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Abstract In gliomas, the canonical Wingless/Int (WNT)/

b-catenin pathway is increased while peroxisome prolifer-

ator-activated receptor gamma (PPAR-c) is downregulated.
The two systems act in an opposite manner. This review

focuses on the interplay between WNT/b-catenin signaling

and PPAR-c and their metabolic implications as potential

therapeutic target in gliomas. Activation of the WNT/b-
catenin pathway stimulates the transcription of genes

involved in proliferation, invasion, nucleotide synthesis,

tumor growth, and angiogenesis. Activation of PPAR-c
agonists inhibits various signaling pathways such as the

JAK/STAT, WNT/b-catenin, and PI3K/Akt pathways,

which reduces tumor growth, cell proliferation, cell

invasiveness, and angiogenesis. Nonsteroidal anti-inflam-

matory drugs, curcumin, antipsychotic drugs, adiponectin,

and sulforaphane downregulate the WNT/b-catenin path-

way through the upregulation of PPAR-c and thus appear

to provide an interesting therapeutic approach for gliomas.

Temozolomide (TMZ) is an antiangiogenic agent. The

downstream action of this opposite interplay may explain

the TMZ-resistance often reported in gliomas.
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Introduction

Glioma is the most frequent primary brain tumor, and

accounts for * 30% of all central nervous system (CNS)

tumors. They diffusely infiltrate into the surrounding

normal brain tissue [1]. Glial cells contain multipotent

tumor stem cells that have the potential to transform into

normal neural progenitor cell variants [2, 3]. Gliomas are

named according to the origin of the cell type with which

they share histological characteristics. In the 2016 World

Health Organization (WHO) classification, gliomas are

classified into astrocytoma, oligoastrocytoma, oligoden-

droglioma, and glioblastoma based on histology, and each

is further subdivided based on isocitrate dehydrogenase

mutation status [4]. They have traditionally been catego-

rized by the WHO grading system into grades I to IV based

on their histological aggressiveness features [4]. Grade I

and II gliomas are slow-growing and less aggressive

whereas grade III and IV gliomas are malignant tumors

characterized by a high proliferation rate (grade III) and

angiogenic activity (grade IV). Low- and intermediate-

grade gliomas (grades II and III) evolve inexorably to

anaplastic transformation with a dismal prognosis, but over

a very variable period of time. Malignant gliomas,

considered to be the most frequent malignant brain tumors

[5–7], account for 80% of these tumors [1] and are the most

fatal human cancers [8, 9]. Patients with grade IV
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glioblastoma present the most aggressive form with a

median overall survival of 15 months [10]. Despite con-

siderable improvements in surgical resection and radio-

therapy, as well as immune and gene therapy, the prognosis

of glioblastoma is still dismal [11]. Thus, it is crucial to

probe the underlying molecular mechanisms involved in

the development of gliomas.

In numerous tissues, activation of the canonical Wing-

less/Int (WNT)/b-catenin pathway induces inactivation of

peroxisome proliferator-activated receptor gamma (PPAR-

c), while PPAR-c activation induces inhibition of the

canonical WNT/b-catenin pathway [12–17]. In arrhythmo-

genic right ventricular dysplasia/cardiomyopathy, osteo-

porosis, bipolar disorder and schizophrenia, and certain

neurodegenerative diseases [18] such as Alzheimer’s

disease [19, 20], the WNT/b-catenin pathway is downreg-

ulated while PPAR-c is upregulated. Conversely, in

cancers [21–23], type 2 diabetes [24], and certain neu-

rodegenerative diseases such as amyotrophic lateral scle-

rosis [25, 26], age-related macular degeneration [27, 28],

multiple sclerosis, Huntington’s disease, and Friedreich’s

ataxia, WNT/b-catenin signaling is upregulated while

PPAR-c is downregulated [18].

WNT/b-catenin, a determining factor in the evolution of

numerous cancers [29–31], is upregulated in gliomas

compared to normal brain, while PPAR-c is downregulated

[32, 33]. Activation of the WNT/b-catenin pathway plays a

major role in the evolution of gliomas [34], cell prolifer-

ation [35], inhibition of apoptosis [36], and cell invasion

[37].

PPAR-c is expressed at low levels in the CNS and is

present in neurons, astrocytes, oligodendrocytes, and

microglia [38–41]. In many pathophysiological states,

PPAR-c activation induces inhibition of the WNT/b-
catenin pathway [42–44]. The anti-inflammatory properties

of PPARc agonists may partly explain their beneficial

therapeutic effects. PPAR-c agonists diminish activation of

the WNT/b-catenin pathway and represent a promising

therapeutic target for glioma patients [21]. Several poten-

tial treatments for gliomas may operate through this

interplay, such as non-steroidal anti-inflammatory drugs

(NSAIDs), curcumin (Cur), antipsychotic drugs, adiponec-

tin, sulforaphane (SFN), and basic leucine zipper ATF-like

transcription factor 2 (BATF2).

The opposite interplay between the WNT/b-catenin
pathway and PPAR-c and its interactions with potential

treatments in gliomas are reviewed here.

