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Abstract
Background. The purpose of this study was to analyze the potential of radiomics for disease stratification beyond 
key molecular, clinical, and standard imaging features in patients with glioblastoma.
Methods.  Quantitative imaging features (n = 1043) were extracted from the multiparametric MRI of 181 patients 
with newly diagnosed glioblastoma prior to standard-of-care treatment (allocated to a discovery and a valida-
tion set, 2:1 ratio). A  subset of 386/1043 features were identified as reproducible (in an independent MRI test-
retest cohort) and selected for analysis. A penalized Cox model with 10-fold cross-validation (Coxnet) was fitted on 
the discovery set to construct a radiomic signature for predicting progression-free and overall survival (PFS and 
OS). The incremental value of a radiomic signature beyond molecular (O6-methylguanine-DNA methyltransferase 
[MGMT] promoter methylation, DNA methylation subgroups), clinical (patient’s age, KPS, extent of resection, adju-
vant treatment), and standard imaging parameters (tumor volumes) for stratifying PFS and OS was assessed with 
multivariate Cox models (performance quantified with prediction error curves).
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Results. The radiomic signature (constructed from 8/386 features identified through Coxnet) increased the 
prediction accuracy for PFS and OS (in both discovery and validation sets) beyond the assessed molecular, 
clinical, and standard imaging parameters (P ≤ 0.01). Prediction errors decreased by 36% for PFS and 37% 
for OS when adding the radiomic signature (compared with 29% and 27%, respectively, with molecular + 
clinical features alone). The radiomic signature was—along with MGMT status—the only parameter with 
independent significance on multivariate analysis (P ≤ 0.01).
Conclusions.  Our study stresses the role of integrating radiomics into a multilayer decision framework with 
key molecular and clinical features to improve disease stratification and to potentially advance personalized 
treatment of patients with glioblastoma.
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Importance of the study
In this study we present a high-throughput radiomic 
analysis from MRI data of patients with newly diag-
nosed glioblastoma prior to standard-of-care treatment. 
We identify a radiomic signature that improves disease 
stratification beyond key molecular features (MGMT 
promoter methylation status, global DNA methylation 
glioblastoma subgroups), clinical characteristics, and 
standard imaging parameters. Specifically, predic-
tion errors decreased by 36% for PFS and by 37% for 
OS when adding the radiomic signature to the model 

(compared with 29% and 27%, respectively, with molec-
ular + clinical features alone). The radiomic signature 
was—along with MGMT promoter methylation status—
the only parameter with retained independent signifi-
cance on multivariate analysis. Our study stresses the 
role of integrating radiomics into a multilayer decision 
framework with key molecular and clinical features 
to improve disease stratification and to potentially 
advance personalized treatment and clinical manage-
ment of patients with glioblastoma.

Glioblastoma is the most frequent and most aggressive 
primary brain tumor in adults.1 Standard-of-care treatment 
consists of maximum safe resection followed by radiother-
apy in addition to concomitant and adjuvant chemotherapy 
with the alkylating agent temozolomide (TMZ).2 Sensitivity 
to TMZ is primarily mediated by the DNA repair protein 
O6-methylguanine-DNA methyltransferase (MGMT), since 
epigenetic silencing of the MGMT gene by promoter meth-
ylation compromises DNA repair and increases chemo-
sensitivity.3 Methylation status of the MGMT promoter has 
been shown to be a strong and independent prognostic 
biomarker in patients with newly diagnosed glioblastoma 
and a relevant predictive biomarker in the subpopulation 
of elderly glioblastoma patients.3–6 Assessment of MGMT 
promoter methylation status has therefore been incorpo-
rated into routine clinical management, and clinical trials 
have started to use it as a patient selection criterion.7–9 In 
addition, recent large-scale epigenetic profiling studies dis-
sected glioblastoma into meaningful biological subgroups 
that correlate with distinct molecular-genetic alterations 
and key clinical parameters.10,11

Parallel to the advancements in the molecular charac-
terization of glioblastoma—with MGMT nowadays con-
sidered a pivotal molecular biomarker—comprehensive 
non-invasive characterization of brain tumors on MRI has 
recently emerged as a promising field of research.12,13 
This approach—termed radiomics—aims to utilize the full 
potential of medical imaging data and allows non-invasive, 
three-dimensional, and quantitative characterization of 

neoplastic tissue and identification of quantitative imag-
ing biomarkers that may complement molecular charac-
terization and thereby improve clinical management of 
glioblastoma.14–16

In the present study, we analyzed the full potential of 
radiomics, by automatically extracting and analyzing 1043 
quantitative features quantifying tumor image intensity, 
shape, and texture from MRI in 181 patients with newly 
diagnosed glioblastoma prior to standard-of-care treat-
ment. Specifically we aimed to investigate whether radi-
omic profiling allows for superior patient stratification and 
adds value beyond key molecular, clinical, and standard 
imaging parameters in patients with glioblastoma.

