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ABSTRACT

Microbiome research is a quickly developing field in
biomedical research, and we have witnessed its poten-
tial in understanding the physiology, metabolism and
immunology, its critical role in understanding the health
and disease of the host, and its vast capacity in disease
prediction, intervention and treatment. However, many
of the fundamental questions still need to be addressed,
including the shaping forces of microbial diversity
between individuals and across time. Microbiome
research falls into the classical nature vs. nurture sce-
nario, such that host genetics shape part of the micro-
biome, while environmental influences change the
original course of microbiome development. In this
review, we focus on the nature, i.e., the genetic part of
the equation, and summarize the recent efforts in
understanding which parts of the genome, especially
the human and mouse genome, play important roles in
determining the composition and functions of microbial
communities, primarily in the gut but also on the skin.
We aim to present an overview of different approaches
in studying the intricate relationships between host
genetic variations and microbes, its underlying philos-
ophy and methodology, and we aim to highlight a few
key discoveries along this exploration, as well as cur-
rent pitfalls. More evidence and results will surely
appear in upcoming studies, and the accumulating
knowledge will lead to a deeper understanding of what
we could finally term a “hologenome”, that is, the orga-
nized, closely interacting genome of the host and the
microbiome.

KEYWORDS gut microbiota, host genetics, quantitative
genetics, gene-microbiome association

INTRODUCTION

With between three- and ten-fold bacteria colonizing our own
body (Sender et al., 2016), most of which are in the gas-
trointestinal (GI) tract (Qin et al., 2010; Zhu et al., 2010), it is
hard to imagine that our genome does not devote a particular
set of genes to dealing with all the potential threats, as well
as coordinating benefits with our microbiome. Indeed, there
are many indications of gene-microbiome cross-talk in
humans, other animals (Kurilshikov et al., 2017) and even
plants (Lundberg et al., 2012), with a large majority of those
identified before the wide application of next-generation
sequencing. Those genes function in the immune system
(Hooper et al., 2012), with good reason: pathogens, an
important part being bacteria, were one of the largest forces
shaping the evolution of human genomes and thus the sur-
vival of our species and other species that rely on the
immune system to defend against those pathogens (Kau
et al., 2011).

In natural populations of animals and plants, the occur-
rence of epidemics constantly wipes out populations at the
local (leading to disappearance of a species within an area)
or global scale (leading to extinction). However, once there
are survivors in those epidemics, there are usually genetic
explanations in their genomes, such as natural variations in
immune-related genes that lead to the higher resistance and
survival of a particular group of individuals (Brinkworth and
Pechenkina, 2013). In the next generations, those alleles
(one variety of a gene) would usually increase in frequency
and lead to changes in population genetics (Prugnolle et al.,
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2005). There are a lot more pathogens that are not as dra-
matic as those involved in epidemics but that lead to less
lethal infections and only the lower fitness of a few; however,
these pathogens can still contribute to the change in allele
frequencies (Barreiro and Quintana-Murci, 2010). Of course,
pathogens are also involved in the arms race of the host and
pathogens; no allele can be the perfect solution, but instead,
different alleles are selected and enriched in different periods
(Novembre and Han, 2012).

In humans, we know particularly well what the biggest
threats were in our past and now, because of historical and
medical records, and we see them in our genomes (Barreiro
et al., 2008). Bubonic plague used to decimate one-third of
European populations at a time, and its effects are visible in
the current populations of Europeans, including some
unexpected consequences that are summarized in the book
the “Survival of the Sickest” (Moalem and Prince, 2008). This
is still happening, although on a smaller scale nearly every
year. At present, tuberculosis (TB) infects millions throughout
the world, mainly in undeveloped areas (World Health
Organization, 2016); these infections were more widespread
in the past, before the invention of antibiotics. A study by
Jostins et al. (2012) found surprising results demonstrating
that the genes we think are causal in inflammatory bowel
disease (IBD) (mainly composed of Crohn’s disease and
ulcerative colitis, and auto-immunity, which affect a small
percentage of the population in Europe) turned out to be
consequences of selection by TB. Those genes either pro-
mote our immune systems’ attempt against TB by lowering
the sensitivity to infection or blocking the recognition sites by
bacteria, via as-yet-unknown mechanisms; these were
consequently under selection by pathogens and are
changing in frequency in the population (Jostins et al. 2012).
Cholera, bacterial and meningitis are among the hundreds of
recurring bacterial infections we are aware of, many of which
have left a mark in our genome (Gupta, 2016) (Fig. 1).