The Canonical WNT/b-Catenin Pathway

The WNT pathway has been implicated in numerous

processes such as embryogenesis and the maintenance of

neuronal homeostasis in adulthood [45–48]. Carcinogene-

sis involves the dysregulation of this pathway [35–37].

The WNT ligands are lipid-modified glycoproteins [49]

secreted by both neurons and immune cells in the CNS

[50]. They stimulate intracellular WNT signaling. In the

presence of one of the 19 members of the WNT family

[51], frizzled (FZD) and low-density lipoprotein-related

receptors 5 and 6 (LRP5/6) receptors are activated. Then,

the complex binds disheveled (DSH) and AXIN and

inhibits glycogen synthase kinase 3 beta (GSK-3b) activity.
b-catenin accumulates in the cytosol and then is translo-

cated to the nucleus for binding to T-cell factor/lymphoid

enhancer factor (TCF/LEF). This leads to the transcription

of WNT-target genes, such as cyclin D1, c-Myc, PDK1

(pyruvate dehydrogenase kinase 1), and MCT-1 (mono-

carboxylate lactate transporter-1).

However, b-catenin is phosphorylated by GSK-3b in the

absence of WNT ligands. b-catenin complexes with the

GSK-3b/APC (adenomatous polyposis coli)/AXIN destruc-

tion complex and then is degraded by the proteasome.

Dikkopf-1 (DKK1) is an antagonist of WNT signaling

[52]; it binds to LRP5/6 co-receptors and inhibits WNT

signaling [53]. The b-catenin/TCF complex regulates

DKK1 transcription via a negative feedback loop [54].

Secreted FZD-related proteins (SFRPs), a family of five

glycoproteins, and WNT inhibitor protein (WIF) inhibit the

WNT pathway upstream [53]. WIF acts as a WNT

antagonist and tumor suppressor [17]. SFRPs and WIF-1

play major roles in development and tissue homeostasis.

Their expression is downregulated in cancers [55].

GSK-3b is a major regulator of the WNT pathway [56].

It is a neuron-specific intracellular serine-threonine kinase

which regulates several processes such as inflammation,

neuronal polarity, and cell membrane signaling [57–59]; it

inhibits the cytosolic stabilization and nuclear migration of

b-catenin; and it is an inhibitor of the WNT/b-catenin
pathway. Its dysregulation has been reported in several

pathological disorders, including tumorigenesis [59]. The

phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt)

pathway regulates the expression of GSK-3b [60].

Peroxisome Proliferator-Activated Receptor
Gamma

The ligand-activated transcriptional factor PPAR-c belongs

to the nuclear hormone receptor superfamily. It is

expressed in different cell types, including adipose tissue,
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muscle, brain, and immune cells; it activates the expression

of many genes and regulates glucose homeostasis, insulin

sensitivity, lipid metabolism, immune responses, cell fate,

and inflammation [13, 32]; and it is abundantly expressed

in adipose tissue and at lower levels in heart, skeletal

muscle, and liver [61]. PPAR-c is expressed at a low level

in the CNS in neurons, astrocytes, oligodendrocytes, and

microglia [62]; its expression is mainly localized in the

microglia and astrocytes; and it plays a major role in the

inflammatory response [63]. The PPAR-c agonists, thiazo-

lidinediones (TZDs), improve insulin sensitivity in periph-

eral tissues [64] and ameliorate glucose tolerance in type 2

diabetes [65], as well as acting on the promoters of the

glucose transporter and glucokinase in pancreatic b-cells
and the liver. PPAR-c also plays an important role in

regulating cardiovascular rhythms by controlling circadian

variations of blood pressure and heart rate through Bmal1

[66, 67]. PPAR-c modulates the expression of several

genes involved in inflammation, and regulates the activity

of inflammation-related transcription factors such as

nuclear factor-kappa B (NFjB) [68].

Interplay Between the Canonical WNT/b-Catenin
Pathway and PPAR-c

Several studies have shown a direct interaction between

PPAR-c and b-catenin [43, 69, 70]. The TZD agonists of

PPAR-c (troglitazone, thiazolidinedione, rosiglitazone, or

pioglitazone) downregulate b-catenin transcription. This

transcription is induced by b-catenin in a PPAR-c-depen-
dent manner [43, 44, 71]. The b-catenin inhibition by

PPAR-c agonists occurs at the post-transcriptional level.

The functional interaction between PPAR-c and b-catenin
involves the binding domain of the TCF/LEF factors of b-
catenin. Likewise, this interaction involves a binding

domain of b-catenin in PPAR-c [42]. Many studies have

described the antagonism between PPAR-c signaling and

the b-catenin pathway in several tissues [44, 71]. Similarly,

PPAR-c inhibits the WNT/b-catenin pathway [44] and

osteoblastogenesis but induces adipogenesis [72].