Materials and Methods

Patients

Retrospective evaluation of imaging data was approved by 
the local ethics committee of the University of Heidelberg 
and informed consent was waived. All patients were 
screened who had newly diagnosed brain tumor at the 
University of Heidelberg Medical Center from August 
2009 to May 2016 with available Illumina Infinium 
HumanMethylation450 array data from tissue specimens of 
the initial surgery. Specimens were obtained from patients 
undergoing surgical resection or biopsy at the Department 
of Neurosurgery at the University of Heidelberg Medical 
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Center and gathered according to the research proce-
dures approved by the institutional review board at the 
Medical Faculty Heidelberg. Written informed consent was 
obtained from each patient. We selected patients who met 
the following criteria: (i) confirmed isocitrate dehydroge-
nase wildtype glioblastoma based on integrated diagnosis 
with histology and molecular information according to the 
2016 World Health Organization classification of tumors 
of the central nervous system,17 (ii) availability of a cor-
responding pretreatment MRI study prior to surgery with 
an identical sequence protocol including pre- and post-
contrast T1-weighted 3D magnetization-prepared rapid 
acquisition gradient echo (MPRAGE) images, fluid attenu-
ated inversion recovery (FLAIR) images, and T2–turbo 
spin echo weighted images. Moreover, (iii) only patients 
receiving adjuvant treatment following surgery consisting 
of either (a) concomitant radiation plus TMZ followed by 
adjuvant TMZ or (b) radiation alone or (c) TMZ alone were 
selected. A total of 181 patients met the outlined inclusion 
and exclusion criteria and served as the final cohort for the 
present study.

Baseline epidemiological and clinical characteris-
tics of all patients are shown in Supplementary Table S1. 
Assessment of treatment response was performed accord-
ing to the Response Assessment in Neuro-Oncology work-
ing group criteria.18 At the time of last assessment (April 
2017), 90% of patients (163/181) showed tumor progres-
sion and 67% of patients (122/181) had died. Overall sur-
vival (OS) was calculated from the time of diagnosis until 
death or last follow-up. Similarly, progression-free survival 
(PFS) was calculated from the time of diagnosis until tumor 
progression or death (whichever occurred first).

DNA Methylation Profiling

The Illumina Infinium HumanMethylation450 array was 
used to obtain genome-wide assessment of DNA meth-
ylation, according to the manufacturer’s instructions at 
the Genomics and Proteomics Core Facility of the German 
Cancer Research Center as described previously.10,15 Data 
were filtered according to the following criteria: removal 
of probes targeting the X and Y chromosomes (n = 11 551), 
removal of probes containing a single nucleotide polymor-
phism (dbSNP132 Common) within 5 base pairs of and 
including the targeted cytosine-phosphate-guanine site 
(n = 24 536), and removal of probes not mapping uniquely 
to the human reference genome (hg19) allowing for one 
mismatch (n = 9993). In total, 438 370 probes were kept for 
analysis. The MGMT promoter methylation status (methyl-
ated vs unmethylated) was determined from the Illumina 
Infinium HumanMethylation450 array data as described 
previously (using the “mgmtstp27” library in R v3.4.0).19,20 
Furthermore, a random forest algorithm compared each 
case with a brain tumor DNA methylation profile refer-
ence bank consisting of more than 2800 brain tumor cases 
to assign each patient to a glioblastoma subgroup based 
on the individual global DNA methylation pattern (see 
Supplementary Table S2 and www.molecularneuropathol-
ogy.org/mnp/classifier/1).10,21,22 The HumanMethylation450 
array data of the present study have been deposited in 
the National Center for Biotechnology Information’s Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) 
and are accessible through GEO Series accession number 
GSE103659.