However, it is not always about bad bacteria. Especially in
the last decade, we have started to understand the compo-
sition and functions of complex microbial communities in the
GI tract of humans and animals (Spor et al., 2011), as well as
the skin (Grice and Segre, 2011) and oral microbiome (De-
whirst et al., 2010), reproductive (Ravel et al., 2011) and
respiratory systems (Dickson and Huffnagle, 2015). Addi-
tionally, we have begun to appreciate the important functions
of the normal microbiome in our own health (Fig. 1). We rely
on our gut microbiome for digesting food and metabolizing
large molecules to smaller ones, so our intestines can take
them up more easily (Kau et al., 2011). They produce a large
amount of other substances, including vitamins, serotonins,
and many other functional molecules that modulate various
systems in the host body (Kau et al., 2011; Kostic et al.,
2014); thus, the concept of the gut-brain-axis (Foster and
Neufeld, 2014), gut-liver-axis (Ray, 2017) and gut-lung-axis
(Budden et al., 2017) have been proposed, examined and
accepted by wider audiences. The microbiome stimulates
the early maturation of the immune systems in infants while

maintaining the normal immune functions of adults; mean-
while, many of the immune-related diseases are primarily
caused by dysbiosis in the microbiome (Kamada et al.,
2013). The hologenome concept, endorsed by many in this
field, can be understood to be the comprehensive inclusion
of this whole interaction, cooperation and mutual selection at
the genomic and metagenomic level, where the host and its
microbiome compose a functional entity and the basis for
natural selection and evolution (Zilber-Rosenberg and
Rosenberg, 2008).

INDIRECT EVIDENCE

We aim to take the readers along the historical path of dis-
covering the gene-microbiome cross-talk, although the
studies we include here are not strictly chronological. For
instance, we already knew a number of genes that were
critical in maintaining host defence against pathogens (Major
Histocompatibility Complex, MHC) (Neefjes et al., 2011),
sensing microbes (Toll-Like Receptors, TLR for instance,
which senses a wide range of molecules produced by
microbes) (Kieser and Kagan, 2017), or were involved in
other important process that could lead to disease. However,
these are largely based on natural knock-out models, i.e., a
mutation that leads to loss-of-function of a particular gene.
We have studied mice or humans that are usually unhealthy,
because critical genes in the host-microbe cross-talk are no
longer functional and thus represent the extremities of the
gene function spectrum. The more general observations of
how variations in the whole genome, especially neutral or
near-neutral alleles (those who do not carry as deleterious
effect as the loss-of-function) and their association with
effect on the microbiome have only come relatively recently
(e.g., Hov et al., 2015, Wang et al., 2016, Bonder et al.,
2016, Turpin et al., 2016, Goodrich et al., 2016).

The Ochman group published in Plos Biology a study on
hominoids—primates, including humans, showing that
microbiome divergences are well aligned (congruent) with
the phylogeny of the mitochondria genome, a relatively
simple yet powerful sub-genome for host phylogeny (Och-
man et al., 2010). This work was followed by several other in-
depth studies (Moeller et al., 2014; Nishida and Ochman,
2017). The microbiome divergence in this study was
approximated with the Unifrac distance (Lozupone et al.,
2011), which is also a phylogenetic measure of overall
bacterial relationships, taking into account both the abun-
dance of bacterial taxa, as well as their positions in a phy-
logenetic tree. Then, the overall microbiome differences are
also clustered to form a “phylogeny” showing their relative
similarities, and the congruence with the host phylogeny
indicates that the microbiome differences could indeed be
shaped by host genetic differences. However, it has to be
noted that the evidence here is not without potential con-
founders, especially considering the natural drift of the
microbiome together with its host during evolution and
divergence, as well as the dietary differences of different
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host species, geographical isolation, etc. (Bodenstein &
Theis, 2015). This has also been noted in other comparative
studies that try to distinguish signatures of genetic affinity
from environmental similarities, especially diet (Ley et al.,
2008). Nonetheless, it opens the door to understanding that
in the whole genome, variations in the hosts underlie gut
microbial variations, at least between different species.

The Ley group carried out another landmark study using
the UK Twins biobank (Goodrich et al., 2014). The general
idea is quite straightforward: by contrasting twins that are
genetically identical (monozygotic twins) or non-identical, but
related (dizygotic twins), one can quickly determine if some
traits, in this case the microbiome, are genetically related.
The assumption is that environmental differences are mini-
mal in twins, or at least not extremely different between
monozygotic twins and dizygotic twins. When a trait is more
similar in the former than the latter, it must be due to genetic
similarities. They indeed found this in the human gut micro-
biome in UK Twins, through a series of consequent studies
using 16S rRNA and metagenomic analysis (Goodrich et al.,
2016; Xie et al., 2016). A few particular bacteria also showed
considerably high heritability, defined as the similarity of a
trait due to the same genetic make-up, including one group,
Christenalleaceae, that is inversely correlated to body-mass-
index (BMI). Mouse models indeed show that this group of

bacteria has an effect of reducing obesity. However, it is
rather disappointing that further analysis locating the genetic
loci corresponding to this group of bacteria did not result in a
definitive gene, which could be due to the small sample size
of twins. This is because genome-wide-association studies
(GWAS), as we are going to describe in detail, usually
require relatively unrelated individuals, and in twins, the
effective sample size is halved and would not reach one
thousand. Org et al. (2015) performed similar analysis in 113
strains of different mice, where the microbiome is also more
similar within the same strain than between different strains.
They estimated the heritability of the microbiome, taking into
account the relatedness of those mice strains as well as the
pedigree, and concluded that host genetic variation can
explain a substantial amount of variation in the gut
microbiota.