Inhibition of the WNT/b-catenin pathway increases

PPAR-c transcription. Overexpression of AXIN inhibits

WNT signaling in pre-adipocytes and the cells differentiate

into adipocytes. PPAR-c with the canonical WNT/b-
catenin pathway regulates the molecular switching between

osteoblastogenesis and adipogenesis. PPAR-c agonists

appear to be potential therapeutic candidates during the

fibrosis process by inhibiting the WNT/b-catenin pathway

[73–75].

Arrhythmogenic right ventricular cardiomyopathy

shows activation of PPAR-c and inhibition of the WNT/

b-catenin pathway [69, 76]. In transgenic mice, inhibition

of the canonical WNT/b-catenin pathway by plakoglobin

or c-catenin induces the cardiomyopathy phenotype. This

causes fat accumulation in cardiomyocytes and ventricular

arrhythmias [69]. Plakoglobin (or c-catenin) has similari-

ties to b-catenin [36]; it competes with b-catenin leading to

inhibition of the transcription factors TCF/LEF [77–79].

Thus, the removal of TCF/LEF1 factors induces adipoge-

nesis and stimulates the phenotype of this human car-

diomyopathy [69, 76, 80].

The Canonical WNT/b-Catenin Pathway
in Gliomas

Hyper-activation of the canonical WNT/b-catenin pathway

is associated with glioma development and malignant

progression [81–83], invasion [84], prognosis [85], inhibi-

tion of cell differentiation, and an invasive phenotype

[33, 86] (Fig. 1).

The expression of WNT1 is higher in gliomas than in

normal brain, and its overexpression is considered to be an

independent prognostic factor for glioma patients [82].

Overexpression of WNT1 and WNT3a in glioma stem cells

(GSCs) has been shown in the malignant transformation

and progression of high-grade gliomas [87, 88].

WNT3a and the cytosolic/nuclear b-catenin ratio are

associated with a worse prognosis in malignant gliomas

[81, 89]. WNT2 and WNT5 are also overexpressed in

gliomas. The knockdown of WNT2 by siRNA in human

U251 glioma cells inhibits proliferation and invasion, and

induces apoptosis [89, 90].

Moreover, the expression of b-catenin is positively

correlated with the progression of gliomas

[82, 83, 85, 90, 91] and is considered to be a prognostic

marker for malignancy [82, 83]. The nuclear accumulation

of b-catenin is responsible for the malignant progression,

and its protein levels are correlated with malignancy and

the expression of the Cyclin D1 and c-Myc genes

[26, 83, 92].

The WNT/b-catenin pathway induces the transcription

of genes implicated in cell proliferation, c-Myc (through

glutaminolysis, nucleotide synthesis, and LDH-A activa-

tion) and Cyclin D (through G1) [93–96]. Indeed, the

transcription of WNT-target genes is preceded by the

cytosolic accumulation and nuclear translocation of b-
catenin [81, 84]. The WNT target gene c-Myc drives

glutaminolysis [94, 97] and induces glutamine uptake into

the cell and mitochondria to promote the synthesis of

aspartate [96]. Both c-Myc and HIF-1a (hypoxia-inducible

factor-1 alpha) stimulate PDK1 and LDH-A [98]. PDK1, a

key regulator of glycolysis by phosphorylating the pyruvate

dehydrogenase (PDH) complex, inhibits the conversion of

pyruvate into acetyl-CoA in mitochondria, and then LDH-
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A converts the pyruvate into lactate in cancer cells [99].

PDH is considered to be a potential mediator to reduce

glioblastoma growth [100]. Activation of PDK1 induces

angiogenesis [101, 102] and promotes neovascularization

[103]. Angiogenesis is also induced by lactate produced

through the activation of LDH-A [104]. Furthermore, high-

grade gliomas have high rates of glycolysis and lactate

production correlated with a high level of MCT-1 expres-

sion [105].

The nuclear translocation of b-catenin regulates the

expression of matrix metalloproteinases (MMPs) [33, 106].

Many studies have reported the overexpression of MMPs in

cancer cells, including glioma cells [107]. MMP-2 and

MMP-9 induce the invasion of malignant cells into healthy

brain near the glioma and their expression is positively

correlated with tumor progression [108].

In contrast to other cancers, studies have shown no

mutation at GSK-3b phosphorylation sites [109, 110], and

truncation of APC has not been associated with gliomage-

nesis [41]. These reports suggest that unbalanced ligand/

antagonist expression may deregulate the different path-

ways involved in tumor progression. Indeed, WNT antag-

onists appear to be repressed in glioblastomas [33]. Tumor

suppressor WIF-1 expression decreases with malignancy in

astrocytomas [41]. Primary de novo glioblastomas are

associated with hypermethylation of the FZD-related

protein (SFRP) promoters whereas secondary glioblas-

tomas present hypermethylation of the promoter of the

LRP antagonist DKK1 [109]. As regards glioma progres-

sion, hypermethylation of WNT pathway inhibitor genes,

like SFRP and DKK1 in malignant astrocytic gliomas [109]

and WIF-1 in glioblastomas, has been reported [38, 111].