MR Imaging and Postprocessing

Images were acquired in the routine clinical workup using 
a 3 Tesla MR system (Magnetom Verio/Trio TIM, Siemens 
Healthcare) with a 12-channel head-matrix coil. Briefly, the 
protocol included T1-weighted 3D MPRAGE images both 
before (T1) and after (cT1) administration of a 0.1 mmol/
kg dose of gadoterate meglumine (Dotarem, Guerbet) 
as well as axial FLAIR and axial T2-weighted images. 
Details on MRI acquisition parameters are available in 
Supplementary Table S3.

Postprocessing was performed as described previ-
ously (Fig.  1). First, image intensity normalization (using 
the ANTsR23 and WhiteStripe24 packages implemented in 
R v3.4.025) was performed to transform arbitrary MR sig-
nal intensities into standardized intensity ranges for each 
imaging modality across all subjects, to generate well-
defined inputs for quantitative radiomic feature extrac-
tion (details are shown in Supplementary Table S4).26 
The Functional Magnetic Resonance Imaging of the Brain 
(FMRIB) software library (FSL; http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FSL) was used for image registration. First, brain 
voxels were isolated by generating a binary brain mask 
from the T1 volume using the brain extraction tool27 and 
transferred to all other imaging volumes (cT1, FLAIR, T2) for 
each patient. These image volumes were then registered to 
the brain-extracted T1 volume using the linear image reg-
istration tool28,29 with a mutual information algorithm and 
a 6 degree of freedom transformation. T1 subtraction vol-
umes (subT1) were generated by voxel-wise subtraction of 
the T1 from the cT1 volume. Tumor segmentation was then 
performed semi-automatically (by P.K., a radiology resi-
dent with 4 years of experience, and subsequently checked 
by D.B., a board-certified radiologist and neuroradiologist 
with 15 years of experience in image processing; discrep-
ancies were resolved through a consensus discussion) to 
select the contrast-enhancing (CE) portion of the whole 
tumor (on the subT1 images), as well as the non-enhancing 
FLAIR hyperintense (NE) portion (defined as FLAIR hyper-
intense abnormality excluding the CE and necrotic [NEC] 
tumor portions, that is, including both FLAIR hyperintense 
tumor and potentially vasogenic edema) and the NEC 
portion of the tumor (on the cT1 images) using a region-
growing segmentation algorithm implemented in ITK-
SNAP (www.itksnap.org30), as described previously.31,32 
Radiomic feature extraction was performed either (i) from 
the CE segmentation mask if CE but not NEC tumor was 
present, (ii) from a combined CE+NEC segmentation mask 
if both CE and NEC tumor were present, or (iii) from the NE 
segmentation mask if only NE but not CE and NEC tumor 
was present. A  holefilling algorithm (using the imdilate 
function in Matlab) was applied to slightly dilate the seg-
mentation mask and thus include single-voxel holes within 
the segmentation mask.

Radiomic features were calculated automatically 
using in-house software implemented within the medi-
cal imaging interaction toolkit (www.mitk.org)33 and 

Fig. 1  Radiomics image postprocessing workflow. Left: different tumors have different shapes and intensities, as shown on representative slices 
on the left (tumor segmentations in red), with the volume-rendered 3D segmentations on the right. Right: workflow from tumor segmentation to 
analysis. (I) Different MRI sequences are skull-stripped and coregistered to each other. (II) Image intensities are normalized into a common param-
eter space that allows referencing across different subjects. (III) Multiple radiomic features are automatically calculated from intensity-normalized 
images using 3D segmentations, including first-order, volume/shape, and texture features. (IV) The large number of radiomic feature parameters are 
then subjected to machine learning–based classification algorithms to identify radiomic-based imaging signatures that are related to an outcome of 
interest. Finally, integrative assessment of radiomic signatures with molecular and clinical characteristics aims to improve stratification of patients.

http://www.molecularneuropathology.org/mnp/classifier/1
http://www.molecularneuropathology.org/mnp/classifier/1
http://www.ncbi.nlm.nih.gov/geo
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
http://www.itksnap.org
http://www.mitk.org
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included (i) 21 first-order features (FO), (ii) 17 volume 
and shape features (VSF), and (iii) 321 texture features 
(TF). The final set consisted of 342 FO and TF for each 
of the intensity normalized modalities (T1, cT1, FLAIR), 
and 17 VSF, resulting in 1043 radiomic features for each 
patient. Definitions of radiomic features are given in 
Supplementary Table S5.