DIRECT EVIDENCE: DESIGNED GENETIC STUDIES

Resolving confounders

Contrary to the genetic makeup of the hosts, which are
(relatively speaking) stable, the microbiome tends to be a
dynamic system that has its own natural fluctuations and is
highly affected by a variety of environmental factors (Hall
et al., 2017); thus, the microbiome observed at different time

Produce nutrients, other functional molecules, stimulate 
normal immune functions and mucosa growth

Produce toxins, pro-inflammatory substances, cause
infections and inflammations

Better immune-tolerance and recognition, 
secrete usable substrates, selection for 

promoting those bacteria

More immune-clearance, anti-infection 
or inflammation responses, selection 

for resistance

GI tract
Skin surface
etc. 

Beneficial bacteria Detrimental bacteria

Host genome

Epithelium

Allele frequency change in genes with these functions-evolution in action

Figure 1. A simplified illustration of the host gene-microbiome interactions at the interface of various types of epithelia. The

mucosal layer of the GI tract, airway, skin surface and reproductive tract surface are the primary interfaces of host-microbe

interactions. Those microbes that we consider as beneficial usually produce nutrients, essential functional molecules and maintain

the normal functions of the immune systems; thus the primary aim of host genes is to ensure their immune tolerance and facilitate

their growth by secreting mucus, etc. as substrates. While harmful bacteria usually produce toxins, pro-inflammatory molecules and

lead to infections, the host genes must clear them from the normal community and defend against inflammation and infections.
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points within a particular individual could be vastly different.
Additionally, when looking at cross-sectional studies, as
most of the large-scale investigations are due to the limita-
tions set by studies of such scale, we are examining a
snapshot of the microbiome within different individuals, with
a high degree of randomness and noise (Walter and Ley,
2011). However, this is similar to a lot of fields in biology: we
depend on biological signals that are substantial enough to
be picked up by the appropriate detection methods, which, in
this framework, includes statistical methods. Additionally, we
depend on a sufficiently large sample size to distinguish
statistically significant signals from the rest.

Nonetheless, accounting for the most important con-
founders is essential for any genetic study, for not doing so
would lead to type I errors (false positives, where false
genetic loci show up as significant) and type II errors (false
negatives, where real genetic loci are covered by noise). In
mouse models, we could control those to minimize them,
while in humans, this would require a systematic investiga-
tion of confounders. A large collection of studies has repor-
ted anthropometric measures, including age (Yatsunenko
et al., 2012), body mass index (BMI, Dominianni et al.,
2015), waist measures and dietary habits (David et al., 2014;
Dominianni et al., 2015), other life habits and so on (Yassour
et al., 2016). In 2016, two studies appeared simultaneously
in a special issue in Science, in Belgian Flanders (Flemish
Gut Flora Project) (Falony et al., 2016) and Northern
Netherlands (LifeLines-DEEP cohort) (Zhernakova et al.,
2016), in which scientists carried out population-based
analyses of confounding factors in shaping the diversity of
the microbiome. In this study, hundreds of different mea-
sures were tested, filtered and ranked with their respective
contributions to the overall dissimilarity of the gut microbiome
(beta-diversity) and taxa abundances—the collective prop-
erty of which is called alpha-diversity—as well as functional
capacities. Many of the factors investigated were partially
genetically determined, including gender, BMI, blood chem-
istry, etc., and thus already indicated a genetic involvement
in shaping the microbiome. Other factors, such as age, are
certainly not genetically determined, but are some of the top
contributors and must be accounted for in studying genetics.

Now it might sound odd, that we would also need to
control for genetic confounders while studying genetics. The
rationales are as follows: in quantitative genetic studies
using either crosses (quantitative trait loci, QTL) or natural
populations (genome-wide-associations studies, GWAS), we
are aware of the fact that the similarity of a trait could be due
to overall relatedness. For instance, mice from the same
breeding pair share largely the same growth environment
and could have a shared microbiome from maternal trans-
missions (Benson et al., 2010; Wang et al., 2015). Related
human individuals might also share a similar microbiome for
the same reasons (Goodrich et al., 2016). Conversely, if the
populations we study are not well-mixed, but subpopulations
exist, thus providing a distinct population structure, the traits
we find to be different between individuals might not be due

to the effects of a few genes but rather longer term history of
evolution, separation, drifts and so on (Yatsunenko et al.,
2012). It is essential to account for kinship in QTL studies
and GWAS analysis, and to thoroughly determine if there is
distinctive population structure. Usually, all but one related
individual are removed in a GWAS, and many try to keep the
studied population as homogeneous as possible; however,
there are also mathematical solutions that take kinship into
account, or population structure via the genetic principle
components (Kang et al., 2008; Price et al., 2010).

We quickly discuss the methods to account for con-
founders but will not go into much technical detail. When we
investigate univariate traits, such as richness or taxa abun-
dances, for most of the significant confounders, we use lin-
ear model/generalized linear models to remove their “effect”
and keep the residues for the genetic analysis. This is rel-
atively straightforward but sometimes cannot be well thought
through, as many microbiome responses to a factor are non-
linear (Lahti et al., 2014); however, other non-parametric
factor do not necessarily perform better and can be mis-
leading in its residues. For overall microbiome dissimilarities
or beta-diversities, one can also remove the confounding
effects of particular factors using constrained principle
coordinates analysis (PcoA) and take its residue (also a
distance matrix) (Ruhlemann et al., 2017). We rarely see it
being performed, mainly because only a few have worked on
the beta-diversity association with the host genome to date,
and the field is still in its infancy.

