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Abstract

Change points in the dynamics of animal abundances have extensively been recorded in historical 

time series records. Little attention has been paid to the theoretical dynamic consequences of such 

change-points. Here we propose a change-point model of stochastic population dynamics. This 

investigation embodies a shift of attention from the problem of detecting when a change will 

occur, to another non-trivial puzzle: using ecological theory to understand and predict the post-

breakpoint behavior of the population dynamics. The proposed model and the explicit expressions 

derived here predict and quantify how density dependence modulates the influence of the pre-

breakpoint parameters into the post-breakpoint dynamics. Time series transitioning from one 

stationary distribution to another contain information about where the process was before the 

change-point, where is it heading and how long it will take to transition, and here this information 

is explicitly stated. Importantly, our results provide a direct connection of the strength of density 

dependence with theoretical properties of dynamic systems, such as the concept of resilience. 

Finally, we illustrate how to harness such information through maximum likelihood estimation for 

state-space models, and test the model robustness to widely different forms of compensatory 

dynamics. The model can be used to estimate important quantities in the theory and practice of 

population recovery.
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1. Introduction

Change more than stasis has perplexed both theoretical and empirical students of ecological 

time-series. Questions like: “when is a change in dynamics going to occur?”, or “why does a 

change in dynamics occur?” have preoccupied ecologists working in population dynamics 

for decades now [1]. Yet, relatively missing in the theoretical population ecology literature 

(but see [2]) is an in-depth exploration of how a change in a ecological process, such as 

density dependence, can drive change in the statistical properties of a (inherently stochastic) 

dynamic system. How these in turn result in changes with direct management implications is 

a question of paramount relevance in conservation biology.

The origin of this paper can be traced to a theoretical and empirical study of the population 

dynamics of a salmonid species by members of the Taper laboratory and colleagues [3, 4, 5, 

6, 7, 8, 9]. In particular, we were then aiming at modeling the reaction of the population 

dynamics of a Bull Trout population (Salvelinus confluentus) to a drastic change in the 

community composition. Such change was noticeable by eye in the trends of the annual 

counts of adult females (data from the Montana Fish and Wildlife Service): around 1991, a 

marked drop in abundances consistently occurred in different tributaries of the affected river 

and lake system. This scenario led us to specify a natural model candidate: a population 

dynamics model with a change-point. After all, that very same statistical model had long 

been used in statistical time series modeling. Managers were and are eager for answers to 

questions like: how were the dynamics before the change affecting the dynamics after the 

change, and the extent of the change? After so many years fluctuating at low abundances, is 

the population expected to recover? If so, how long does the recovery process would take?

The strength and effect of density dependence has long been a focus of theoretical and 

applied population ecology [10, 11]. Although the dependence of the per capita growth rate 

of a species on its own density or abundance is now widely regarded as a main driver of 

population dynamics, such proposition still instills rich debates, theoretical problems and 

practical dilemmas (see citations in [12], [13], [14]). Our approach directly links a change in 

dynamics with this central concept in theoretical ecology.

The purpose of this paper is to show that progress in understanding population trends with a 

change point does not reside per se in the implementation of statistical methodologies 

aiming at detecting and quantifying change. Rather (through the analysis of these Bull Trout 

population trends) we found that hidden within the numerical evaluation of the standard 

matrix model specification of the change-point auto-regressive moving average model, was 

an ecologically meaningful mechanistic process. Clear patterns and coherent algebraic 

structures appeared that showed how the strength of density dependence shapes the post 

change-point dynamics. These expressions partitioned the variance components of the 

stochastic population process in a way that it allowed us to directly answer those important 

managerial questions through changes in the strength of density-dependence. Surprisingly 

then, parameter estimation turned out to be a simple by-product of the process of scientific 

inquiry of what a stochastic model was really implying.
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We strongly believe that the results presented in this paper are generally important for two 

reasons: first, these results have been all along within the reach of any statistical analysis of 

population time series data but have so far been overlooked, hidden within the associated 

matrix algebra calculations of any statistical time series analysis. Second and most 

importantly, to our knowledge no other work extracts from routine matrix algebra 

calculations like we do, the explicit and readily interpretable algebraic forms that allow the 

analyst to go back and forth between the statistical and numerical phrasing of a change and 

its ecological interpretation.

Statistical time series models with change points in population dynamics have long been 

used [1] but are nowadays rarely routinely considered in ecological analyses despite being 

extensively studied in the statistical literature (but see [15, 16, 17, 18, 19]). Asymptotics of 

maximum likelihood parameter estimates have been derived [20, 21, 22, 23]. Hypotheses 

tests for the presence of change points have been proposed [24, 25, 26, 27, 28, 29]. Quality 

control theory features studies of how to incorporate change point warnings in control charts 

[30, 31, 32]. These statistical methods usually test whether an observed time series of 

population abundances (or densities) depart from a fixed deterministic equilibrium, or from a 

stochastic stationary distribution. In the first approach, the observed population abundances 

are observations with measurement error (observation error) added to a deterministic 

equilibrium or trend. In the second approach, stochastic perturbations are included in the 

dynamic model to describe the natural fluctuations in abundance. These natural fluctuations 

are also known as “process noise” [7]. With process noise, concepts from deterministic 

ecological accounts of population regulation take on new forms. For instance, a stable 

equilibrium of population abundances becomes a stationary probability distribution in 

stochastic population models [33]. Although these statistical studies provide substantial 

underutilized opportunities for ecological data analysis, missing to date is an ecological 

understanding of the dynamical properties of populations undergoing a change point.

The last twenty years of research in statistical population dynamics concentrated on 

parameter estimation, model selection and hypothesis testing of models with and without 

process and observation error [12, 34, 35, 36, 37, 7, 38, 39, 40, 41, 42, 43]. This research 

program is warranted because the effective statistical coupling of empirical observations 

with mathematical models is critical for testing hypotheses concerning population regulation 

[44]. However, the ecological investigation of populations undergoing change has lagged 

behind the attention to statistical issues [7, 45]. This paper seeks to understand what are the 

ecological consequences of population processes that are not static, but undergo change. To 

do that, we reveal how the analytical phrasing of a change in a dynamic model translates into 

readily interpretable and closed-form mathematical changes in the stochastic properties of 

the population process.

The key idea of this paper is to represent an ecological change point as a saltational change 

in the parameters of the stochastic population model. Such a change produces both a shift in 

the stationary distribution of population abundance and a transition to a new equilibrium 

distribution. We obtain simple formulae characterizing the statistical distribution of the 

population process during the transition between stationary distributions of abundance. Our 

study demonstrates that certain historical properties of a population’s growth dynamics are 
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determined by the strength of density-dependent processes. In particular, a time series 

transitioning from one stationary distribution to another contains information about where 

the process was before, where is it heading, and how long it is going to take to get there. We 

illustrate how to harness the information in time series containing transitionary portions via 

maximum likelihood estimation for state-space models. The model proposed here provides 

new insights into the role of density dependence in shifting environments. This model also 

represents a practical tool for detecting and predicting change events in population 

monitoring.

2. The strength of density dependence in discrete time models

Consider the general discrete time population growth model nt+1 = f(nt) = λ(nt)nt, where nt 

is the population density or abundance at time t and λ(nt) is the (density-dependent) per 

capita growth rate. Assume that f(n), the recruitment map, is continuously differentiable and 

that n* is its non-trivial equilibrium abundance (i.e. its satisfies f(n*) = n*).

