessment of the statistical significances (i.e. p-values) of these 

tests are harder to interpret in untargeted metabolomics data, where thousands of individual 

features (or hypotheses) are being tested with comparably few unique samples tested. This 

multiple component problem has led to various approaches to correction in univariate 

testing, not just in the field of metabolomics, but in other OMICS disciplines like genomics/

transcriptomics, and proteomics. The most conservative correction approach has been 

Bonferroni correction, where the significance level of an analyte is divided by the number of 

total hypotheses (Dunn 1961). Such a procedure can limit false positives in analyses (type I 

error), but unfortunately results in higher numbers of false negatives (type II errors) 

(Perneger 1998). False discovery rate (FDR) approaches have been developed to apply 

corrections that are more careful in limiting false negatives (Benjamini and Hochberg 1995; 

Genovese and Wasserman 2002). One such approach, which was made popular in genome 

wide studies, but is also used in metabolomics is the Q-value correction, an FDR approach 

that compares distributions of p-values from a data set and compares it to a distribution 

where all features are null (e.g. no differential between control and disease) in order to 

calculate the correction (q-value from a p-value) most applicable for a given dataset (Storey 

and Tibshirani 2003). Though there is no perfect method to remove false positives, an 

appropriate correction of multiple testing is nonetheless required in untargeted metabolomics 

reporting and interpretation.

Conclusion

Untargeted metabolomics is an exciting technology for searching for novel metabolic 

perturbations in various biological systems. As LC-MS metabolomics methods have 

developed over the last decade or two, sophisticated targeted methods have greatly expanded 
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the breadth of metabolome that can be accurately quantified (Zhou et al 2016). Still, though, 

the allure of discovering novel biomarkers in disease states makes the untargeted approach 

remain valuable, and allows the investigator to evaluate a diverse swath of the metabolome, 

with less chance of missing an association, as when a particular analyte is targeted based on 

a single hypothesis. Unfortunately, a multitude of caveats are included when choosing 

untargeted metabolomics. We have attempted to address various aspects of untargeted 

metabolomics, including pre-analytical, analytical, and analysis aspects, all which have 

associated pitfalls that can jeopardize the usefulness of the data. From sample acquisition, to 

sample extraction and chromatographic selection, one can heavily bias the metabolites 

resolved, necessitating careful scrutiny and validation of each facet of the experiment. In 

addition, identification of novel compounds of interest presents another obstacle, but 

fortunately as the field grows, better tools have become available to address such issues. As 

these platforms further develop, we believe future untargeted studies will help to fill in the 

many gaps of uncharacterized metabolic perturbation in biological systems, and further 

benefit the clinical community by discovering novel diagnostic and therapeutic markers in 

disease.
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Concise “Take-Home” Message

This review discusses potential problems in the design, pre-analytical, analytical and 

post-analytical phases of an untargeted metabolomics experiment, and what can be done 

to improve the chance of a successful outcome.
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Fig. 1. 
Separation of isomers and isobaric species. (A) Water loss during ionization of malate ion 

results in peak that is indistinguishable in mass to fumarate, necessitating their 

chromatographic resolution. (B) Sufficient resolution of 2- and 3-hydroxybutyrate using a 

PFP containing mixed-mode column, resolves isomers that were not well distinguished 

using a common C18 stationary phase (C).
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Fig. 2. 
Diminished variation with stable isotope dilution. (A) Comparing the endogenous and stable 

isotope peaks of C16-carnitine from a 9-sample (plasma) cohort. (B) Box plot depicting non-

normalized peak areas of C16-carnitine compared to those normalized to 2H3-C16-carnitine 

in identical samples. One of the samples, labeled A, is shown to have a peak area in the 

lower part of the C16-carnitine range, while residing in the upper half of the range following 

stable isotope normalization.
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Fig. 3. 
High resolution for elemental composition reconstruction. Oxidized glutathione (GSSG) was 

collected on Orbitrap Fusion Lumos (Thermo-Fisher) mass spectrometer. The M+2 isotope 

is shown to have a lower non-integer mass than the previous isotope, potentially indicative of 

one or more sulfurs present, since 34S isotope has a smaller fractional mass than 32S. GSSG 

was collected at 30K, 120K, and 500K resolution to demonstrate how ultra high resolution 

allows one two separate the M+2 peak of GSSG into separate peaks, one reflective of 34S, 

and the other reflective of 13C and 15N.
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