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The paper presents a novel approach for feature selection based on extreme learning machine (ELM) and Fractional-order
Darwinian particle swarm optimization (FODPSO) for regression problems. The proposed method constructs a fitness function
by calculating mean square error (MSE) acquired from ELM. And the optimal solution of the fitness function is searched by an
improved particle swarm optimization, FODPSO. In order to evaluate the performance of the proposed method, comparative
experiments with other relative methods are conducted in seven public datasets. The proposed method obtains six lowest MSE
values among all the comparative methods. Experimental results demonstrate that the proposed method has the superiority of
getting lower MSE with the same scale of feature subset or requiring smaller scale of feature subset for similar MSE.

1. Introduction

In the field of artificial intelligence, more and more variables
or features are involved. An excessive set of features may
lead to lower computation accuracy, slower speed, and
additional memory occupation. Feature selection is used to
choose smaller but sufficient feature subsets, to improve or
at least not significantly harm the predicting accuracy in the
meantime. Many studies have been conducted to optimize
feature selections [1–4]. As far as we know, there are two
key points in search-based feature selection process: learning
algorithms and optimization algorithms. Many techniques
could be involved in this process.

Various learning algorithms could be included in this
process. Classical neural networks such as 𝐾-nearest neigh-
bors algorithm [5] and generalized regression neural network
[6] were adopted for their simplicity and generality. More
sophisticated algorithms are needed for better predicting
complicated data. Support vector machine (SVM) is one of
themost popular nonlinear learning algorithms and has been
widely used in feature selection [7–11]. Extreme learning
machine (ELM) is one of the most popular single hidden

layer feedforward networks (SLFN) [12]. It possesses faster
calculation speed and better generalization ability than tra-
ditional artificial learning methods [13, 14], which highlights
the advantages of employing ELM in feature selection, as
reported in some studies [15–17].

In order to better locate optimal feature subsets, an
efficient global search technique is needed. Particle swarm
optimization (PSO) [18, 19] is an extremely simple yet
fundamentally effective optimization algorithm and has pro-
duced encouraging results in feature selection [7, 20, 21].
Xue et al. considered feature selection as a multiobjective
optimization problem [5] and firstly applied multiobjective
PSO [22, 23] in feature selection. Some improved PSO such
as hybridization of GA and PSO [9], micro-GA embedded
PSO [24], and fractional-order Darwinian particle swarm
optimization (FODPSO) [10] were introduced and achieved
good performance in feature selection.

Training speed and optimization ability are two essential
elements relating to feature selection. In this paper, we pro-
pose a novel feature selectionmethod which employs ELM as
learning algorithm and FODPSO as optimization algorithm.
The proposed method is compared with SVM-based feature
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Figure 1: Schematic of extreme learning machine.

selection method in terms of training speed of learning
algorithm and compared with traditional PSO-based feature
selectionmethod in terms of searching ability of optimization
algorithm. And also, the proposed method is compared with
a few well-known feature selection methods. All the compar-
isons are conducted on seven public regression datasets.

The remainder of the paper is organized as follows:
Section 2 presents technical details about the proposed
method. Section 3 conducts the comparative experiments on
seven datasets. Section 4 makes conclusions of our work.

2. Proposed Method

2.1. Learning Algorithm: Extreme Learning Machine (ELM).
The schematic of ELM structure is depicted as Figure 1, where
𝜔 denotes the weight connecting the input layer and hidden
layer and 𝛽 denotes the weight connecting the hidden layer
and output layer. 𝑏 is the threshold of the hidden layer, and
𝐺 is the nonlinear piecewise continuous activation function
which could be sigmoid, RBF, Fourier, and so forth. 𝐻
represents the hidden layer outputmatrix,𝑋 is the input layer,
and 𝑌 is the expected output. Let 𝑌 be the real output; ELM
network is used to choose appropriate parameters to make 𝑌
and 𝑌 as close to each other as possible.

min 󵄩󵄩󵄩󵄩󵄩𝑌 − 𝑌󵄩󵄩󵄩󵄩󵄩 = min 󵄩󵄩󵄩󵄩𝑌 − 𝐻𝛽󵄩󵄩󵄩󵄩 . (1)

𝐻 is called the hidden layer output matrix, computed by
𝜔 and 𝑏 as (2), inwhich 𝑁̃ denotes the number of hidden layer
nodes and 𝑁 denotes the dimension of input 𝑋:

𝐻 = 𝐺 (𝜔𝑋 + 𝑏)