Three measures of the strength of density dependence have been suggested. The first 

measure is motivated by thinking of the strength of density dependence simply as the 

marginal effect on the per capita growth rate of an increase in density [10, 46], which 

according to our general setting, corresponds to ∂λ(nt)/∂nt. This is a measure of the effects 

of density at the individual –not population– level that has been used, among other things, to 

phrase an evolutionary perspective of intra-specific competition as the way individual, 

demographic traits respond to an increase in density [46]. Because for some discrete, 

density-dependent maps the per capita growth rate λ(nt) is written as an exponential 

function (as in the Ricker or in the Gompertz equations, see [12, 11]), the marginal effect of 

an increase in density can be conveniently measured and plotted in the log-scale of the per 

capita growth rate by computing ∂ ln λ(nt)/∂nt.

The second measure corresponds to the derivative of the recruitment map f(n) at equilibrium. 

Such measure can be directly read from the graph of f(n) as a function of n as the value of 

the slope when f(n) crosses the 1:1 line. It is important to note that a consideration of both an 

individual and a population wide measure of density dependence is of obvious importance in 

population ecology to explain persistence, average abundance, bounds on temporal stability 

and in general, for a careful understanding of the unfolding of population dynamics [46].

A third measure of the strength of density dependence in a simple model with no age 

structure was given by Lande et al (2002), who defined it as the negative elasticity at 

equilibrium of the per capita population growth rate with respect to change in the 

population. This amounts to computing 

− n
λ(n)

∂ λ(n)
∂ n n = n∗ = − 1

λ(n)
∂ λ(n)
∂ ln n n = n∗ = − ∂ ln λ(n)

∂ ln n n = n∗. This definition of the strength of 

density-dependence is insightful and relevant in population dynamics modeling, not only 

because it provides a scale-free measure of the change in the per capita growth rate as the 

(log) population size varies, but also because it is readily extendable to scenarios dealing 

with more complex life histories [47].
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3. Methods

3.1. The discrete Gompertz model

The deterministic skeleton of our stochastic model is the discrete-time Gompertz model [7, 

11] given by:

nt = nt − 1e
a + blnnt − 1, (1)

where nt is population abundance at time t and a and b are constants. Note that many 

formulations of the Gompertz model explicitly include a minus sign before b and thus can 

look superficially different.

The non-trivial equilibrium density, or carrying capacity is given by n* = e−a/b. This 

equilibrium is asymptotically stable, provided the absolute value of the derivative of the 

recruitment map (eq. 1) evaluated at n* is less than 1 [48], i.e., if |1 + b| < 1. For this model, 

the strength of density dependence measured using the per capita growth rate is ∂λ(nt)/∂nt = 

bea+bln nt−1/nt which is equal to b/exp{−a/b} at equilibrium. The measure of the strength of 

density dependence using the logarithm of the per capita growth rate, written as ∂ ln λ(nt)/

∂nt = b/nt is again equal to b/exp{−a/b} at equilibrium. Finally, Lande et al.’s negative 

elasticity is simply given by −b for all population abundances. Then, the density dependent 

coefficient b, or its carrying capacity-scaled version b/exp{−a/b}, is directly involved in the 

definition of the strength of density dependence. So following [47, 49, 11], heretofore we 

identify b as the strength of density dependence for the Gompertz model, due to its role in 

the rate of approach to a locally stable equilibrium.

Let xt = ln(nt) and c = b + 1. Then, Equation (1) becomes the first order difference equation:

xt = xt − 1 + a + bxt − 1
= a + cxt − 1,

(2)

whose solution can be found by induction

xt = ct x0 − a
1 − c + a

1 − c , (3)

provided c ≠ 1. If c = 1 then b = 0 and population growth is density independent. The 

solution in that case is xt = x0 + at. If density-dependent processes lead to a stable 

equilibrium density, i.e, if |c| < 1, then we may distinguish two cases: 0 < c < +1 and −1 < c 

< 0. In both cases, as t→∞, the log population density (abundance) xt
a

1 − c = ln n∗ ≡ x∗. 

In the first case, xt approaches x* directly, either from above or below, depending on 

initialization. In the second case, the deterministic map exhibits damped oscillatory behavior 

while approaching the equilibrium.
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3.2. The stochastic Gompertz model with environmental noise

A model of Gompertz population growth with environmental stochasticity may be written as

Nt = Nt − 1λ(Nt − 1)Wt = Nt − 1 exp {a + b ln Nt − 1}Wt,

where the population size Nt is now modeled with a random variable representing 

environmental variation. A useful model for the noise takes the Wt to be independent and 

identically distributed (iid) log-normal random variables describing heavy-tailed temporal 

perturbations of the per-capita growth rate [50]. Accordingly, we set Wt = eEt where Et ~ 

N(0, σ2) to get

Nt = Nt − 1 exp {a + b ln Nt − 1 + Et} .

On the logarithmic scale, with Xt = lnNt, this stochastic Gompertz model with 

environmental noise becomes the well known AR(1) process

Xt = a + cXt − 1 + Et . (4)

Provided |c| < 1, this stochastic process has a normal stationary distribution with mean and 

variance given by

E[X∞] = lim
t ∞ E[Xt] = a

1 − c

Var[X∞] = lim
t ∞ Var[Xt] = σ2

1 − c2 .

Thus, both, the process stationary mean (equivalent to the deterministic stable equilibrium) 

and its associated variance critically depend on the strength of density dependence. Simply 

put, although external, environmental variability induces a variability in the growth rate, the 

magnitude and intensity of the population fluctuations are also influenced by the strength of 

density dependence. This feature led Ives et al (2003) to a detailed study of the concept of 

ecological stability applied to stochastic community dynamics models. Before moving on to 

the breakpoint model, we note that through this article, random variables will denoted with 

capital letters and realizations of these random variables with lower case letters. Also, 

random vectors like the multivariate random vector X = [X0,X1,X2,…, Xq]′, where the Xi 

denote the log-population abundance at time i, will be denoted with capital, boldface letters. 

Realizations of the random vectors will be written with lower case, bold face letters. Finally 

note that here, as in all the vectors we define, the length of the vector is the last index (q in 

this case) plus one.
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3.3. The breakpoint Gompertz model

We consider the case where the stochastic process model undergoes a change after a given 

time time step, τ. Operationally, such change is implemented by assuming that the value of 

one or more of the stochastic Gompertz model parameters changes after time τ. A general 

model, from which all of the possible changes can be specified as sub-models, specifies that 

there are two different sets of parameters for the stochastic Gompertz model before and after 

the change-point. If Zt denote iid N(0, 1) random variables, a general change-point model is 

written as

Nt =
Nt − 1 exp {a1 + b1ln Nt − 1 + σ1Zt} if t ≤ τ

Nt − 1 exp {a2 + b2ln Nt − 1 + σ2Zt} if t > τ . (5)

In the log-scale, the model becomes

Xt =
a1 + c1Xt − 1 + σ1Zt if t ≤ τ

a2 + c2Xt − 1 + σ2Zt if t > τ . (6)

Here, the environmental noise process is written as σiZt to show model parameter changes 

after the breakpoint, as opposed to Et as above. Also, whether or not t < τ will determine if 

Et N(0, σ1
2) or Et N(0, σ2

2), so no additional subscript or notation will be used from now on to 

distinguish between the environmental noise random variables before and after the 

breakpoint. Also, as before, we assume that |c2| < 1. Writing the breakpoint model as in 

equation 6 is a common practice, for instance, among studies of applications of Random 