Statistical Analysis

Subsequent analysis was performed using R v3.4.0. 
Patients were randomly allocated to a discovery and vali-
dation set (2:1 ratio with n = 120 patients in the discovery 
set and n = 61 patients in the validation set) with the dis-
tribution of MGMT promoter methylation kept balanced 
between both sets (stratified random split). Distribution 
of epidemiological, clinical, and molecular characteristics 
between the discovery and validation sets was compared 
with the chi-square test for categorical parameters and the 
Wilcoxon test for continuous parameters.

A total of 386 out of the 1043 extracted radiomic features 
(37.0%) were identified as stable and reproducible based 
on a separate prospective test-retest study and selected for 
further analysis (methodology and results of this preced-
ing analysis are outlined in Supplementary Table S6).

A Cox regression model via penalized maximum likeli-
hood (lasso) was fitted on the discovery set to identify a 
subset of radiomic features and construct a radiomic 
signature from the high-dimensional radiomic dataset 
associated with outcome (as measured by OS; using the 

glmnet package34,35). The tuning parameter λ, which is 
the global regularization parameter, was identified via 
10-fold cross-validation. The performance of the identi-
fied radiomic signature for stratifying PFS and OS in the 
discovery and validation sets was assessed by comparing 
models that included (i) molecular features alone (MGMT 
promoter methylation status and global DNA methylation 
subgroups), (ii) clinical features alone (including patient’s 
age, KPS at diagnosis, extent of resection [EOR; gross total 
resection (GTR) vs subtotal resection (STR) or biopsy] and 
adjuvant treatment [radiotherapy plus concomitant and 
adjuvant TMZ (RT+TMZ) vs RT or TMZ only]), (iii) stand-
ard imaging features alone (tumor volumes from contrast 
enhancement, necrosis, and edema), (iv) radiomic signa-
ture alone, and (v) different combinations of the above 
stated models to assess the incremental value of combin-
ing parameters from different layers (ie, molecular, clinical, 
standard imaging, radiomics).

For each model, we assessed the overall performance 
with prediction error curves (PECs) over time and the inte-
grated Brier score (IBS) (using the pec function of the pec 
library36,37). The IBS can range from 0 for a perfect model to 
0.25 for a non-informative model with a 50% incidence of 
the outcome. Specifically, the discovery set was supplied 
to the traindata argument of the pec function, whereas the 
validation set was used for estimating the PECs and IBS 
(data argument of the pec function). Furthermore, ANOVA 
was used to determine whether additional predictors sig-
nificantly increase the model fit (ie, reduction in the log-
likelihood). Multivariate Cox regression models were used 

Fig. 1  Radiomics image postprocessing workflow. Left: different tumors have different shapes and intensities, as shown on representative slices 
on the left (tumor segmentations in red), with the volume-rendered 3D segmentations on the right. Right: workflow from tumor segmentation to 
analysis. (I) Different MRI sequences are skull-stripped and coregistered to each other. (II) Image intensities are normalized into a common param-
eter space that allows referencing across different subjects. (III) Multiple radiomic features are automatically calculated from intensity-normalized 
images using 3D segmentations, including first-order, volume/shape, and texture features. (IV) The large number of radiomic feature parameters are 
then subjected to machine learning–based classification algorithms to identify radiomic-based imaging signatures that are related to an outcome of 
interest. Finally, integrative assessment of radiomic signatures with molecular and clinical characteristics aims to improve stratification of patients.
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to assess the independent significance of the different pre-
dictors (ie, radiomic signature and molecular and clinical 
characteristics).

The linear predictor (a weighted sum of the covariates 
in the Cox regression model, where the weights are the 
regression coefficients) was used to generate a conditional 
version of a kernel smoothed Kaplan–Meier estimator 
using nearest neighborhoods (with the prodlim library38). 
For illustration, we show the estimated survival curves for 
low, medium, and high levels of the linear predictor, deter-
mined as the survival curve estimate for the neighborhood 
of the smallest (<25th percentile), medium (25th–75th 
percentile), and largest values (>75th percentile) of the 
signature, respectively. P-values  <0.05 were considered 
significant.