Candidate gene approach

For historical, medical and political reasons, IBD continues
to be the central focus of many microbiome investigations. It
is a prevalent chronic inflammatory disorder of the GI tract in
Europe, with occurrence approximately 1% and is particu-
larly high in certain population of Jewish decedents
(Hanauer, 2006). A continuous line of genetic studies have
revealed a long list of potential genetic risk factors in IBD
patients, including NOD2, CARD9, ATG16L1, IRGM and
FUT2, among others (Xavier and Podolsky, 2007). Since
there is a high proportion of microbiome factors in IBD dis-
ease, many of those risk genes have been tested to deter-
mine if they have impact on the microbiome (Kostic et al.,
2014). Many IBD genetic risk factors are indeed are signifi-
cantly associated with the decrease in the genus Roseburia,
which plays an essential role in the conversion of acetate-to-
butyrate compared to healthy controls, and this genus is
known to be decreased in IBD patients (Morgan et al., 2012).
We have summarized genes that were hypothesized to have
impacts on the microbiome and were consequently tested in
either humans (natural genetic variations) or mice (knockout
models). As we can see, most studies are still focused on
IBD. Of course, this list is by no means complete but con-
tains the most prominent examples we are aware of
(Table 1).
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Table 1 Examples of candidate-gene approach studies in host
gene-microbe interactions. We performed a literature search
centred around the host gene, microbiome and diseases and have
listed the most prominent examples where hypothesis-driven studies

were carried either in humans (using natural variations) or mice
(knock-out models) with respect to changes in the microbiome. We
listed the changes observed, as well as the study context (type of
disease), which we can see the primary focus on IBD

Gene
name

Traits associated with genetic variations Context of study References

Human

IL13/
CD14

Interaction with cesarean delivery and prenatal exposure to
antibiotics to affect skin microbiome

Atopic dermatitis Lee et al. (2014)

FUT2 Airway microbiome (Pseudomonas aeruginosa) Bronchiectasis Taylor et al. (2017)

IL6 Helicobacter pylori Dyslipidemia Pohjanen et al.
(2016)

ATG16L1 Fusobacteriaceae, Bacteroidaceae, Lachnospiraceae,
Enterobacteriaceae, E. coli

IBD Sadaghian Sadabad
et al. (2015)

CARD9 Gut microbiome composition IBD Lamas et al. (2016)

FUT2 Gut microbiome composition, diversity and structure IBD Rausch et al. (2011a,
b)

NLRP12 Gut microbiome diversity IBD Chen et al. (2017a, b)

NOD2 Gut microbiome composition IBD de Bruyn et al. (2017)

SLC39A8 Gut microbiome composition IBD Li et al. (2016)

TNFSF15 Prevotella IBD Nakagome et al.
(2017)

SI Blautia, Oscillibacter, Ruminococcus and unclassified
Enterobacteriaceae

IBS Thingholm et al.
(2018)

IFN-I Microbials related to tryptophan metabolism Multiple sclerosis Rothhammer et al.
(2016)

DEFB-
CN

Nasopharyngeal bacterial colonization patterns Otitis media Jones et al. (2014)

A2ML1 Middle ear microbiome Otitis media Santos-Cortez et al.
(2016)

C4B Gut microbiome composition Paediatric inflammatory
bowel disease

Nissilä et al. (2017)

CARD15 Periodontal microbiota in Crohn’s patients Periodontitis Stein et al. (2010)

ELANE Subgingival microbiota Periodontitis Ye et al. (2011)

Mouse

Myd88 Diversity, segmented filamentous bacteria Anti-microbial signalling Larsson et al. (2012)

Vdr Lactobacillus, Clostridium, Bacteroides, Alistipes, Odoribacter,
Eggerthella

Bile acid metabolism Jin et al. (2015)

Tnf Gut microbiome composition Colitis Kozik et al. (2017)

Can E. coli Colorectal cancer Peuker et al. (2016)

Lcn2 Alistipes Colorectal cancer Moschen et al. (2016)

Ifnar1 Gut microbiome composition IBD Tschurtschenthaler
et al. (2014)

Il10/Tlr4 Gut microbiome composition IBD Ward et al. (2016)

Il2 E. coli Nissle, B. vulgatus and E. coli mpk/B. vulgatus IBD Bohn et al. (2006)

Nlrp12 Gut microbiome composition IBD Chen et al. (2017a, b)

Sirt1 Gut microbiome composition IBD, colorectal cancer Lo Sasso et al. (2014)

Muc2 Gut microbiome composition Ileal homeostasis Sovran et al. (2015)

Mhc Gut microbiome composition Immunology Kubinak et al. (2015a,
b)