Markov Fields in Biology [51]. However, as we show below, writing the breakpoint model in 

such form, and/or its equivalent matrix representation falls short of a full analysis of the role 

of the strength of density dependence in shaping the speed of the change and all statistical 

properties (means, variances and covariances) of the process. After writing the model in its 

matrix format, we did the explicit matrix algebra multiplications, simplified the expressions 

and sought out to write the moments of the process as a function of the strength of density 

dependence. The resulting formulae as well as their ecological interpretation are the main 

results of this paper. To begin these calculations, by induction (see Appendix 1), we arrive at 

a matrix equation for the entire random vector of the log abundances before and after the 

breakpoint:
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X0
X1
X2
X3
⋮
Xτ

Xτ + 1
Xτ + 2
Xτ + 3

⋮
Xτ + q

= a1

0
1

1 − c1
2

1 − c1

1 − c1
3

1 − c1
⋮

1 − c1
τ

1 − c1

c2
1 − c1

τ

1 − c1

c2
21 − c1

τ

1 − c1

c2
31 − c1

τ

1 − c1
⋮

c2
q1 − c1

τ

1 − c1

+ a2

0
0
0
0
⋮
0
1

1 − c2
2

1 − c2

1 − c2
3

1 − c2
⋮

1 − c2
q

1 − c2

+

1 0 0 0 0 … … … … … 0
c1 1 0 0 0 … … … … … 0

c1
2 c1 1 0 0 … … … … … 0

c1
3 c1

2 c1 1 0 … … … … … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ 0
c1

τ c1
τ − 1 c1

τ − 2 … c1 1 0 … … … 0

c2c1
τ c2c1

τ − 1 c2c1
τ − 2 … c2c1 c2 1 0 … … 0

c2
2c1

τ c2
2c1

τ − 1 c2
2c1

τ − 2 … c2
2c1 c2

2 c2 1 0 … 0

c2
3c1

τ c2
3c1

τ − 1 c2
3c1

τ − 2 … c2
3c1 c2

3 c2
2 c2 1 … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 0
c2

qc1
τ c2

qc1
τ − 1 c2

qc1
τ − 2 … c2

qc1 c2
q … c2

3 c2
2 c2 1

X0
E1
E2
E3
⋮
Eτ

Eτ − 1
Eτ − 2
Eτ − 3

⋮
Eq

(7)
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or

X = a1g1 + a2g2 + ΓZ . (8)

Note that vector Z is Multivariate Normal (MVN) with mean

E[Z] = m =
a1

1 − c1
0 0 … 0

1 × (τ + q + 1)
′

and variance-covariance matrix

Var[Z] = Φ =

σ1
2

1 − c1
2 0 0 … … … … 0

0 σ1
2 0 … … … … 0

⋮ ⋮ ⋱ … … … … 0

0 … 0 σ1
2 0 … … 0

0 … … 0 σ2
2 0 … 0

0 … … … 0 σ2
2 … 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 0

0 … … … … … 0 σ2
2

,

where the changes in the diagonal occur in the 2nd and in the (τ + 2)th elements. Because a 

linear transformation of a multivariate normal distribution is again multivariate normal 

(Theorem 3.3.5 p. 101 Graybill 1976), it immediately follows that

X MVN (μτ = a1g1 + a2g2 + Γm, ∑τ = ΓΦΓ′), (9)

where the subscript τ indexes the mean and the variance of the process with a change-point, 

to explicitly differentiate them from the mean μ and variance Σ of the process without a 

change-point (see Appendix 1).

3.4. Parameter estimation

A state space model where sampling error is compounded to the process error can be easily 

specified, and that is useful for parameter estimation. We call this model the Break-Point 

Gompertz State-Space (BPGSS) model. Using equation 9 and a lognormal sampling error 

process (see the discussion of [7] for a justification of such model), the multivariate 

distribution of the log-observations with added sampling error Y = X + F is
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Y MVN (μτ = a1g1 + a2g2 + Γm, Vτ = ΓΦΓ′ + ν2I) . (10)

This MVN distribution for the observations follows since both, the pdf for the process X and 

for the observation error F are both MVN, just as in the model of [7]. Parameter estimation 

via Maximum Likelihood (ML) for this state space model then proceeds by maximizing this 

multivariate pdf over the model parameters. This pdf can be readily programmed as it is 

written above, but the computations can be rendered much more efficient when the matrix 

multiplications in expression (10) are carefully simplified (see Appendices 1 and 2). Sample 

code for parameter estimation is uploaded as supplementary material and available upon 

request from JMP.

3.5. Testing the robustness of the BPGSS model

Clearly, the BPGSS model is a simplified representation of a population dynamics 

undergoing a drastic change. One of the most important questions for practicing ecologists is 

to what extent these simple population dynamics models can be used to infer intrinsic 

properties of the system that can be of immediate utility. Therefore, we performed a 

validation effort via simulations that aimed at testing the robustness of the quantitative and 

qualitative model inferences derived from this model. To do that, we simulated breakpoint 

dynamics by relaxing most of the major simplifying assumptions made by the BPGSS model 

and adding biological complexity. Then, the simulated dynamics (i.e. time series) were 

saved and used to confront the BPGSS model with different ecological scenarios of interest.

The discrete time, discrete state stochastic process used to simulate population dynamics 

was a Markov process that, besides incorporating sampling error, accounted for 

demographic stochasticity and different forms of environmental variability. Most of the 

environmental noise models, like the BPGSS model, incorporate stochasticity in the 

maximum growth rate. Such noise is multiplicative in the scale of population abundances, 

and additive in the scale of the logarithmic per capita growth rate. Another possibility, 

however, is to assume temporal randomness in the strength of density dependence. This 

approach assumes that the environmental forces shaping the population dynamics affect the 

intensity of density-dependence rather than the maximum growth rate and to date, remains a 

rarely explored model alternative (but see [52, 53]).

Our discrete-time Markov model of reproduction and survival followed the general discrete 

time model construction presented by [54, 55] and later revisited and expanded by [56] and 

[53]. A detailed explanation of such construction is given in the supplemental material of 

[56]. Briefly, population growth from one generation to the other is modeled as a two-stage, 

stochastic process: at time t the nt adults present in the population give birth each to a 

random number of offspring (i.e. 0, 1, 2, 3, …). Then, we assume that both adults and 

offspring survive to time t+1 according to a density dependent survival probability, which 

takes on one of the well-known discrete-time density-dependent maps (Ricker, Hassell, 

Gompertz, Below, etc…). This reproduction and survival process considers only 

demographic stochasticity. To include environmental stochasticity, [54] and [55] have 
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previously assumed before that the mean of the offspring distribution varies randomly from 

one time step to the next according to a stochastic environmental process. Such variability 

mimics the random, temporal fluctuation in the quality of the environment that leads to 

temporal fluctuations of the average number of offspring produced by every adult. As 

recently shown by [53], this is but one way of incorporating environmental variability. Here, 

we assumed that the environment randomly perturbs both the mean of the offspring 

distribution and the density dependent survival probability. For our simulations, we assumed 

that the random (over time) environmental process, denoted Λ, had independent and 

identically distributed realizations from a Gamma(k,α) distribution. The results we present 

here use the value of the scale parameter α set to 1000 and the shape parameter k set to 

1500, but hold for other parameter values as well.