Results

Distribution of epidemiological (patient’s age [P  =  1.00]), 
clinical (pretreatment KPS [P = 0.50], EOR [P = 0.65], adju-
vant treatment following surgery [P = 0.29]), and molecu-
lar characteristics (MGMT promoter methylation status 

[P = 1.0], global DNA methylation glioblastoma subgroups 
[P = 0.61]) was balanced between the discovery and valida-
tion sets (2:1 ratio with n = 120 in the discovery and n = 61 
in the validation set) (Supplementary Figure S1).

External selection of stable and reproducible radiomic 
features was performed in an independent prospective 
test-retest study prior to radiomic signature discovery. 
A subset of 386 of 1043 radiomic features (37.0%) were 
identified as reproducible (based on a concordance cor-
relation coefficient >0.8) and selected for further analy-
sis (see Supplementary Table S6 for detailed results). The 
lasso-penalized Cox model (Coxnet algorithm) was fitted 
on the reproducible radiomic features in the discovery 
set and identified 8 features that were most important 
for predicting treatment outcome using a 10-fold cross-
validated threshold. These features were derived from 
all imaging sequences (cT1, FLAIR, and T2) and included 
texture features from gray-level co-occurrence and run-
length matrices (6/8 features on FLAIR and T2) as well as 
volumetric features (2/8 features on cT1) (Supplementary 
Table S7). The volumetric feature tumor asphericity was 
the parameter with the highest positive Coxnet coeffi-
cient, thereby suggesting that greater asphericity (shape 
irregularity) of the tumor was associated with worse 
outcome.

Table 1.  (a) Analysis of deviance for different Cox regression models (ANOVA) was used to determine whether the radiomic signature or the tumor 
volume increased the model fit beyond key molecular and clinical characteristics. (b) Performance metrics of the different Cox regression models 
based on prediction error curves over time with the integrated Brier score (lower values indicate better performance)

(a) Analysis of Deviance for Different Cox Regression Models (ANOVA)

Model 1 Model 2 Discovery Set Validation Set

OS PFS OS PFS

P chi2 P chi2 P chi2 P chi2

Molecular1 + 
Clinical2

Molecular1 
+ Clinical2 
+ Radiomic 
signature

<0.01 34.3 0.01 6.2 <0.01 10.4 <0.01 8.0

Molecular1 + 
Clinical2

Molecular1 + 
Clinical2 + Tumor 
volumes3

0.79 1.0 0.19 4.7 0.21 4.6 0.14 5.4

(b) Performance Metrics of the Different Cox Regression Models

Model Integrated Brier Score (IBS)
(percent reduction of IBS compared  
with the null model4)

OS PFS

Single layer Molecular1 0.149 −9% 0.121 −12%

Clinical2 0.133 −18% 0.126 −9%

Tumor volumes3 0.160 −2% 0.135 −2%

Radiomic signature 0.137 −16% 0.125 −9%

Two layers Molecular1 + Clinical2 0.119 −27% 0.098 −29%

Clinical2 + Radiomic signature 0.116 −29% 0.117 −15%

Molecular1 + Radiomic signature 0.122 −25% 0.109 −21%

Three layers Molecular1 + Clinical2 + Radiomic signature 0.103 −37% 0.089 −36%

Annotation: 1 = including MGMT promoter methylation status and global DNA methylation glioblastoma subtypes; 2 = including patient’s age, KPS, 
EOR, and adjuvant treatment; 3 = including tumor volumes from contrast enhancement, necrosis, and edema; 4 = IBSs for the null (reference) models 
were 0.163 for OS and 0.138 for PFS.



853Kickingereder et al. Radiomics subtyping of glioblastoma
N

eu
ro-

O
n

colog
y

[P = 1.0], global DNA methylation glioblastoma subgroups 
[P = 0.61]) was balanced between the discovery and valida-
tion sets (2:1 ratio with n = 120 in the discovery and n = 61 
in the validation set) (Supplementary Figure S1).