B4galnt2 Gut microbiome composition and Salmonella susceptibility Inflammation Rausch et al. (2015)
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Two of the genes are, interestingly, determinants of sur-
face glycans, which serves as the initial contact point/mo-
lecule for host-microbe cross-talk. First, the gene FUT2
encodes an enzyme fucosyltransferase-2 involved in the
expression of ABO blood group antigens found on the GI
mucosa and secretions. It is found to have two distinct
genotypes, one functional secretor and one loss-of-function
mutation leading to a non-secretor (McGovern et al., 2010).
Recent study revealed that the FUT2 secretor status (de-
fined by the genotype) has a significant influence on the gut
microbiota (Rausch et al., 2011a, b); thus, the genus Blautia
is lower in group A-secretors compared with non-A-secretors
and this reduction is accompanied by higher abundances of
members of Rikenellaceae, Peptostreptococcaceae,
Clostridiales, and Turicibacter (Gampa et al., 2017). Inter-
estingly, the mouse gene B4galnt2 (encoding glycosyl-
transferase β-1,4-N-acetylgalactosaminyltransferase 2) has
similar function in terms of determining the sugar composi-
tion of the intestinal mucosa, and it is tissue-specific when
we consider the expression patterns. Its expression in the
intestine or not is strongly associated with altered bacterial
community composition in the mouse model (Staubach
et al., 2012). B4galnt2 intestinal expression changes the gut
microbiome and consequently facilitates epithelial invasion
of Salmonella typhimurium, the underlying mechanism of
which could be by increased intestinal inflammatory cytoki-
nes and infiltrating immune cells. Additionally, B4galnt2 has
an interesting pattern of selection in the mouse population
that we will discuss towards the end.

Another set of examples are genes responsible for
sensing microbes and triggering down-stream cell signalling
pathways. Those are usually components of the innate
immune system. For example, exogenous microorganisms
can be recognized by pattern recognition receptors (PRR),
including but not limited to Toll-like receptors (TLR) and
NOD-like receptors (Kieser and Kagan, 2017), and the
MyD88 protein encoded by the MYD88 gene as an adaptor
can modulate the signal transduction pathway. Those genes
all have knockout mouse models, and the impact on the gut
microbiome has been observed. In addition, we are aware
that MyD88 signalling is critical for the development of type I
diabetes (T1D), but the incidence of this disease can be
decreased in mice by exposure to microbial stimuli, such as

injection with mycobacteria or various microbial products,
suggesting that the cross-talk by specific genes is essential
for the healthy development of immune systems in the early
stages of life (Wen et al., 2008; Kostic et al., 2015).

However, the most intriguing case so far is the MHC loci,
wherein humans consistently fail to find significant associa-
tions with gut microbial compositions, either in candidate
gene approaches or even in the recent GWAS (see later).
The largest study so far was carried out in Norway using the
bone marrow registry to distinguish candidates of different
MHC alleles, and the collected microbiome did not reveal a
significant difference (Hov et al., 2015). However, it is
another story in mouse models and the signals are much
more prominent (Kubinak et al., 2015a, b). This highlights
some of the difficulties in studying human genetics in terms
of its impact on the microbiome, and the effects of certain
genetic variations might be very small (and indeed confirmed
in following studies) and may be masked by environmental
differences. In mouse models, those factors are better con-
trolled. Additionally, we admit that we do not have the com-
prehensive list of genes that have been studied using the
candidate approach, and we merely touched the classic few
(Table 1). However, the principle holds and we do expect to
see a larger collection of such studies, each with deeper
insights into the mechanisms of gene-microbiome
interactions.

Quantitative genetics

The tools of quantitative genetic studies come in handy
when we intend to screen the associations between the
microbiome and the whole host genome, instead of individ-
ual genes. Largely roots from plant and animal breeding
science, quantitative genetics aims to find genes or genetic
loci that are underlying important biological traits (pheno-
types) of studied organisms, providing the basis for causal,
mechanistic studies as well as practical applications (im-
prove the production of crops or animals, for example)
(McCarthy et al., 2008). Two terms are widely used: QTL and
GWAS (Fig. 2). Many argue that, in the strict sense, they are
mutually exclusive and that the former applies to quantitative
traits such as height in animals or yields in crops, mainly
using planned crosses as the study cohort and that

Table 1 continued

Gene
name

Traits associated with genetic variations Context of study References

TREM-1 General dysbiosis in gut microbiome Inflammation Kökten et al. (2018)

Nod2 Gut microbiome under high fat diet Obesity Rodriguez-Nunez
et al. (2017)

Fut2 Multi-generation dynamics of gut microbiome Susceptibility to enteric
infection

Rausch et al. (2017)
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resolution is proportional to the generations of recombina-
tion, while the latter applies mostly to humans where the
natural population history of a thousand generations has led
to considerable recombination. However, it does not reach
the per gene level. Instead, human genomes still have large
blocks of genes that are linked, and little recombination has
occurred yet. On the contrary, linkage disequilibrium (LD)
also occurs as a result, which can lead to gene-level or even
SNP-level resolutions for associations; in many cases, the
studied trait is binary, especially about disease. However, we
would like to note that mathematically, the two approaches
are essentially the same. Quantitative genetic studies are
about finding significant associations between genetic vari-
ations, either a single SNP or a large chromosome region.
Both cases consider LD information, and variations in a
defined phenotype and different types of traits only affect the
model of the association tests. Binary traits require logistic
regression, and the result of the associations are usually
denoted as an odds ratio (OR): compared to the basal fre-
quency of a trait, a particular SNP could change the fre-
quency of that trait by OR fold. Thus, it is enriched, if OR is
higher than 1, and vice versa. While continuously distributed

traits require linear or similar regressions and the “effect” of
SNP/haplotype block are beta-values or z-scores, depend-
ing on the model used. This means that the mean value
associated with a particular SNP/haplotype block deviates
from the overall mean, measured by the variance (Hirsch-
horn and Daly, 2005).