Accordingly, conditional on the realized value λ of the random environmental process, each 

individual, independently from each other, was assumed to have a Poisson (λ) offspring 

distribution. As a result, from time t to time t+1, the (conditional) number of potential 

recruits was distributed Poisson (ntλ). We then modeled offspring survival with a density 

dependent, binomial thinning process. The survival probability of the offspring (potential 

recruits) was taken to be an explicit function of the population size (density) at time t, 
denoted as nt by writing it as

pt = 1
1 + (λ − 1)(nt /K)β .

This function for the offspring survival probability pt corresponds to Below’s recruitment 

map [57]. The adoption of this function is important because it provides a means to test the 

generality of our results under different forms of density dependence. Indeed, in this 

function pt the parameter β controls the type of compensatory dynamics (under 

compensatory (β < 1), compensatory (β = 1) and over compensatory (β > 1). Thus, tuning 

the value of the parameter β effectively changes the shape and curvature of the recruitment 

map and can recapitulate the behavior of an entire variety of discrete recruitment maps (see 

[57] for details).

Accounting for binomial survival when the number of potential recruits is Poisson 

distributed is well known to be a special case of a “randomly stopped sum” and results in a 

Poisson distributed total number of recruits from one time to the next [54]. Here, the 

(random) total number of recruits N for the next generation, is denoted as Nt+1. From the 

previous assumptions, it follows that Nt+1|(Nt = nt,Λ = λ) ~ Poisson (λntpt). Note again that 

because the realized value of the environmental process λ modifies the density dependent 

term in Below’s model, the effect of the stochastic environmental process we specified is 

qualitatively different from the environmental noise formulation proposed in our BPGSS 

model. This stochastic model formulation where the stochastic environmental process affects 

the density-dependent coefficient was recently studied by [53]. Introducing this type of 

variability changes the well-known scaling relation between the population variance and 

population abundances in stochastic growth models, and may be important in many animal 

populations [53]. Averaging the environmental process over time results in the marginal 
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transition pdf of the process. This transition, however, does not result in the well-known 

demographic and environmental negative binomial process [54], because of the complex 

environmental process effects.

To incorporate different density-dependent scenarios, we used three values for β: 0.5, 1 and 

1.2. These values represent respectively under-compensatory, compensatory and over-

compensatory dynamics. This axis of variation allowed us to test the robustness to different 

forms of density dependence. The simulations were started at the value of the deterministic 

skeleton’s carrying capacity in the log-scale (14) and a change point of dynamics was 

introduced at time t = 40. The change consisted of a change in the deterministic skeleton 

carrying capacity, from 14 to 4.48 (in the log-scale). Although we introduced a single 

change at a single time point, for each value of β it took some time for the time series to 

“stabilize” around the second deterministic carrying capacity. The time it takes for the 

average of the process to reach the arithmetic average of the two (log) deterministic carrying 

capacities is heretofore referred to as the “half-life of the change”. The resulting simulated 

population dynamics was sampled 1000 times per value of β using a multiplicative 

lognormal sampling error with parameters μ = 0 and ν2 = 0.2315. This sampling resulted in 

1000 time series of length 200 per value of β that were taken as data sets to which the 

BPGSS model was fitted. Furthermore, for each value of β, the “true” half-life of the change 

point was computed numerically as the average half-life in 50000 simulated time series. We 

then computed the relative bias of our half-life estimator for each one of the 1000 simulated 

time series to which the BPGSS model was fitted.

4. Results

Understanding the breakpoint dynamics

The vector expressions in the multivariate normal distribution of the log-normal abundances 

(eq. 9) conceal explicit, simple expressions linking the dynamics before and after the 

change. In particular, immediately after the change, there is a transitional period. The time-

varying distribution of this transition contains information about both, the past stationary 

mean and variance, as well as the future stationary mean and variance. This information is 

exposed by partitioning the vector X of log-population abundances over time, into a vector 

of pre-breakpoint log-abundances X1 = X0 X1 X2 … Xτ ′ and another of post-breakpoint 

log-abundances X2 = Xτ + 1 Xτ + 2 … Xτ + q ′. In what follows, we state six main results 

along with three corollaries that follow from this partitioned structure. These results follow 

from a detailed algebraic examination of the vector and matrix calculations resulting from 

the model formulation in equations 7–9. These algebraic examinations, necessary to fully 

understand the results, are presented in appendices 1 and 2. Each one of these results brings 

a different dimension to the understanding of the transitional dynamics in ecological terms. 

At the end, we also list the result regarding the robustness tests of the BPGSS model.

Result 1—In transition, the mean of the (log) population process becomes a weighted 
average of the stationary mean before the breakpoint, and the stationary mean predicted by 
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the new set of dynamical parameters. The weights of this weighted average are given by c2
t

and 1 − c2
t  respectively, where t is the number of time steps after the break.

The result follows directly from the expression for the mean of the multivariate distribution 

in eq. 9. By developing and explicitly writing the entries of the vector and matrix 

calculations in this expression, we found that the mean vector of the first partition X1 is 

given by μ1 =
a1

1 − c1
j(τ + 1) × 1, where j(τ+1)×1 is a vector of ones, whereas the mean of the 

second partition is given by the time-varying weighted average:

μ2 =

a1
1 − c1

c2 +
a2

1 − c2
(1 − c2)

a1
1 − c1

c2
2 +

a2
1 − c2

(1 − c2
2)

a1
1 − c1

c2
3 +

a2
1 − c2

(1 − c2
3)

⋮
a1

1 − c1
c2

q +
a2

1 − c2
(1 − c2

q)

. (11)

The first element in the vector above (eq. 11) is the mean of the transition process one time 

step after the breakpoint. This element is a weighted average of the first stationary mean μ1 

= a1/(1 − c1) and the second stationary mean μ2 = a2/(1 − c2). The weights are given by the 

strength of density-dependence after the breakpoint, c2. Thus, this coefficient completely 

determines how important the mean of the first phase of the process is right after the change. 

Two time-steps after the breakpoint, the weights are given by c2
2 and 1 − c2

2 respectively. 

Again, because 0 < c2 < 1, c2
2 < c2 and hence, the influence of the first stationary means 

decays two time steps after the breakpoint. t time units after the breakpoint, the weights 

become c2
t  and 1 − c2

t . As a result, as the number of time steps t after the breakpoint grows 

large, the weight for the first stationary mean goes to 0 while the weight of the second 

stationary mean converges to 1. It then follows that the mean of the post-breakpoint process 

truly represents a transitionary trend.

Result 2—The speed of the change of the mean of the log-population process (eq. 9) is 
determined by the strength of density dependence. The half life of the change in means, or 
the average time t̄ it takes for the average of the process to reach (μ1 + μ2)/2 from μ1, is a 
quantity that directly depends on the strength of density dependence post breakpoint. Thus, 
any property of this dynamic system that depends on the waiting time to complete the 
transition, also depends on the strength of density dependence.

An explicit expression for the half life of the transition in means is readily found by setting
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a1
1 − c1

c2
t +

a2
1 − c2

1 − c2
t =

a1
1 − c1

1
2 +

a2
1 − c2

1
2

and solving for t̄, which yields

t = ln (1/2)/ ln c2 . (12)

Thus, the speed of the change from one stationary mean to the other one is determined by 

the strength of density dependence after the breakpoint. For example, if c2 is close to 0, then 

the transition weights c2
t  and 1 − c2

t  (see eq. 11) converge fast to 0 and 1, respectively and the 

process approaches the second stationary mean faster. A detailed characterization of the 

speed of the change as a function of c2 is given in Figs. 1 and 2. From this characterization it 

is readily apparent that when 1/2 < c2 < 1 the strength of density dependence can be thought 

as weak; strong when −1/2 < c2 < 1/2 and as very strong when −1 < c2 < −1/2 (see legend in 

Fig. 2).