Fig. 1 Role of WNT/beta-catenin signaling in gliomas. When the

canonical WNT/b-catenin pathway is upregulated, binding of WNT to

FZD leads to activation of DSH, which recruits the destruction

complex to the plasma membrane. AXIN binds to the cytoplasmic tail

of LRP5/6. WNT also binds LRP5/6. This initiates LRP phosphory-

lation and DSH-mediated FZD internalization. Activation of DSH

leads to the inhibition of GSK-3b, which further reduces the

phosphorylation and degradation of b-catenin. The b-catenin degra-

dation complex AXIN/APC/GSK-3b is inactivated with the recruit-

ment of AXIN to the plasma membrane. b-catenin phosphorylation is

inhibited. Then, b-catenin accumulates into cytosol and translocates

to the nucleus to bind the TCF–LEF co-transcription factors. This

induces the canonical WNT-response gene transcription (c-Myc,

cyclin D, PDK1, and MCT-1). The STAT3 signaling pathway

upregulates the expression and transcriptional activity of b-catenin; in
gliomas STAT3 is a tumor aggressiveness factor. In gliomas,

overexpression of EGFR (a receptor tyrosine kinase: RTK) stimulates

the PI3K/Akt pathway. PI3K/Akt signaling leads to the phosphory-

lation of GSK3b that leads to the nuclear translocation and

stabilization of b-catenin. In the same way, the WNT/b-catenin
pathway stimulates EGFR in gliomas. Akt signaling increases MMP-2

and MMP-9 activity, which induces the invasion of malignant cells

into healthy brain near the glioma. Akt signaling induces HIF-1a
(hypoxia-inducible factor-1 alpha), which stimulates PDK1. Overex-

pression of WNT/b-catenin also stimulates PDK1. PDK1 and Myc

induce lactate dehydrogenase A (LDH-A), and cytosolic pyruvate is

shunted into lactate through activation of LDH-A. Overexpression of

MCT-1 exports lactate to the extracellular space. Lactate production

activates angiogenesis. c-Myc-induced glutaminolysis supports mito-

chondrial integrity and the production of aspartate, and results in

nucleotide biosynthesis. c-Myc and cyclin D stimulate the prolifer-

ation of gliomas.
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PPAR-c in Gliomas

PPARs control gene expression involved in adipogenesis,

lipid metabolism, inflammation and metabolic homeostasis

[112]; they have been found in developing and adult brain

tissues [113]. Activation of the PPAR pathway plays a role

in determining the viability of neurons in the developing

midbrain [114]. PPAR-c expression has been described in

many cancers including colon, lung, bladder, breast,

duodenum, and thyroid [115–121]. In gliomas, the cell-

cycle is stopped in G0/G1 phase [122–124], and the

proportion of cells entering S-phase is reduced by PPAR-c
agonists [123, 124]. Likewise, decreased c-Myc levels and

Cyclin D1 have been detected upstream of the S-phase

transition when PPAR-c agonists are used [124, 125].

In gliomas, PPAR-c agonists reduce local tissue inva-

siveness [125–127]. MMP-2 and MMP-9 expression is

correlated with tumor progression [108]; they are down-

regulated after treatment with pioglitazone [125–127].

Pioglitazone, a PPAR-c agonist, reduces b-catenin expres-

sion without changing its cellular localization [125, 128].

Reducing b-catenin expression could contribute to inhibit-

ing the evolution of gliomas from a low to a high grade.

High-grade gliomas show over-expression of b-catenin
compared to low grade gliomas [129].

PPAR-c agonists induce apoptosis by reducing cellular

viability. This effect is mediated by a BAX (BCL2-

associated X protein)-dependent pathway. BAX is upreg-

ulated after activation of PPAR-c
[123, 125–128, 130, 131]. Treatment with TZDs leads to

apoptosis of glioma cells in a concentration-dependent

fashion associated with cell-cycle arrest, while sparing

normal primary astrocytes [122, 123, 125–128, 130, 131].

PPAR-c agonists downregulate SOX2 (SRY-Box 2) [132].

SOX2, a stemness gene, maintains pluripotency in stem

cells and inhibits neural differentiation while it is overex-

pressed in brain tumor-initiating cells. PPAR-c agonists

also increase the expression of N-cadherin, a neural

differentiation marker [131]. Activation of the PPAR-c
pathway can regulate the differentiation of neural stem

cells [133, 134].

Catalase is involved in the inhibition of reactive oxygen

species (ROS) and possesses a PPAR genomic binding site

[135]. The anti-cytotoxic effects of PPAR-c agonists are

partially mediated by enhanced redox reactions in glioma

cells [135]. Activation of PPAR-c transcription upregulates

catalase activity in normal astrocytes and rat cell models.

But this upregulation is not found in the C6 glioma cell

line. This is abolished in cells transfected with a dominant-

negative PPAR-c construct [135].

Interactions Between b-Catenin Signaling
and PPAR-c Agonists Through STAT3 Signaling
in Gliomas

Signal transducer and activator of transcription 3 (STAT3)

stimulation has been implicated in many cancers, such as

breast cancers, acute leukemia, colon cancers, and gliomas.