To date, we are aware of six QTLs (Fig. 3), using crosses,
that were carried out in mice as the model organism with the
microbiome as the targeted trait. Four QTLs were done for
the gut microbiome, while the remaining two focused on the
skin microbiota. Benson et al. in 2010 published the first
proof-of-concept study, showing that in a mouse cross of
several generations, we can indeed locate the genetic vari-
ations at certain chromosomal regions to the variations of gut
microbiome. Even when the resolution is not high, there are
some interesting hints about the potential genes involved
that correlate to specific microbiome abundances, in partic-
ular genes downstream of toll-like-receptor 2 (Tlr2), a gene
that is mainly responsible for sensing gram-positive bacteria
and downstream genes, including Irak3, Lyz1, Lyz2, IL-22,
and IFN-gamma, while the correlated microbiome traits are
indeed Coriobacteriaceae and Lactococcus (Benson et al.,
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2010). McKnite et al. (2012) and Leamy et al. (2014) fol-
lowed up using different cross schemes and identified more
regions with limited overlaps between the studies, each with
some interesting insights about the genes that might be
involved. Wang et al. (2015) published another interesting
study using hybrid mice as the QTL cross cohort, where two
subspecies of house mice are crossed to the second gen-
eration, and many regions are found to be correlated to
microbial diversity. Lab mice are essentially Mus musculus
domesticus, while its eastern European counterpart is Mus
musculus musculus. They occur naturally in central Europe
and have a well-studied evolution and speciation system.
Currently, it seems that the microbiome is also affected by
this hybridization. Moreover, the type of association is
interesting. Half of the associations are transgressive,
meaning that heterozygotes for a particular genetic locus
have abnormally high or low values, out of the range for both
homozygotes (Wang et al., 2015). This and one potential
epistatic interaction that follows the Dobzhansky-Muller
incompatibility model reveals further insights that the
microbiome shape the genome evolution of hosts. Details
can be found in the publications and in additional literature
by the Bodenstein group (Brucker and Bordenstein, 2013;
Bordenstein and Theis, 2015).

The other two skin microbiome QTLs, both published by
the Baines group, provide interesting observations of host-
microbiome homeostasis on the surface of the body (Srini-
vas et al., 2013; Belheouane et al., 2017). Working on an
auto-immune skin disease model called epidermolysis bul-
losa acquisita (EBA), the group has extended the previous
disease-oriented QTLs to include microbiome composition
and found that the microbiome could indeed play an impor-
tant role in determining disease manifestation. Even with
roughly the same genetic makeup, developing the disease or
not is correlated to the abundance of Staphylococcus, a
potentially protective species. In contrast, when the bacterial
abundance is taken into account in the statistical model, the
power of QTL significantly increases, as the “noise”, or
environmental confounder of bacteria, is controlled (Srinivas
et al., 2013). The second skin QTL has innovated the study
approach and used 16S rRNA gene transcripts, which

examine the “active” part of the microbiome instead of the
standing communities. Together with further cross genera-
tions (15th instead of 4th), this resulted in an almost per gene
resolution and more significant associations when the tran-
scripts are used. Additionally, some of the loci are involved in
carcinogenesis of the skin, which are correlated to similar
bacteria that could also lead to cancers in the colon (Bel-
heouane et al., 2017).

We need to mention that the study by Org et al. (2015)
discussed above actually carried out a GWAS in a similar
fashion to that performed in humans, and several important
genes were identified in this process that are associated with
the microbial taxa. Contrary to QTLs above, they used
standing variety of mouse strains (110 of them) instead of
crosses that are specially set up, and the methods carefully
considered the population structure. The only limitations
were the relative small sample size and the low number of
SNPs, for which we cannot really reach a similar genome-
wide significance threshold in humans (will discuss below).
This limits the resolution in the results.

The microbiome-oriented GWAS in humans, coinciden-
tally also have six cases so far. We would consider at least
two not to be sufficiently large to be considered equally as
the remaining few. The first approximation of a microbiome
GWAS was not really by design. Rather, Blekhman extracted
human genome reads from HMP metagenomic raw data,
called SNPs from those human reads for each subject, and
correlated the genetic variations of the hosts to the micro-
biome variations. One particular association is between the
lactase (LCT) gene and Bifidobacterium, and both are rela-
ted to milk consumption and thus could understandably be
correlated (Blekhman et al., 2015). However, whether the
“fished out” human reads were sufficient to carry out proper
SNPs was never clear, and neither was the reliability of the
consequent analysis. Davenport et al. (2015) reported a
small, but more conventionally designed GWAS study and
managed to find some associations, none of which reached
the commonly accepted genome-wide significance threshold
(which is 5E−08 or 1E−08, the rationale is that when you
screen millions of SNPs, the real significance should stand
Bonferroni or Benjamini-Hochberg corrections for multiple
testing, and thus it is commonly set at this scale). The Ley
group also continued with their endeavours in the UK Twins
cohort with multiple models for microbiome-SNP associa-
tions, and they did manage to actually find some hits that
were later rediscovered, including LCT and SLIT3. However,
because of the lack of a central focus on the models or
functional studies, the study did not go into sufficient detail in
exploring gene-microbiome ties at the genome scale
(Goodrich et al., 2016) (Fig. 3).