Result 3—The covariance between a population abundance before the breakpoint and after 
the breakpoint decays geometrically over time in powers of c2 to the right of the breakpoint 
and in powers of c1 to the left of the breakpoint. The intensity of such covariance is always 
proportional to the variance of the stationary distribution of the first partition.

The partitioned representation of the log-population process X is completed by writing its 

variance covariance matrix as a block matrix:

∑τ =
∑11(τ + 1) × (τ + 1)

∑12(τ + 1) × q

∑21q × (τ + 1)
∑22q × q

, (13)

where the diagonal matrices Σii, i = 1, 2 are the covariance matrices for the pre and post-

breakpoint elements of X respectively. Accordingly, the sub-matrix Σ11 specifies the 

variance of the process at every time point before the breakpoint and the covariances among 

these points. Likewise, the sub-matrix Σ22 specifies the variances at every point after the 

breakpoint, along with the covariances among these points. As we will see below, such 

variances and covariances also bear information about the process before the breakpoint. 

Finally, the sub-matrix Σ21, which is equal to Σ12′, specifies the covariance Cov(X2,X1), 

between any time point before the breakpoint and any point after it.

Remarkably, these unwieldy expressions reduce to simple mathematical forms that can be 

easily interpreted. To find these explicit expressions, we first recall that Στ = ΓΦΓ′, and thus 

that it is convenient to also partition the matrices Γ and Φ into four sub-matrices matching 

the dimensions of the Στ blocks. That is,
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Γ =
Γ11(τ + 1) × (τ + 1)

Γ12(τ + 1) × q
Γ21q × (τ + 1)

Γ22q × q

, and Φ =
Φ11(τ + 1) × (τ + 1)

Φ12(τ + 1) × q
Φ21q × (τ + 1)

Φ22q × q

.

Next, noting that Γ12 = 0, the variance-covariance of the process can be re-written as

∑τ = ΓΦΓ′ =
Γ11Φ11Γ11(τ + 1) × (τ + 1)′ Γ11Φ11Γ21(τ + 1) × q

′

Γ21Φ11Γ11q × (τ + 1)′ Γ22Φ22Γ22q × q
′ + Γ21Φ11Γ21q × q

′ . (14)

Elementary matrix multiplications and an examination of the power patterns (see Appendix 

2) leads to a simple expression of the elements of the matrix Σ12 = Γ11Φ11Γ21′, which 

represents the covariance between any process realization before the breakpoint X0,X1, …, 
Xτ, and any process realization after the breakpoint, Xτ+1,Xτ+2, …, Xτ+q:

Cov(Xi, X j) =
σ1

2

1 − c1
2c1

τ − ic2
j − τ, i = 0, 1, …, τ, and j = τ + 1, τ + 2, …, τ + q . (15)

Thus, these covariances are proportional to the variance of the stationary distribution of the 

first partition and their strength increases from the left of the breakpoint in powers of c1, and 

to the right of such point, it decreases in powers of c2.

Result 4—The variance-covariance matrix Σ22 can be decomposed into two variance 
component matrices. An examination of these components reveals exact analytical 
expressions detailing information about the past and the future stationary distribution of the 
population process concealed in the post-breakpoint time series.

While the sub-matrix Σ11 is identical in form to the variance covariance matrix of the 

process without a break-point (eq. A.6, except that with dimensions (τ + 1) × (τ + 1)), the 

sub-matrix Σ22 is the sum of two matrices, ∑22
(1) = Γ21Φ11Γ21q × q

′  and 

∑22
(2) = Γ22Φ22Γ22q × q

′ .

Result 4.1: The first variance component of the matrix Σ22, given by 

∑22
(1) = Γ21Φ11Γ21q × q

′ , is proportional to the variance of the stationary distribution in the 

first partition. The weight of such stationary variance decays over time, in powers of c2.

After performing the matrix multiplications in the right hand side (RHS) of 

∑22
(1) = Γ21Φ11Γ21q × q

′  and simplifying the resulting expressions (see Appendix 2) the 

elements of Σ22
(1) are found to be:
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∑22
(1)

i, j
=

σ1
2

1 − c1
2c2

i + j, where i, j = 1, …, q . (16)

Thus, the first variance component of the second time series partition is proportional to the 

variance of the stationary distribution in the first partition, 
σ1

2

1 − c1
2 . The influence of such 

stationary variance decays over time, in powers of the second dynamics’ density-dependent 

effect, c2.

Result 4.2: The second variance component is proportional to the stationary variance of the 

second partition. These covariances measure the departure of the variance-covariance matrix 

of the second partition from its limiting form at stationarity. The magnitude of the departure 

from the limiting covariances is controlled by the strength of density dependence in the 

second partition, modulated by the positioning of the observations relative to each other and 

to the location of the breakpoint.

The elements of the second matrix ∑22
(2) = Γ22Φ22Γ22q × q

′  are given by

∑22
(2)

i, j
=

σ2
2

1 − c2
2 c2

∣ i − j ∣ − c2
i + j , where i, j = 1, …, q . (17)

To understand this formula, note that 
σ2

2

1 − c2
2c2

∣ i − j ∣ is the covariance between two 

observations |i − j| time units apart, had the second partition arisen directly from the 

stationary distribution of the process parameterized with the second set of parameters. Thus, 

this second matrix is a measure of the departure of the variance-covariance matrix of the 

second partition from what the variance-covariance matrix would be if the process, right 

after the breakpoint, had been drawn from the second stationary distribution. Thus, it follows 

that the matrix Σ22 can be expressed as a sum of two variance components, one directly 

related with the stationary variance of the process from the first partition, and another 

measuring the divergence from stationarity in the second partition in the variance-covariance 

space. In the particular case when i = j (i.e. for the diagonal elements of Σ22), this sum gives 

the variance of the elements after the second partition. This brings us to our result:

Result 4.3: The variances of the log-observations after the breakpoint (the diagonal elements 
of the variance-covariance matrix Σ22) can be written as a weighted average of the stationary 
distribution before and after the breakpoint.

The developed representation of the transitional variances using the variance decomposition 

from “Result 4.1 and 4.2” turns out to be analogous to the the equation for the transtional 
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means (eq. 11). Specifically, these variances can be written as a weighted average of the 

variance of the stationary distribution before and after the breakpoint:

{∑22}
i, i

=
σ1

2

1 − c1
2c2

2i +
σ2

2

1 − c2
2 1 − c2

2i . (18)

The half life of the change in variance, denoted t̃ and found by setting

σ1
2

1 − c1
2c2

2 t∼ +
σ2

2

1 − c2
2 1 − c2

2 t∼ =
σ1

2

1 − c1
2

1
2 +

σ2
2

1 − c2
2

1
2,

and solving for t̃ is given by

t∼ = ln 1/2
2 ln c2

= t∼
2 . (19)

Therefore, the variance of the process transitions twice as fast as the mean of the process 

from one dynamical scenario to the next. A depiction of these formulae accompanied with 

matching empirical trends is shown in Fig. 3

Result 5—The variance-covariance matrix of the observations Y, the process with added 
sampling error, is written as the sum of the variance-covariance of the process and the 
variance-covariance matrix of the observation error model.