=
[[[[
[

𝑔 (𝜔1 ⋅ 𝑥1 + 𝑏1) ⋅ ⋅ ⋅ 𝑔 (𝜔𝑁̃ ⋅ 𝑥1 + 𝑏𝑁̃)
... d

...
𝑔 (𝜔1 ⋅ 𝑥𝑁 + 𝑏1) ⋅ ⋅ ⋅ 𝑔 (𝜔𝑁̃ ⋅ 𝑥𝑁̃ + 𝑏𝑁̃)

]]]]
]𝑁×𝑁̃

. (2)

As rigorously proven in [13], for any randomly chosen
𝜔 and 𝑏, 𝐻 can always be full-rank if activation function 𝐺

is infinitely differentiable in any intervals. As a general rule,
one needs to find the appropriate solutions of 𝜔, 𝑏, 𝛽 to train
a regular network. However, given infinitely differentiable
activation function, the continuous output can be approxi-
mately obtained through any randomly hidden layer neuron,
if certain tuning hidden layer neuron could successfully
estimate the output, as proven by universal approximation
theory [24, 25]. Thus, in ELM, the only parameter that needs
to be settled is 𝛽. 𝜔, 𝑏 can be generated randomly.

By minimizing the absolute numerical value in (1), ELM
calculated the analytical solution as follows:

𝛽 = 𝐻G𝑌, (3)

where 𝐻G is the Moore-Penrose pseudoinverse of matrix 𝐻.
ELM network tends to reach not only the smallest training
error, but also the smallest norm of weights, which indicates
that ELM possesses good generalization ability.

2.2. Optimization Algorithm: Fractional-Order Darwinian
Particle Swarm Optimization (FODPSO). Kiranyaz et al. [19]
developed a population-inspired metaheuristic algorithm
named particle swarm optimization (PSO). PSO is an effec-
tive evolutionary algorithm which searches for the optimum
using a population of individuals, where the population is
called “swarm” and individuals are called “particles.” During
the evolutionary process, each particle updates its moving
direction according to the best position of itself (pbest) and
the best position of the whole population (gbest), formulated
as follows:

𝑉𝑖 (𝑡 + 1) = 𝜔𝑉𝑖 (𝑡) + 𝑐1𝑟1 (𝑃𝑖 − 𝑋𝑖 (𝑡))
+ 𝑐2𝑟2 (𝑃𝑔 − 𝑋𝑖 (𝑡)) , (4)

𝑋𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡) + 𝑉𝑖 (𝑡 + 1) , (5)

where 𝑋𝑖 = (𝑋1𝑖 , 𝑋2𝑖 , . . . , 𝑋𝐷𝑖 ) is the particle position at
generation 𝑖 in the 𝐷-dimension searching space. 𝑉𝑖 is the
moving velocity. 𝑃𝑖 denotes the cognition part called pbest,
and 𝑃𝑔 represents the social part called gbest [18]. 𝜔, 𝑐, 𝑟
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Figure 2: Procedure of the proposed methodology.

denote the inertia weight, learning factors, and randomnum-
bers, respectively.The searching process terminates when the
number of generation reaches the predefined value.

Darwinian particle swarm optimization (DPSO) simu-
lates natural selection in a collection of many swarms [25].
Each swarm individually performs like an ordinary PSO.
All the swarms run simultaneously in case of one trap in a
local optimum. DPSO algorithm spawns particle or extends
swarm life when the swarm gets better optimum; otherwise, it
deletes particle or reduces swarm life. DPSO has been proven
to be superior to original PSO in preventing premature
convergence to local optimum [25].

Fractional-order particle swarm optimization (FOPSO)
introduces fractional calculus to model particles’ trajectory,
which demonstrates a potential for controlling the conver-
gence of algorithm [26]. Velocity function in (4) is rearranged
with 𝜔 = 1, namely,

𝑉𝑖 (𝑡 + 1) − 𝑉𝑖 (𝑡) = 𝑐1𝑟1 (𝑃𝑖 − 𝑋𝑖 (𝑡))
+ 𝑐2𝑟2 (𝑃𝑔 − 𝑋𝑖 (𝑡)) . (6)

The left side of (6) can be seen as the discrete version of the
derivative of velocity 𝐷𝛼[V𝑡+1] with order 𝛼 = 1. The discrete
time implementation of the Grünwald–Letnikov derivative is
introduced and expressed as

𝐷𝛼 [V𝑡] = 1
𝑇𝛼
𝑟

∑
𝑘=0

(−1)𝑘 Γ (𝛼 + 1) V (𝑡 − 𝑘𝑇)
Γ (𝑘 + 1) Γ (𝛼 − 𝑘 + 1) , (7)

where𝑇 is the sample period and 𝑟 is the truncate order. Bring
(7) into (6) with 𝑟 = 4, yielding the following:

𝑉𝑖 (𝑡 + 1) = 𝛼𝑉𝑖 (𝑡) + 𝛼
2 𝑉𝑖 (𝑡 − 1) + 𝛼 (1 − 𝛼)

6 𝑉𝑖 (𝑡 − 2)

+ 𝛼 (1 − 𝛼) (2 − 𝛼)
24 𝑉𝑖 (𝑡 − 3)

+ 𝑐1𝑟1 (𝑃𝑖 − 𝑋𝑖 (𝑡)) + 𝑐2𝑟2 (𝑃𝑔 − 𝑋𝑖 (𝑡)) .

(8)

Employ (8) to update each particle’s velocity in DPSO,
generating a new algorithm named fractional-order Dar-
winian particle swarm optimization (FODPSO) [27, 28].
Different values of 𝛼 control the convergence speed of opti-
mization process.The literature [27] illustrates that FODPSO
outperforms FOPSO and DPSO in searching global opti-
mum.

2.3. Procedure of ELM FODPSO. Each feature is assigned
with a parameter 𝜃within the interval [−1, 1].The 𝑖th feature is
selectedwhen its corresponding 𝜃𝑖 is greater than 0; otherwise
the feature is abandoned. Assuming the features are in 𝑁-
dimensional space, 𝑁 variables are involved in the FODPSO
optimization process. The procedure of ELM FODPSO is
depicted in Figure 2.

3. Results and Discussions

3.1. Comparative Methods. Four methods, ELM PSO [15],
ELM FS [29], SVM FODPSO [10], and RReliefF [30], are
used for comparison. All of the codes used in this study
are implemented inMATLAB 8.1.0 (TheMathWorks, Natick,
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Table 1: Information about datasets and comparative methods. A1, A2, A3, A4, and A5 represent ELM PSO, ELM FS, SVM FODPSO,
RReliefF, and ELM FODPSO, respectively.

Label Dataset Number of instances Number of features Comparative methods
D1 Poland 1370 30 A1, A2, A3, A4, A5
D2 Diabetes 442 10 A1, A2, A3, A4, A5
D3 Santa Fe Laser 10081 12 A1, A2, A3, A4, A5
D4 Anthrokids 1019 53 A1, A2, A3, A4, A5
D5 Housing 4177 8 A1, A3, A4, A5
D6 Abalone 506 13 A1, A3, A4, A5
D7 Cpusmall 8192 12 A1, A3, A4, A5
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Figure 3: Convergence analysis of seven datasets.

MA, USA) on a desktop computer with a Pentium eight-core
CPU (4GHz) and 32GB memory.

3.2. Datasets and Parameter Settings. Seven public datasets
for regression problems are adopted, including four men-
tioned in [29] and additional three in [31], where ELM FS
is used as a comparative method. Information about seven
datasets and themethods involved in comparisons are shown
in Table 1. Only the datasets adopted in [29] can be tested by
their feature selection paths; thus D5, D6, and D7 in Table 1
are tested by four methods except ELM FS.

Each dataset is split into training set and testing set.
70% of the total instances are used as training sets if not
particularly specified, and the rest are testing sets. During
the training process, each particle has a series of feature
coefficients 𝜃 ∈ [−1, 1]. Hidden layer neurons number is set
as 150, and kernel type as sigmoid. 10-fold cross-validation is
performed to gain relatively stable MSE.

For FODPSO searching process, parameters are set
as follows: 𝛼 is formulated by (9), where 𝑀 denotes the
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Figure 4: The evaluation results of Dataset 1.

maximal iterations and 𝑀 equals 200. Larger 𝛼 increases the
convergence speed in the early stage of iterations. Numbers
of swarms and populations are set to 5 and 10, respectively.
𝑐1, 𝑐2 in (8) are both initialized by 2. We run FODPSO
for 30 independent times to gain relatively stable results.
Parameters for ELM PSO, ELM FS, SVM FODPSO, and
RReliefF are set based on former literatures.

𝛼 = 0.8 − 0.4 × 𝑡
𝑀, 𝑡 = 0, 1, . . . , 𝑀. (9)

Convergence rate is analyzed to ensure the algorithmcon-
vergence within 200 generations. The median of the fitness
evolution of the best global particle is taken for convergence
analysis, depicted in Figure 3. To observe convergence of
seven datasets in one figure more clearly, the normalized
fitness value is adopted in Figure 3, calculated as follows:

𝑓Normolized = MSEselected feature𝑠
MSEall features

. (10)

3.3. Comparative Experiments. In the testing set, MSE
acquired by ELM is utilized to evaluate performances of
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Table 2: Running time of SVM and ELM on seven datasets.