The real breakthrough in human GWAS on the gut
microbiome came as a trio in the November issue of Nature
Genetics in 2016, where a German cohort (PopGen/FoCus)
(Wang et al., 2016), a Dutch cohort (LifeLines-DEEP)
(Bonder et al., 2016) and a Canadian cohort (GEM) (Turpin
et al., 2016) simultaneously published large-scale GWASs

Figure 3. Overview of microbiome QTL in mouse and

GWAS in humans to date. Left half shows the six QTLs in

mice, coloured by different studies and the confidence intervals

are marked on the mouse chromosome. Please note that

Belheouane and Srinivas studies are skin microbiome QTLs.

The right half shows the genes implicated in human GWAS,

including UK Twins, FoCus/PopGen (both original publication

and later with modified methods), LifeLines-DEEP and GEM

studies. Links in the middle show potential overlapping genes

that showed up in human GWASs and fall into a confidence

interval in mouse QTLs, which might be supportive of each

other in terms of the association with microbiome variations.

b
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on the human gut microbiome (Fig. 3). All three cohorts
include more than 1,000 unrelated individuals, all have
replication cohorts, and all have considered the distribution
properties of bacterial taxa (only a small fraction fits normal
distributions, the rest are mainly zero-inflated). Among these
three studies, the German and Canadian studies used a two-
part hurdle model to address zero-inflations, while the Dutch
study worked on the none-zero part when this was the case.
The other difference is that the German/Canadian cohorts
worked on a 16S rRNA based bacterial composition, while
the Dutch study also has shot-gun metagenomic data and
thus could map certain functional pathways. Beyond using
bacterial abundance as the main studied trait, the German
study, in particular, proposed a method to associate the
overall microbial diversity (beta-diversity) to human genetic
variations, and discovered 42 loci that passed the signifi-
cance threshold, including one Vitamin D receptor (VDR)
that was known to be involved in bile-acid sensing and
homeostasis. Additionally, in this study, a number of func-
tional studies, including bile acid analysis, metagenomic
sequencing, cross-checking with different databases and
comparing the human transcriptomes vs bacterial abun-
dances (“coupling”), established the validity of VDR as a
central part of the human-microbiome cross-talk, mostly via
bile-acid metabolism and downstream pathways (Wang
et al., 2016). The beta-diversity association method was
consequently further developed to be less computationally
intensive and more adapted to a higher dimensionality, with
some further interesting loci discovered in this process
(Ruhlemann et al., 2017). The Dutch study mainly confirmed
the previous findings of LCT-Bifidobacterium associations
and showed that environmental influence (in this case, milk
intake) also interacts with the genotype of the individuals and
shapes the microbial abundance (Bonder et al., 2016).
Benson wrote a nice summary on all three of these studies,
which was published in the same issue of Nature Genetics
(Benson, 2016). Additionally, Kurilshikov and Zhernokova
pieced together a wonderful review on this extended topic as
well (Kurilshikov et al., 2017).

CONCLUSIONS

We have described the chronicles of genetic investigations
in understanding host-microbe interactions, and the main
results of the different approaches. We have seen indirect
evidence in comparative studies, but those studies have
limitations. We could investigate individual genes of interest
and gain insights into their importance but could not gener-
ate a complete picture. Additionally, there is a quantitative
genetic approach, and there are many things that we need to
be cautious of. However, this endeavour is, by no means
complete. We are just in the preliminary stages of investi-
gation. Here, we would also note the current limitations of the
mentioned studies, as well as our own perspectives into
future efforts and directions.

Limitations

Our review is very focused human and mouse studies while
ignoring the larger context of other model or non-model
organisms. The reason is because of the great deal of effort
put into the former two models and that the studies in
humans and mice are considerably more relevant to our own
health. We do know that a vast collection of literature exists
for plant gene-microbe interactions, and many are textbook
models, such as those genes involved in the invasion and
colonization of Agrobacterium, which involves a complex
interplay that would dwarf some of the host-microbe cross-
talk in animals (Nester, 2015; Ellis, 2017). Similarly, a plant
GWAS on the microbiome has been published for Ara-
bidopsis thaliana and revealed a list of genes that may
participate in a wider scale of interactions as well (Horton
et al., 2014). However, since many genes lack counterparts
in animals or at least do not carry out the same function, the
value as a reference to other organisms is limited.

We do not have a shortage of host-microbe cross-talk
examples in C. elegans, Drosophila and Zebra fish and
many other common model organisms used in the lab. Most
of these are single pathogens, and the difference observed
in consequences are due to the genetic variation of the host.
This again falls into the category of candidate gene-based
approaches, in which one gene was the primary focus of
study, and a glimpse into the greater picture of host-microbe
cross-talks in those organisms has been observed. In regard
to genome-wide, quantitative genetic studies in the micro-
biome, there have been two carried out in Drosophila
(Chaston et al., 2015; Dobson et al., 2015), where the
authors have pinpointed the interactions of nutrition and the
host, and the microbiota serves as an important intermedi-
ator for the effects of nutrition to actually occur. Translated
into terms that are widely used in human or mouse studies,
the microbiome largely determines the metabolomes of the
host and consequently the health status. Moreover, there are
also a handful of studies, including one on chicken (Zhao
et al., 2013), and we apologize if we missed other studies
using different studying organisms. All of these studies make
important contributions to the field, and by combining those
studies, we generate a grander picture and get closer to
solving the full puzzle. To achieve this, both the accumula-
tion of data as well as innovation in methods are required.