According to the sampling error setting (see Parameter Estimation subsection above),

Vτ =
V11(τ + 1) × (τ + 1)

V12(τ + 1) × q

V21q × (τ + 1)
V22q × q

=
Γ11Φ11Γ11′ + ν2I Γ11Φ11Γ21′

Γ21Φ11Γ11′ Γ21Φ11Γ21′ + Γ22Φ22Γ22′ + ν2I
.

(20)

From this development, it follows that the log-likelihood needed for parameter estimation 

accounting for a change-point in the dynamics occurring between times τ and τ + 1 is 

simply the probability density function (pdf) of such MVN distribution evaluated at the 

observations:
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ln L(a1, c1, σ1
2, a2, c2, σ2

2, ν2) = − τ + q + 1
2 ln (2π) − 1

2 ln ∣ Vτ ∣ − 1
2(y − μτ)′Vτ

−1(y − μτ)

.

(21)

A by-product of this multivariate normal formulation is that the problem of estimation in the 

presence of missing observations in the time series is readily solved (see Dennis and 

Ponciano 2014): suppose that a subset s of elements of the vector Y is missing. Then, the 

likelihood function of the remaining observations is simply written as in eq. 21 but by 

removing the sth elements in the mean vector μτ and the sth rows and columns of the matrix 

Vτ.

Result 6—Despite our model being a simplified representation of a change in population 

dynamics, statistical inferences from this model are robust to biologically realistic departures 

of the model assumptions.

After simulating from a model with both, demographic and environmental stochasticities as 

well as sampling error, the half-life estimates obtained from fitting the BPGSS model appear 

reliable and with almost no bias, even at the most extreme level of simulated compensatory 

dynamics (see Fig. 4). The computer code in R used to do the simulations, parameter 

estimation and plotting of each one of the figures is provided in the first author (JMP)’s 

laboratory web page.

5. Discussion

In this study, we show that after a saltational change in population dynamics’ parameters 

triggered by a change in environmental conditions, the transition to new equilibrial 

conditions is governed by the strength of density dependence. In response to a change in 

environmental conditions, the stationary probability distribution of a species’ population size 

undergoes a transition and asymptotically approaches a new equilibrium distribution. The 

statistical properties, means, variances and covariances, respond to change in different ways 

(Results 1 through 6 above). Remarkably, in all of them it is density dependence what 

governs the speed of change. In all of these statistical properties, the history of the past 

persists and the future is anticipated as an explicit function of the strength of density 

dependence.

According to our second result, the strength of density dependence controls the average of a 

first passage time, the average time it takes to complete the transition from one stationary 

mean to the other. This result automatically connects the strength of density dependence 

with any theoretical dynamic concept. Take for instance the concept of “potential functions”. 

For continuous time, deterministic population dynamics models of the form dn/dt = m(n), 

the potential function is defined as the function u(n) satisfying − du(n)
dn = m(n) [58]. This 
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function is deeply connected with deterministic waiting times. As Dennis et al [58] point 

out, the waiting time t(n) needed to reach abundance n from an initial abundance x can be 

written as a function of the potential function as follows

t(n) = ∫
x

n dy
m(y) = ∫

x

n dy
−u′(y) . (22)

Thus, the formulation in equation 22 aids ecological interpretation because it gives to the 

potential function a direct connection with t(n).

The famous “marble in a bowl” conceptual image has been extremely fruitful in Ecology to 

explain classical dynamic ideas like resilience [59]. The potential function u(n) is the 

mathematical representation of the “bowl” in such image. Just as the potential function is 

connected to deterministic waiting times (equation 22), one could expect our average first 

passage times, that depend on the strength of density dependence, to be connected with a 

stochastic formulation of the potential well. In fact, as depicted in ecological textbooks, the 

“bowl” is often shaken (e.g. Figure 6.15 in [59]). This stochastic formulation would then be 

the mathematical representation of dynamics under such perturbations. Importantly, 

following our results this representation of a stochastic well will not only depend on the 

strength of density-dependence but also on the variance properties of the system, which we 

have concisely described in this paper. We are developing a full treatment of the stochastic 

potential well in a separate manuscript.

Despite our model being a simplified representation of a change in population dynamics, 

statistical inferences from this model are robust to biologically realistic departures of the 

model assumptions. Indeed, here we show that the inference via ML seems to be robust to 

the inclusion of an atypical yet realistic form of environmental noise: temporal variability in 

the strength of density dependence, recently shown to be important in animal populations 

[53] (Fig. 4). This robustness confers the model the generality that is needed for sound 

hypothesis-driven learning in population dynamics modeling. After simulating from a model 

with both, demographic and environmental stochasticities as well as sampling error and 

notably, multiple forms of density-dependence, the half-life estimates obtained from fitting 

the BPGSS model appear reliable and with almost no bias, even at the most extreme level of 

simulated compensatory dynamics (see Fig. 4). These results seem to support the early result 

of [60] who found that the growth rate parameterization of the theta-logistic model that was 

fairly common across a wide taxonomic spectrum was basically equivalent to the Gompertz 

model parameterization. Providing a mechanistic support for this pattern is an interesting 

topic for further research using ecological and evolutionary arguments (see for instance 

[61]).

Bias in ML estimates of population dynamic models has been previously reported and 

remedied using REML estimation. In our applied conservation biology work (not shown 

here) using the GSS model, we have successfully applied the REML bias reduction 

technique (for an introduction to this topic in population dynamics models see [7]). A full 
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exploration of this bias-reduction issue warrants an independent research study. Therefore, 

we believe that after sufficient investigation and testing our model may turn out to be 

sufficient for understanding, management and importantly, prediction. The latter is the focus 

of our ongoing Population Viability Monitoring (VPM) programatic research [4].

A more complete characterization through simulation of the statistical properties of the 

estimators of this model is in progress and will be reported elsewhere. In particular, a 

computational study of the properties of the change point parameter estimate and of the 

biological parameters as a function of the length of the time series before and after the break 

are still needed. Given the covariance structure of the model’s second partition (i.e. the time 

series post-change point), we expect the length of the first partition, as well as the size of the 

change to be critical to be able to correctly estimate the covariance structure in the second 

partition. In that respect, the location of the change point within the time series is expected 

to play a critical role. We also expect that these statistical studies will reveal a suitable 

approximation for the usually less biased restricted maximum likelihood (REML) 

estimators. In any case, however, if a change point is suspected to be present in a particular 

data set, extensive statistical tests should be carried to confront our change-point model to a 

null model of no change, and possibly, to other types of dynamics (see for instance [62]). 

Interestingly, because the covariance structure of the second partition also contains 

information about the parameters in the first partition, one could envision estimating the pre-

breakpoint parameters even if only post-breakpoint time series data immediately after the 

breakpoint is available. An immediate application of our results and observations is the 

study of the recovery process, or the case where the change is from a lower stationary 

distribution to a (potentially) higher stationary density (see lower panel of Fig. 1). The 

explicit changes in variances and covariances of the process could then be directly linked to 

changes in, for instance, pseude-extinction dynamics.