The STAT3 pathway is involved in the regulation of

proliferation [136], tumor growth, invasiveness, migration

[137], and angiogenesis [138]. High levels of STAT3

signaling have been found in brain tumor-initiating cells

[139]. In gliomas, STAT3 is a transcriptional factor

necessary for mesenchymal transformation and tumor

aggressiveness [140].

The biologically active phosphorylated STAT3 is medi-

ated by EGFR and cytokine receptor in gliomas [141].

Phosphorylated STAT3 is regulated through multiple

WNT/b-catenin-induced signaling pathways, such as (1)

JAK/STAT signaling induced by EGFRs that bind to

epidermal growth factors and by the stimulation of

cytokine receptors that bind to the ligands interleukin

(IL)-6, leukemia inhibitory factor, and EGF [142], (2)

EGFR/PI3K/Akt/mTOR (mammalian target of rapamycin)

signaling, and (3) WNT/b-catenin target gene transduction

c-Myc via HIF-1a stabilization [22]. WNT/b-catenin-
induced STAT3 signaling activates transcription of the

target genes Bcl-2, Bcl-xl, and ki-67 [143], and via HIF-1a
activation, the WNT/b-catenin target genes cyclin D1 and

c-Myc in a positive feedback loop [22].

Inhibition of STAT3 arrests glioma cell growth, inva-

sion, migration, differentiation, and cell cycle progression

[144–146]. Several studies have shown that PPAR-c
agonists induce growth arrest and apoptosis in glioblastoma

cells in culture without affecting primary astrocytes, and

inhibit expansion and proliferation of CD133? GSCs by

inhibition of the EGF-induced JAK/STAT pathway

[122, 147]. Troglitazone, a TZD PPAR-c agonist, is

considered to be an antagonist of STAT3 signaling [148].

In glioma cells, PPAR-c agonists inhibit STAT3 signaling

through the reduction of phosphotyrosine 705 STAT3

[149]. Inhibition of STAT3 proteins by PPAR-c agonists

underlies the inhibition of upstream tyrosine kinase 2 or its

direct effect on STAT3 protein [119], or the activation of

negative regulators, such as suppressor of cytokine signal-

ing or SHP-1 proteins in GSCs [150].

PPAR-c agonists can act on the WNT/b-catenin path-

way by inhibiting STAT3 signaling (Fig. 2). Indeed,

inhibition of STAT3 downregulates several critical signal-

ing pathways in malignant glioma cells, including the

PI3K/Akt and WNT/b-catenin pathways, as well as the

transcription of RTKs [144], and results in downregulation

of the expression of the WNT-target genes cyclin D1 and
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c-Myc, leading to the death of glioma cells [149].

Furthermore, the downregulation of b-catenin signaling

in malignant gliomas is associated with a decrease of

phosphorylated Akt and STAT3 levels [152], supporting

the idea that the b-catenin/TCF4 (transcription factor 4)

complex directly binds to the STAT3 gene promoter [151].

The STAT3 pathway is regulated by a plausible opposite

interplay between PPAR-c agonists and the WNT/b-
catenin pathway.

Interactions Between b-Catenin Signaling
and PPAR-c Agonists Through EGFR/PI3K/Akt
Signaling in Gliomas

The WNT/b-catenin pathway stimulates the activation of

RTKs in gliomas [22]. Overexpression of EGFRs occurs in

30%–70% of primary glioblastomas [153]. EGFRs are the

most common RTKs aberrantly overexpressed in glioblas-

tomas involving EGFR gene amplification [154] and are

major key regulators of the migration, differentiation,

apoptosis, proliferation, and survival of glioblastoma cells

by binding PI3K/Akt [155–158].

The actions of the PI3K/Akt pathway are multiple in

cancer cells with increasing cell proliferation, cell survival

and cell migration [159–161]. Moreover, Akt signaling

increases MMP-2 and MMP-9 activity in cancer cells and

then participates in the invasiveness [60].

The NF-jB proteins, a ubiquitous transcription factor

family that mediates immune and inflammatory responses,

are also activated by overexpressed EGF, and/or its

mutationally-activated EGFR in gliomas, via numerous

dysregulated signaling pathways, such as the PI3K/Akt,

mTORC2, and IKK (IjB kinase) pathways [162–164].

Allelic loss of PTEN (phosphatase and tensin homolog

protein), a tumor suppressor that negatively regulates PI3K

activity and inhibits Akt signaling, occurs in many gliomas,

and the lack of PTEN expression enables Akt to remain

active and activate NF-jB [163, 164]. NF-jB activation

subsequently induces the expression of NF-kB target genes

promoting proliferation, tumor growth, and cell survival by

anti-apoptotic responses [163, 164]. The increase of NF-jB
activity in glioblastoma is correlated with the astrocytic

tumor grade [164]. Peptidyl-prolyl-isomerase 1 (Pin1)

enhances NF-jB signaling while the inhibitor of growth

protein 4 (ING4) inhibits NF-jB activity [163, 164]. The

protein kinase CK2 (casein kinase 2) positively regulates

both the STAT3 and NF-jB signaling pathways [163].