Running time (s) D1 D2 D3 D4 D5 D6 D7
SVM 0.021 0.002 0.612 0.016 0.093 0.045 0.245
ELM 0.018 0.009 0.056 0.013 0.027 0.010 0.051

Table 3: MinimumMSE values and the corresponding number of selected features.

Dataset Method
ELM PSO ELM FS SVM FODPSO RReliefF ELM FODPSO all features

MSE N. feature
D1 0.0983|8 0.0806|27 0.0804|14 0.0804|26 0.0791|11 0.0820|30
D2 0.2844|9 0.2003|1 0.2919|9 0.2003|1 0.1982|1 0.3172|10
D3 0.0099|5 0.0160|11 0.0106|7 0.0108|6 0.0098|5 0.0171|12
D4 0.0157|8 0.0157|9 0.0253|20 0.0238|18 0.0156|7 0.0437|53
D5 0.0838|8 — 0.0853|7 0.0838|8 0.0841|6 0.0838|8
D6 0.0827|10 — 0.0981|7 0.1292|1 0.0819|9 0.1502|13
D7 0.0339|9 — 0.0343|6 0.0355|12 0.0336|8 0.0355|12
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Figure 5: The evaluation results of Dataset 2.

four methods. For all the methods, the minimal MSE is
recorded if more than one feature subset exists in the same
feature scale. MSEs of D1–D7 are depicted in Figures 4–10,
respectively. The 𝑥-axis represents increasing number of
selected features, while the 𝑦-axis represents the minimum
MSE value calculated with features selected by different
methods at each scale. Feature selection aims at selecting
smaller feature subsets to obtain similar or lower MSE.Thus,
in Figures 4–10, the closer one curve gets to the left corner of
coordinate, the better one method performs.

ELM FODPSO and SVM FODPSO adopt the same opti-
mization algorithm, yet employ ELM and SVM as learning
algorithm, respectively. For each dataset, training time of
ELM and SVM is obtained by randomly running them 30
times in two methods; the averaged training time of ELM
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Figure 6: The evaluation results of Dataset 3.

and SVM in seven datasets is recorded in Table 2. It is
observed that ELM acquires faster training speed in six of
seven datasets. Compared with SVM, single hidden layer and
analytical approach make ELM more efficient. Faster speed
of ELM highlights its use in feature selection due to many
iterative actions involved in FODPSO.

ELM FODPSO, ELM PSO, and ELM FS adopt the same
learning algorithm, yet employ FODPSO, PSO and Gradient
Descent Search as optimization algorithms, respectively. For
D1, D2, and D3, ELM FODPSO and ELM PSO perform
better than ELM FS; the former two acquire lower MSE than
ELM FS under similar feature scales. For D4, three methods
get comparable performance.

Table 3 shows the minimum MSE values acquired by
five methods and the corresponding numbers of selected
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Figure 8: The evaluation results of Dataset 5.

features, separated by a vertical bar. The last column repre-
sents the MSE values calculated by all features and the total
number of features. The lowest MSE values on each dataset
are labeled as bold. Among all datasets, ELM FODPSO
obtains six lowest MSE values, ELM PSO obtains two,
and RReliefF obtains one. For D3, ELM FODPSO and
ELM PSO get comparable MSE values by the same fea-
ture subset; therefore, 0.0099 and 0.0098 are both labeled
as lowest MSE values. For D5, ELM PSO and RReliefF
get the lowest MSE 0.0838 using all the 8 features and
ELM FODPSO gets a similar MSE 0.0841 with only 6 fea-
tures.
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Figure 9: The evaluation results of Dataset 6.
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Figure 10: The evaluation results of Dataset 7.

4. Conclusions

Feature selection techniques have been widely studied and
commonly used in machine learning. The proposed method
contains two steps: constructing fitness functions by ELM
and seeking the optimal solutions of fitness functions by
FODPSO. ELM is a simple yet effective single hidden layer
neural network which is suitable for feature selection due
to its gratifying computational efficiency. FODPSO is an
intelligent optimization algorithm which owns good global
search ability.

The proposed method is evaluated on seven regression
datasets, and it achieves better performance than other
comparativemethods on six datasets.Wemay concentrate on
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exploring ELM FODPSO in various situations of regression
and classification applications in the future.
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