Still, association does not mean causation, which is a
limitation of association-based studies. Functional validation
and establishment of real causation is still the bottleneck of
many gene-microbe interactions. Moreover, compared to the
limited knowledge we have on the host side, we know little to
none about which bacterial genes are carrying out the cross-
talk with the host. In pathogens, we study the key virulence
factors that are part of the invasion process, or pathogene-
sis, including various toxins, different types of secretion
systems, or genes responsible for producing the key
metabolites influencing the hosts. We also know a few
molecules that play a central role in being recognized by the
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hosts, such as cell wall components, lipopolysaccharides
(LPS). However, we lack a general picture of which part of
the bacterial genomes are responsible for establishing and
maintaining the connection with the host and which parts
underlie the breakdown of such homeostasis. The authors
assume that this varies from bacteria to bacteria of course
and that environmental bacteria would need fewer genes for
this task, while symbiotic bacteria should devote an essential
part of the genome; otherwise, they would not be able to
maintain a symbiotic relationship with the hosts. The gut
microbiome, skin microbiome and bacteria in other body
sites are intermediate in the sense that they are not strictly
symbiotic but would still need to invest part of the genome.
Some studies have shown that long-term intracellular sym-
bionts in insects have lost a large part of their genome in the
evolutionary process and only keep a small fraction of the
essential genes (Wernegreen, 2002; Bennett et al., 2014).
Whether this occurs in the gut or skin is not known, and the
authors would argue that this genome reduction, if it exists,
would apply to genes that are more maternally transmitted
than those that are usually acquired from the environment.

Outlook

As we proclaimed in the beginning of this review, pathogens
are driving forces in allele frequency changes in host pop-
ulations, and we usually observe the results of this selection.
However, this rarely occurs in real time, and we have not
conducted an in-depth examination of the exact parameters
of fitness and the costs. However, Vallier et al. (2017) carried
out an astonishing study showing that, in natural populations
of western house mice (Mus musculus domesticus), two
alleles of the B4galnt2 gene co-exist as a result of long-term
balancing selection, where one allele confers protection
against various pathogens and thus could be favoured by
pathogen-driven selection. However, it also leads to bleeding
in the GI tract and could potentially reduce host fitness (this
is similar to the human bleeding disorder called type 1 von
Willebrand disease and could also be selected because it
has beneficial effects during pathogen infections). Because
this balancing selection is rather recent (from geographical
distribution pattern combined with population history), the
authors built up evolutionary models and estimated the fit-
ness costs of the bleeding allele. It turns out that the cur-
rently observed allele frequency, as well as distribution,
could only be explained when there is a heterozygote
advantage and an advantage for homozygotes with bleeding
alleles, and the costs in fitness of bleeding counts half of
pathogenic infections. This is not biologically relevant proof,
of course, as both fitness costs and infection costs are
extremely difficult to quantify. However, it shows how
important selection from microbes can be and how tiny
microbes shift our genome, even leading to alleles that are
otherwise detrimental to humans to maintain in the popula-
tion. This is not the only case, as many of the underlying
genes/alleles of autoimmune disorders and metabolic

syndromes are believed to be the result of selection by
pathogens in the past and will continue to interact and
change our genomes in the future (Nielsen et al., 2007;
Novembre and Han, 2012; Milot and Pelletier, 2013).

Our review has so far been focused on individual genes,
and we could only limit it to the main proof-of-concept
studies. An important concept in understanding the host-
microbe cross-talk, similar to in any genetic study, is the
gene-environment interactions (G by E), where the genetic
background manifests different effects when the environ-
mental context changes. This has been shown to be the
case in the LCT gene and Bifidobacterium (Blekhman et al.,
2015; Goodrich et al., 2016), where dairy intake serves the
environmental background (Bonder et al., 2016). However,
we do not have many other examples, since the content of
environmental influences is so vast, and many studies have
not managed to include a sufficient amount. At the same
time, the sample sizes usually do not permit this kind of
analysis either. In addition, there is an urgent need to move
beyond single gene associations, since for most of the
complex traits, the power of the single gene in explaining
microbiome diversities as well as functionalities is limited,
and conclusions can only be partial and misleading. Inte-
grating multiple genetic variations with respective weight,
which results in polygenic scores as used in many diseases
(Dudbridge, 2013), could be applied in microbiome research
to explain the underlying genetic architecture for a single
taxon or the overall diversity and would yield a more com-
plete overview of host-microbe cross-talk. Another important
direction is to move beyond single genes to biological
pathways, which participate, and examine the association
between microbes and certain cellular processes/signalling
pathways. This requires enrichment analysis from a collec-
tion of single genes (Ramanan et al., 2012). Overall, this
fascinating area of research has just revealed its potential in
terms of understanding both fundamental biology, as well as
application in medicine and human health, with many
aspects that have yet to be examined.
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