STAT3 signaling is activated by NF-jB-driven IL-6

cytokines [163]. CK2 activates STAT3 signaling through

activation of the JAK/STAT, Akt/mTORC, and Akt/EZH2

(a methyltransferase) signaling pathways [163]. CK2

activates NF-jB signaling directly via p65, and by

activating the Akt/mTORC and IKK signaling pathways,

and the inhibition of IjB [163]. MAPK (mitogen-activated

protein kinase) signaling positively regulates both NF-jB
and STAT3 signaling [163].

PI3K/Akt pathway signaling induces the activation of

HIF-1a and protects against ROS, which activate PDK1

and then inhibit PDH [165]. Inhibition of PDH results in

shunting of the TCA cycle and the conversion of pyruvate

into lactate by activated LDH-A, leading to angiogenesis

and aggressiveness [166].

The EGFR/PI3K/Akt pathway activates Pin1 that

induces the isomerization of phosphorylated PKM2 (pyru-

vate kinase M2) [158], and facilitates the nuclear translo-

cation of acetylated PKM2, which reduces its activity and

targets PKM2 towards lysosome-dependent degradation

[167]. Acetylated PKM2 participates in cell growth in

gliomas by promoting glucose metabolism [168]. Nuclear

PKM2 binds nuclear b-catenin that activates the c-Myc-

mediated expression of glycolytic enzymes, such as the

Fig. 2 Potential effects of PPAR gamma agonists in gliomas:

inhibition of the JAK/STAT pathway, then reduced tumor growth;

inhibition of the WNT/b-catenin pathway, then proliferation and

angiogenesis; inhibition of Akt signaling, then reduced invasiveness;

activation of N-cadherin, then cell differentiation; activation of BAX,

then apoptosis. Activation of PPAR-c agonists may play major

negative roles in regulating the progression and proliferation of

gliomas.
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glucose transporter, LDH-A, PDK1, and PKM2 in a

positive feedback loop [169]. Activated PKM2 directly

stimulates growth factor receptors to promote cell division

and tumor growth [170, 171].

The WNT/b-catenin pathway stimulates EGFR in

gliomas [153]. Moreover, in glioma cells the inhibition of

b-catenin signaling reduces stimulation of the b-catenin-
induced EGFR/PI3K/Akt pathway [152]. Likewise, activa-

tion of the PI3K/Akt pathway directly stimulates b-catenin
signaling [160] by inhibiting the activity of GSK-3b [60].

Furthermore, inhibition of the PI3K/Akt pathway by the

PI3K inhibitor LY294002 decreases b-catenin/TCF activity

in glioma cells [172]. Treatment with indomethacin-loaded

lipid-core nanocapsules activates GSK-3b expression by

inhibiting Akt signaling and then leads to decreased b-
catenin levels in C6 glioma cells [173]. A positive interplay

between the WNT/b-catenin pathway and PI3K/Akt sig-

naling has been reported in gliomas [174].

Few studies have demonstrated the antagonistic role of

PPAR-c on the EGFR and PI3K/Akt pathways in glioma

cells. However, ciglitazone, a TZD PPAR-c agonist,

induces apoptosis by downregulation of Akt activity,

inducing mitochondrial membrane potential collapse

[175] (Fig. 2). This leads to a plausible opposite interplay

between PPAR-c agonists and the WNT/b-catenin pathway
through the EGFR/PI3K/Akt signaling. Moreover, in

glioma cells, PPAR-c activation increases the expression

of PTEN, enabling Akt to remain inactive while decreasing

the expression of cyclooxygenases-2 (COX-2), leading to

lower the COX-2-induced conversion of arachidonic acid

into prostaglandin E2 (PGE2), suggesting that PTEN likely

acts as a negative regulator to COX-2 expression. [176].

COX-2 protein is overexpressed in all glioma types

whereas normal glial cells do not express it. Increasing

levels of COX-2 expression and prostaglandin E2 are

associated with cell proliferation, invasion, and angiogen-

esis, and apoptosis inhibition, and the COX-2 expression

level is positively correlated with glioma grade [177].

Furthermore, an aberrant positive feedback interaction

between the COX-2/PGE2 and WNT pathways stimulates

the self-renewal and proliferation of GSCs [178]. WNT

signaling underlies GSC identity directly through COX-

independent WNT signaling, and indirectly through COX/

PGE2-dependent WNT signaling [178].

The Opposite Interplay Between the WNT/b-
Catenin Pathway and PPAR-c: A Potential Ther-
apeutic Target in Gliomas

A Therapeutic Target for Non-steroidal Anti-

inflammatory Drugs

NSAIDs reduce nuclear b-catenin levels and induce its

degradation [179]. NSAIDs such as sulindac, exisulind, and

celecoxib decrease b-catenin levels and then inhibit the

transcriptional activity of the b-catenin/TCF/LEF complex

[180]. Aspirin inhibits glioma cell proliferation and

invasion by decreasing b-catenin/TCF transcription [181],

arrests the glioma cell-cycle at G0/G1 and decreases

invasion and tumor growth by reducing b-catenin/TCF
activity [129, 181]. Moreover, NSAIDs inhibit the invasion

of glioma cells in vitro by dephosphorylating Akt signaling

and decreasing MMP-2 gene expression [60, 182].