The principles driving the inferences from these models are applicable to a wide array of 

systems, from macroscopic to microscopic scales. The advent of DNA-based technology, for 

instance, has made it possible to explore the population dynamics of entire microbial 

communities, whose signature trends exhibit sudden changes. Being able to achieve a 

process-based understanding of such changes is at the center of very active research in 

microbial ecology [63], because different microbial community compositions and structures 

are associated with different pathological states of the hosts. It follows that understanding 

the drivers of the “stability” of the community composition is key to understand how to 

manage changes in a microbial community. Our model can be readily extended to a multi-

species autoregressive format (e.g. [36]) that can serve as the basis to move the research 

from the study of patterns of change in abundance to the study of patterns of change in the 

nature and intensity of ecological interactions. Such move would make readily accessible an 

ecological, process-based understanding of change. Much recent work in ecology and other 

scientific fields aims at developing statistical tests to anticipate changes of state [64]. One of 

the latest examinations of the problem [65] emphasizes the importance of model-based 

approaches to find reliable indicators of impending regime shifts. In this paper, we shift the 

attention from the problem of detecting when a change will occur, to another non-trivial 

puzzle: understanding and predicting the post-breakpoint behavior of the population 

dynamics. In this work we show that population time series transitioning from one stationary 
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distribution to another contain explicit information about where the process was before the 

change-point, where is it heading and how long it will take to transition. We view the current 

contribution’s explicit modeling as a step in understanding the relationship between 

stochasticity, density dependence, population dynamics shifts, and the influence of the past 

dynamics on future dynamics.

This paper has begun the study of the effects on natural population of environmentally 

induced changes from the simplest manifestation of change −a single saltational break in 

parameter values. Our experience with many wildlife time-series have led us to believe that, 

while such sharp changes are not uncommon, they are certainly not universal. This 

observation raises several questions. How can we investigate the effects of more gradual 

change? And, how can we distinguish saltational parameter change from more gradual 

shifts?

Fortunately, the formulations of this paper can be immediately extended to by considering 

every time step as a potential saltational change as in [66]. As full likelihood estimates will 

be available for any modelable transition of parameter values, identifying the best model of 

change can be accomplished using information criteria. This also is material for upcoming 

research.
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AppendixA

AppendixA.1. Matrix formulation of the breakpoint process

Here we derive by induction a matrix formulation for the (random) discrete map with a 

breakpoint. To do that, we derive first the multivariate distribution of the process without a 

breakpoint, initialized at time 0 and stopped at time q. Although this derivation has been 

shown before (Dennis et al 2006), presenting it here illuminates the formulation of the 

multivariate distribution with a change-point. To find the joint distribution of [X0,X1,X2, … 

Xq]′ we first iterate the stochastic Gompertz map in eq. (4):

X0 = X0
X1 = a + cX0 + E1
X2 = a + cX1 + E2 = a(1 + c) + c2X0 + cE1 + E2
X3 = a + cX2 + E3 = a(1 + c + c2) + c3X0 + c2E1 + cE2 + E3,

Then, continuing in this fashion and using vector notation we get
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Xq = a(1 − cq)
1 − c + cqX0 + 1 c c2 … cq − 1

Eq

Eq − 1
Eq − 2

⋮
E1

, (A.1)

where we used the well known formula for the partial sum of a geometric series. Upon 

examination of this iteration, it is seen that the vector of log population sizes through time, 

X = X0 X1 X2 … Xq ′ can be written as:

X = a

0
1

1 − c2
1 − c

1 − c2
1 − c

⋮
1 − cq

1 − c

+

1 0 0 0 … 0
c 1 0 0 … 0
c2 c 1 0 … 0
c3 c2 c 1 … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
cq cq − 1 cq − 2 cq − 2 … 1

X0
E1
E2
E3
⋮

Eq

= ag(q + 1) × 1 + C(q + 1) × (q + 1)E(q + 1) × 1 .

(A.2)

Assuming that the first observation arises from the Gaussian stationary distribution with 

mean and variance a/(1− c) and σ2/(1 − c2) respectively, we then have that:
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E[E] = a
1 − c 0 0 … 0 ′ = h

Var[E] = σ2

1
1 − c2 0 0 … 0

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1

= Ψ,

(A.3)

and

E[X] = ag + Ch
Var[X] = CΨC′ .

(A.4)

Using this multivariate mean and variance and the properties of the Multivariate Normal 

(MVN) distribution (Johnson and Wichern 2002, chapter 4), it follows that

X MVN μ = a
1 − c j(q + 1) × 1, ∑ = CΨC′ , (A.5)

where

∑ = σ2

1 − c2

1 c c2 … cq

c 1 c … cq − 1

c2 c 1 … cq − 2

⋮ ⋮ ⋮ ⋱ ⋮
cq cq − 1 cq − 2 … 1

, (A.6)

and j(q+1)×1 is a vector of ones of size q + 1.

Now, to derive the multivariate distribution of the process with a breakpoint, we start by 

writing expressions for the log-population process, from time τ (right before the breakpoint) 

and onwards:
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Xτ =
a1(1 − c1

τ)
1 − c1

+ c1
τ c1

τ − 1 c1
τ − 2 … c1 1

X0
E1
E2
⋮

Eτ − 1
Eτ

,

Xτ + 1 = a2 + c2(Xτ) + Eτ + 1

= a2 + a1c2
1 − c1

τ

1 − c1
+ c2c1

τ c2c1
τ − 1 c2c1

τ − 2 … c2c1 c2 1

X0
E1
E2
⋮

Eτ − 1
Eτ

Eτ + 1

,

and continuing in this fashion, a geometric series for c2 appears in the solution:
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Xτ + 2 = a2 + c2(Xτ + 1) + Eτ + 2

= a2(1 + c2) + c2
2a1

1 − c1
τ

1 − c1
+ c2

2c1
τ c2

2c1
τ − 1 c2

2c1
τ − 2 … c2

2c1 c2
2 c2 1

X0
E1
E2
⋮

Eτ − 1
Eτ

Eτ + 1
Eτ + 2

,

Xτ + 3 = a2 + c2(Xτ + 2) + Eτ + 3

= a2(1 + c2 + c2
2) + c2

3a1
1 − c1

τ

1 − c1
+ c2

3c1
τ c2

3c1
τ − 1 c2

3c1
τ − 2 … c2

3c1 c2
3 c2

2 c2 1

X0
E1
E2
⋮

Eτ − 1
Eτ

Eτ + 1
Eτ + 2
Eτ + 3

,

⋮

⋮

Xτ + q = a2 + c2(Xτ + q − 1) + Eτ + q

= a2(1 + c2 + c2
2 + … + c2

q − 1) + … + c2
qa1

1 − c1
τ

1 − c1
+ c2

qc1
τ … c2

qc1 c2
q c2

q − 1 … 1

X0
E1
⋮

Eτ + q − 1
Eτ + q

.

(A.7)
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The induction patterns revealed by this iterated map can then be readily expressed in the 

matrix form shown in eq. (7) in the main text.

AppendixA.2. Derivation of the variance-covariance matrix of the 

breakpoint process

Here we derive the four sub-matrices of Στ. We recall that we also partitioned the matrices Γ 
and Φ into four sub-matrices matching the dimensions of the Στ blocks. For Γ these matrices 

are

Γ11(τ + 1) × (τ + 1)
=

1 0 0 0 … 0
c1 1 0 0 … 0

c1
2 c1 1 0 … 0

c1
3 c1

2 c1 1 … 0

⋮ ⋮ ⋮ ⋮ ⋱ 0

c1
τ c1

τ − 1 c1
τ − 2 … c1 1

, Γ12(τ + 1) × q
= 0,

Γ21q × (τ + 1)
=

c2c1
τ c2c1

τ − 1 c2c1
τ − 2 … c2c1 c2

c2
2c1

τ c2
2c1

τ − 1 c2
2c1

τ − 2 … c2
2c1 c2

2

c2
3c1

τ c2
3c1

τ − 1 c2
3c1

τ − 2 … c2
3c1 c2

3

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

c2
qc1

τ c2
qc1

τ − 1 c2
qc1

τ − 2 … c2
qc1 c2

q

, Γ22q × q
=

1 0 … … 0
c2 1 0 … 0

c2
2 c2 1 … 0

⋮ ⋮ ⋮ ⋱ 0

c2
q − 1 c2

3 c2
2 c2 1

and for Φ these are

Φ11(τ + 1) × (τ + 1)
= σ1

2

1
1 − c1

2 0 … 0

0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

, Φ22q × q
= σ2

2I,

and

Φ12(τ + 1) × q
= Φ21q × (τ + 1)′ = 0 .