External selection of stable and reproducible radiomic 
features was performed in an independent prospective 
test-retest study prior to radiomic signature discovery. 
A subset of 386 of 1043 radiomic features (37.0%) were 
identified as reproducible (based on a concordance cor-
relation coefficient >0.8) and selected for further analy-
sis (see Supplementary Table S6 for detailed results). The 
lasso-penalized Cox model (Coxnet algorithm) was fitted 
on the reproducible radiomic features in the discovery 
set and identified 8 features that were most important 
for predicting treatment outcome using a 10-fold cross-
validated threshold. These features were derived from 
all imaging sequences (cT1, FLAIR, and T2) and included 
texture features from gray-level co-occurrence and run-
length matrices (6/8 features on FLAIR and T2) as well as 
volumetric features (2/8 features on cT1) (Supplementary 
Table S7). The volumetric feature tumor asphericity was 
the parameter with the highest positive Coxnet coeffi-
cient, thereby suggesting that greater asphericity (shape 
irregularity) of the tumor was associated with worse 
outcome.

The identified radiomic signature allowed stratifica-
tion of PFS with hazard ratios (HRs) of 1.46 (P  <  0.01) in 
the discovery set and 2.23 (P < 0.01) in the validation set. 
Similarly, stratification of OS based on the radiomic signa-
ture was achieved with an HR of 2.72 in both discovery and 
validation sets (P < 0.01 each). Adding the radiomic signa-
ture as an additional explanatory variable to a model that 
already included key molecular (ie, MGMT promoter meth-
ylation status and global DNA methylation subgroups) and 
clinical features (ie, patient’s age, KPS at diagnosis, EOR, 
and type of adjuvant treatment) significantly increased the 
model fit for stratifying PFS and OS in both the discovery 
and the validation set (P ≤ 0.01 each) (Table  1a). In con-
trast to the radiomic signature, less sophisticated standard 
imaging parameters such as tumor volumes (including 
those from contrast enhancement, necrosis, and edema) 
did not exhibit additional explanatory value for stratifying 
PFS or OS beyond key molecular or clinical characteristics 
(P > 0.05 each) (Table 1a).

The PECs and IBS not only confirmed the incremental 
value of the radiomic signature but also highlighted the 
importance of combining information from multiple lay-
ers (ie, clinical and molecular characteristics and radiomic 

signatures) to improve disease stratification. Specifically, 
predicting PFS and OS with information from a single 
layer (either molecular, clinical, standard imaging, or radi-
omic characteristics) allowed reduction of the prediction 
error (compared with a non-informative model) by 12% 
for PFS and by 9% for OS with molecular characteristics 
alone, by 9% for PFS and 18% for OS with clinical char-
acteristics alone, and by 9% for PFS and 16% for OS with 
the radiomic signature alone (Fig. 2, left). The preoperative 
tumor volumes (including those from contrast enhance-
ment, necrosis, and edema) as less sophisticated standard 
imaging parameters did not exhibit relevant explanatory 
value (reduction of prediction error by only 2% for both 
OS and PFS) and were therefore excluded from further 
analysis.

Combining the information from multiple layers allowed 
reduction of the prediction error beyond every single-layer 
model. The highest accuracy was achieved for a model that 
included information from all layers (ie, clinical + molecu-
lar characteristics + radiomic signature) with a reduction 
of the prediction error by 36% for PFS and 37% for OS 
(compared with 29% and 27% for a model without the radi-
omic signature that includes only molecular and clinical 

Fig. 2  Prediction error curves for stratifying PFS (upper row) and OS (lower row) based on a single layer (left column)—ie, either molecular 
(including MGMT promoter methylation status + global DNA methylation glioblastoma subtypes) or clinical (patient’s age + KPS, EOR, adjuvant 
treatment) information or standard imaging parameters (tumor volumes from contrast enhancement, necrosis, and edema) or the radiomic 
signature—or (right column) combining the information from multiple layers. Prediction error rates are given in brackets (including the percent-
age reduction compared with the null model with no explanatory value). Combining the information from multiple layers (right column) allowed 
reduction of the prediction error beyond every single layer model (left column). The identified radiomic signature reduced the prediction error 
beyond molecular and clinical features and combining molecular + clinical information and the radiomic signature yielded the highest accuracy, 
with a reduction of the prediction error by 36% for PFS and 37% for OS (compared with 29% and 27% for a model without the radiomic signature 
that includes only molecular and clinical information).
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characteristics) (Fig. 2, right). Fig. 3 illustrates the integra-
tive performance of a model that leverages the informa-
tion from all layers (ie, clinical + molecular characteristics + 
radiomic signature) for predicting PFS and OS in both dis-
covery and validation sets (for illustration purposes, esti-
mates are shown for low, medium, and high levels of the 
linear predictor).