NSAIDs inhibit COX-2 [183]. NSAIDs such as the

COX-2 selective inhibitors potentiate the effects of TMZ

by acting as PPAR-c agonists in high-grade gliomas [184].

However, NSAIDs may have COX-independent anti-car-

cinogenic effects through the involvement of PPAR-c
[185, 186]. Indeed, NSAID effects are mediated by PPAR-

c [187, 188], and prostaglandins or their metabolites may

be ligands of PPAR-c [189].

NSAIDs may act as PPAR-c agonists while inhibiting

the WNT/b-catenin pathway, highlighting the crosstalk

between these two pathways (Fig. 3).

A Therapeutic Target for Curcumin

Cur, a diferuloylmethane derivative, is a polyphenol

derived from a turmeric orange pigment. It is highly

lipophilic, poorly hydrophilic, and stable at acidic pH

[190]; it has many effects on tumor cells, such as anti-

inflammatory, antioxidant, pro- and anti-apoptotic, anti-

angiogenic, cytotoxic, and autophagic actions; and is an

effective inhibitor of proliferation, migration, invasion, and

viability by inducing apoptosis or autophagy of glioma

cells [191–194]. Cur acts on numerous signaling pathways

in glioma cells by downregulating proliferative and sur-

vival signaling pathways such as PI3K/Akt, NFjB, COX-2,
STAT-3, c-Myc, Cyclin D1, Bcl-2, Bcl-xL, and Ki,

downregulating invasiveness and angiogenesis signaling

pathways such as MMPs and MAPK, and upregulating

apoptosis or cell-cycle arrest signaling pathways such as

ING4, p53, p21, Bax, and caspases [191–194] (Fig. 3).

Cur interacts with several signaling pathways including

STAT3 and PPAR-c [195, 196].

Cur administration decreases activity of the STAT3

pathway and leads to attenuated glioma growth [197]. The
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mechanism by which Cur activates PPAR-c is not yet fully

understood, but Cur can be considered a ligand of PPAR-c
and may directly bind PPAR-c receptors [198]. Through

the activation of PPAR-c, Cur can repress both EGFR

activation and cyclin D1 expression, a WNT target gene, to

inhibit tumor growth [199].

Moreover, Cur treatment increases the mRNA level of

GSK-3b in DAOY medulloblastoma cells and suppresses

the WNT/b-catenin signaling pathway [200]. Autophagy in

glioma cells is induced by Cur by inhibiting the PI3K/Akt/

mTOR pathway [201]. By inhibiting the WNT/b-catenin
pathway, Cur decreases cyclin D1 expression and then

participates in the repression of the development and

proliferation of gliomas [200].

Cur, a ligand of PPAR-c, may act directly on the WNT/

b-catenin pathway or indirectly on EGFR signaling and the

STAT3 pathway to reduce glioma progression (Fig. 3).

A Therapeutic Target for Antipsychotic Drugs

Several antipsychotic drugs such as olanzapine, chlorpro-

mazine, quetiapine, and risperidone have inhibitory effects

on cancers [202]. These drugs downregulate b-catenin
signaling and modulate Ca2? homeostasis in the CNS

[203]. Olanzapine, a D2/5-HT2 antagonist, inhibits the

WNT/b-catenin pathway in gliomas [204]. In glioma cells,

quetiapine acts as a PPAR-c agonist and directly inhibits

the WNT/b-catenin pathway [205] (Fig.3).

A Therapeutic Target for Adiponectin

Adiponectin is a pleiotropic cytokine produced by

adipocytes [206]; it regulates several processes, such as

glucose metabolism, lipid catabolism, insulin sensitivity,

energy metabolism, and mitochondrial function [207]. In

several cancers, adiponectin administration downregulates

cell proliferation, cell invasion, and angiogenesis

[208–210]. Low levels of adiponectin are correlated with

the progression and development of malignancies [211].

Adiponectin administration inhibits the WNT/b-catenin
pathway by interacting with the WNT co-activators LRP5/

6. This inhibition occurs at the level of LRP6 phosphory-

lation and then inhibits b-catenin accumulation and the

activation of target genes in a dose-dependent manner

[212]. Adiponectin also decreases activity of the PI3K/Akt

pathway and then attenuates the cell proliferation and

development of gliomas [213] (Fig. 3).

However, adiponectin activates nuclear receptors of

PPAR-c [214], and also inhibits STAT3 signaling [215] in

several diseases including cancers. In gliomas, the inhibi-

tion of both the WNT/b-catenin and PI3K/Akt pathways by

adiponectin administration and the role of adiponectin as a

PPAR-c ligand in several diseases, including cancers,

appear to be an interesting therapeutic target.