With these matrices in place, the matrices in eqs. (16) and (17) are obtained by simple 

matrix multiplication and elementary algebraic manipulations:
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Γ21Φ11Γ21q × q
′ =

σ1
2

1 − c1
2Ω1, where

Ω1 =

c2
2 c2

3 … c2
q + 1

c2
3 c2

4 … c2
q + 2

⋮ ⋮ ⋱ ⋮
c2

q + 1 c2
q + 2 … c2

2q

.

(A.8)

whereas
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Γ22Φ22Γ22q × q
′ = σ2

2Ω2, where

Ω2 =

1 c2 c2
2 … c2

q − 2 c2
q − 1

c2 c2
2 + 1 c2

3 + c2 … c2
q − 1 + c2

q − 3 c2
q + c2

q − 2

c2
2 c2

3 + c2 c2
4 + c2

2 + 1 … c2
q + c2

q − 2 + c2
q − 4 c2

q + 1 + c2
q − 1 + c2

q − 3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
c2

q − 2 c2
q − 1 + c2

q − 3 c2
q + c2

q − 2 + c2
q − 4 … c2

2(q − 2) + c2
2(q − 3) + … + c2

2 + 1 c2
2q − 3 + c2

2q − 5 + … + c2
3 + c2

c2
q − 1 c2

q + c2
q − 2 c2

q + 1 + c2
q − 1 + c2

q − 3 … c2
2q − 3 + c2

2q − 5 + … + c2
3 + c2 c2

2(q − 1) + c2
2(q − 2) + … + c2

2 + 1

.

(A.9)
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Noting that

σ2
2 1

1 − c2
2Ω1 + Ω2 =

σ2
2

1 − c2
2

1 c2 c2
2 … c2

q − 1

c1 1 c2 … c2
q − 2

c2
2 c2 1 … c2

q − 3

⋮ ⋮ ⋮ ⋱ ⋮

c2
q − 1 c2

q − 2 c2
q − 3 … 1

is identical to the variance covariance of the second partition, had it arisen directly from the 

stationary distribution of the second set of parameters, and solving in that equation for σ2
2Ω2

leads to the expression in eq. (17).

Next, we compute Σ12 = Cov(X1,X2), which is equal to the transpose of Σ21. Straightforward 

matrix multiplications yield

∑12 = Γ11Φ11Γ21(τ + 1) × q
′ = c2U c2

2U … c2
qU , (A.10)

where

U(τ + 1) × 1 = σ1
2

c1
τ

1 − c1
2

c1
τ + 1

1 − c1
2 + c1

τ − 1

c1
τ + 2

1 − c1
2 + c1

τ + c1
τ − 2

c1
τ + 3

1 − c1
2 + c1

τ + 1 + c1
τ − 1 + c1

τ − 3

⋮
c1
2τ − 1

1 − c1
2 + c1

2τ − 3 + c1
2τ − 5 + … + c1

3 + c1

c1
2τ

1 − c1
2 + c1

2τ − 2 + c1
2τ − 4 + … + c1

2 + 1

=
σ1

2

1 − c1
2

c1
τ

c1
τ − 1

c1
τ − 2

c1
τ − 3

⋮
c1
1

. (A.11)

A simple examination of eq. (A.10) and eq. (A.11) then leads to eq. 15 in the main text.
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Figure 1. 
The stochastic Gompertz breakpoint process and the half life of the change in the mean of 

the dynamical process, t̄ = ln(1/2)/ln c2. Plotted are 5 realizations of the Stochastic Gompertz 

breakpoint process. Dotted lines mark the process mean before the breakpoint (μ1 = a1/
(1−c1), the mean after the breakpoint (μ2 = a2/(1−c2), and the arithmetic average of both 

means (μ̄ = (μ1 +μ2)/2). The time at which such arithmetic average is reached is the half life 

of the process, t̄. The upper panel shows a case where the mean changes to a smaller size 

whereas the lower panel depicts the change from a lower equilibrium size to a higher one. 

This second case could depict a population recovery scenario, in which case the half life is 

half the mean time to recovery.
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Figure 2. 
Half life of the change in the mean of the dynamics, t̄ = ln(1/2)/ln c2, plotted as a function of 

the strength of density dependence c2. If the strength of density-dependence after the 

breakpoint c2 is close to 1 (i.e. b is close to 0 and hence growth is close to density 

independence), then change occurs slowly. As c2 approaches 0.5 from the right, the speed of 

the change increases. When c2 = 1/2, the change occurs within one time step (e.g. a year). If 

c2 is exactly 0, then the change is immediate. Between 0 and −1/2 the change still occurs 

within a single time step, but weak damped oscillations towards the equilibrium are 

produced. Finally, when −1 < c2 < −1/2, the speed of the change is slow again, with the 

added complexity that such change is accompanied with strong, damped oscillations towards 

the equilibrium. Thus, the non-stationary trend contains information about a) the location of 

the past stationary mean, b) the location of the future stationary mean, and c) the duration of 

the transitionary period.
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Figure 3. 
The theoretical and empirical means and variances of the breakpoint Stochastic Gompertz 

model. In the upper left and lower left panels, the theoretical mean and variance (grey) of the 

breakpoint process is depicted. Overlaid in the upper panel are 5 simulated trajectories and 

in blue is the empirical average of 10000 simulated trajectories. The empirical average of the 

variances of the same 10000 trajectories is depicted in blue in the lower left panel. As stated 

in the results, both the mean and the variance of the process after a change are a weighted 

average of the stationary means and variances before and after the change. The upper and 

lower right panels show how the weights in these weighted averages depend on the strength 

of density-dependence after the change (See result 1). In particular, as stated in Result 4.3, 

note that the weights of the variance change twice as fast as the changes in the mean (see for 

instance [36])
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Figure 4. 
Testing the robustness of the breakpoint Stochastic Gompertz model. A biologically realistic 

change-point stochastic process was used to test the robustness of the Gompertz model to 

unaccounted biological complexities. Accordingly, for three different types of compensatory 

dynamics, 1000 simulations from a population growth model with demographic variability, 

demographic noise, sampling error and a change-point were used to estimate the parameters 

of the BPSG model with added sampling error, along with the half life of the change. In the 

figure, each row, from left to right, shows the type of compensatory dynamics used in the 

simulations (left panels), 10 samples of the simulated time series of length 200 with the true 

half life t̄ (center panels and solid vertical line) and the estimated half life (dotted vertical 

line), and a box plot of the 1000 half life estimates (right panels). For the compensatory and 

over compensatory dynamics, only the first 75 time steps of the simulated time series are 

shown for clarity. All the boxplots are standard. The midline is the median of the data, with 

the upper and lower limits of the box being the third and first quartile (75th and 25th 

percentile) respectively. The whiskers extend up to 1.5 times the interquartile range from the 

top (bottom) of the box to the furthest datum within that distance. The data points beyond 

that distance are represented individually as points.
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