Temozolomide in Gliomas

TMZ is a 3-methyl derivative of mitozolomide. Survival

benefits of TMZ associated with low toxicity have been

Fig. 3 Different actions and

interactions of potential treat-

ments for gliomas with the

opposite interplay between the

WNT/beta-catenin pathway and

PPAR gamma.
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reported [216]. TMZ is considered to be the first-line

anticancer drug in glioma treatment [217]; it decreases

HIF-1a and c-Myc expression during the hypoxic state in

gliomas [218, 219] and then impairs VEGF (vascular

endothelial growth factor) secretion [220].

However, TMZ-resistance is often found in gliomas

with poor responses and has a dismal prognosis [221];

GSCs appear to be insensitive to chemotherapy with TMZ

[222]. GSCs show overexpression of miR-125b [223]

correlated with an aberrant WNT/b-catenin pathway [224].

TMZ has no effects on the WNT/b-catenin and PI3K/Akt

pathways in GSCs, two upstream pathways of HIF-1a and

c-Myc [222]. STAT3 signaling is involved in the resistance

to TMZ [225]. However, the association of TMZ with

LY294002, a PI3K inhibitor, decreases GSC proliferation

and invasion [222, 226]. The cytotoxicity of TMZ induced

by inhibition of PGE2 affords only a modest survival

advantage and fails to prevent glioma progression because

of COX-independent WNT activation [178]. Resistance to

TMZ may be explained by targeting downstream targets of

the WNT/b-catenin pathway, and the combination of

inhibitors of WNT and/or PI3K, such as PPAR-c agonists,

with TMZ may enhance its effects (Fig. 3).

A Therapeutic Target for Sulforaphane

SFN (1-isothiocyanate-4-methylsulfinylbutane), a member

of the isothiocyanate family, is naturally found in vegeta-

bles [227, 228]. It attenuates energy metabolism, apoptosis,

and enzyme detoxification in cancers [229].

In gliomas, SFN inhibits miR-21 (micro-ARN 21)

expression by downregulating the WNT/b-catenin/TCF4
pathway, reducing the proliferation and migration of

glioma cells [230]. Moreover, by inhibiting miR-21

expression, it potentiates the apoptotic effects of TMZ in

gliomas [230]. SFN also stimulates BAX signaling and

inhibits Bcl-2 and caspase activity to induce apoptosis in

glioma cells [230].

In tumor cells, SFN administration also increases the

expression of PPAR-c co-activator-1a (PGC-1a) to

decrease HIF-1a expression, and then attenuates tumor

development [231]. By inhibiting the WNT/b-catenin
pathway in gliomas and acting as an activator of PGC-

1a, SFN could be a potential therapeutic approach to

overcome TMZ resistance in glioblastoma treatment

(Fig. 3).

A Therapeutic Target for BATF2

Basic leucine zipper ATF-like transcription factor 2

(BATF2) is considered to be a new tumor suppressor of

growth and migration in glioblastoma cells by suppressing

the WNT/b-catenin pathway [222]. BATF2 also inhibits

angiogenesis by reducing VEGF expression, which is

stimulated by both the WNT/b-catenin and PI3K/Akt

pathways [232]. Currently, the interactions of BATF2 with

PPAR-c have not yet been studied but its anti-inflamma-

tory actions [233] and its role as a WNT/b-catenin pathway

inhibitor in gliomas [222] could suggest several interac-

tions with PPAR-c (Fig. 3).

Conclusions

Gliomas inexorably evolve into anaplastic transformation

with an extremely poor prognosis in an unpredictable pe-

riod. In gliomas, the canonical WNT/b-catenin pathway

and PPAR-c act in an opposite manner. The WNT/b-
catenin pathway activation via the direct activation of the

WNT target genes c-Myc and Cyclin D1 involved in

glioma development, stimulates the glycolytic enzymes

PDK1, c-Myc, LDH-A, and lactate production, promoting

angiogenesis, aggressiveness, and a poor prognosis. The

activation of PPAR-c agonists inhibits various signaling

pathways such as the STAT3 and PI3K/Akt pathways,

which downregulate the WNT/b-catenin pathway, leading

to decreased proliferation, invasiveness, and angiogenesis.

Moreover, PPAR-c agonists also induce the activation of

N-cadherin and BAX, leading to cell differentiation and

apoptosis, respectively. Activation of PPAR-c agonists

may play a major role in regulating the progression and

proliferation of glioma. NSAIDs, Cur, antipsychotic drugs,

adiponectin, and SFN downregulate the WNT/b-catenin
pathway through the plausible upregulation of PPAR-c.
TMZ, an antiangiogenic treatment, by targeting the down-

stream crosstalk between the WNT/b-catenin and PPAR-c
pathways may explain the resistance to TMZ. BATF2, a

novel tumor suppressor, downregulates WNT/b-catenin
and inflammation but its possible effect as a PPAR-c
agonist has not yet been demonstrated and deserves future

clinical studies. In gliomas, the crosstalk between WNT/b-
catenin signaling and PPAR-c through the EGFR/PI3K/Akt
and STAT3 signaling pathways, provides a better under-

standing of the mechanisms underlying the development

and progression of gliomas, and constitutes a potentially

effective therapeutic target.
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