The radiomic signature was, along with MGMT promoter 
methylation status, the only parameter within a multivari-
ate Cox regression model (including all parameters from 
all layers, that is, molecular and clinical features and radi-
omic signature) that consistently showed independent sig-
nificance for predicting PFS and OS in both discovery and 
validation sets (Fig. 4). Specifically the radiomic signature 
and MGMT promoter methylation status were associated 
with HRs of 2.36 (P = 0.01) and 1.52 (P = 0.05) for stratifying 
PFS and HRs of 2.74 (P < 0.01) and 1.79 (P = 0.02) for strati-
fying OS in the discovery set. Similarly, in the validation 
set the radiomic signature and MGMT promoter methyla-
tion status were associated with HRs of 2.58 (P = 0.01) and 
4.25 (P < 0.01) for stratifying PFS and HRs of 2.93 (P < 0.01) 
and 2.31 (P = 0.05) for stratifying OS. In contrast, neither 
the global DNA methylation glioblastoma subgroups (ie, 
receptor tyrosine kinase [RTK] II, mesenchymal, and RTK 
I, which resemble the classical, mesenchymal, and proneu-
ral subgroups according to The Cancer Genome Atlas 

classification [Supplementary Figure S2] 10,11) nor any of 
the clinical parameters demonstrated consistent and inde-
pendent association for predicting PFS and OS in both the 
discovery and the validation set.

Association of the radiomic signature with global DNA 
methylation glioblastoma subgroups showed that radi-
omic signature levels were evenly distributed throughout 
the different subgroups (Supplementary Table S8).10,11

Discussion

Radiomics applies advanced computational methods to 
convert medical images into a large number of quantita-
tive descriptors of oncologic tissues.12,39 In the present 
study, we used a high-throughput approach to automat-
ically extract 1043 quantitative radiomic features from the 
multiparametric MRI to comprehensively characterize the 
imaging phenotype in 181 patients with newly diagnosed 
glioblastoma. Lasso-penalized Cox regression modeling 
(on a subset of 396 radiomic features that were identified 
as stable and reproducible in an independent test-retest 
dataset) identified an 8-feature-based radiomic signa-
ture that allowed non-invasive prediction and stratifica-
tion of PFS and OS with additive performance beyond key 

Fig. 3  Progression-free and overall survival in the discovery and validation sets stratified based on key molecular characteristics (MGMT 
promoter methylation status + global DNA methylation glioblastoma subtypes), clinical characteristics (patient’s age + KPS, EOR, adjuvant treat-
ment), and the radiomic signature. Survival curves were derived computing nearest-neighbor estimate of bivariate distribution of survival and 
linear predictor levels. For illustration purposes, we show estimates for low, medium, and high levels of predictors.
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molecular and clinical features, but also compared with 
less sophisticated standard imaging parameters such as 
preoperative tumor volumes. Integrating the radiomic 
signature into a model with key molecular and clinical 
features significantly increased the fit and accuracy of the 
model. Moreover, the radiomic signature was—along with 
MGMT promoter methylation status—the only parameter 
with retained independent significance on multivariate 
analysis. Our study therefore suggests that radiomic sub-
typing of glioblastoma may complement disease stratifica-
tion of patients with glioblastoma beyond key molecular 
characteristics such as MGMT promoter methylation status 
and global DNA methylation subgroups, but also beyond 
clinical and standard imaging parameters and thereby 
potentially improve clinical decision making for patients 
with glioblastoma.

Our approach is based on comprehensive quantitative 
information derived from 3 different MRI sequences that 
allow a multiparametric three-dimensional characterization 
of the entire tumor. Stability and reproducibility of the pre-
sent analysis were maximized by (i) performing methodi-
cally robust feature selection in an independent test-retest 
dataset, (ii) applying a biologically motivated normalization 
technique for multisequence MRI (white stripe normaliza-
tion) that sets the ground for reliable quantitative analysis 

of MRI data, and (iii) performing internal validation of the 
radiomic signature through 10-fold cross-validation as well 
as external validation in an independent dataset.

Several recent studies already highlighted the potential 
of radiomics to identify prognostic and potentially predic-
tive imaging biomarkers and to predict molecular sub-
groups and pathway activities. 14–16,40–43 The present study 
adds important information to the existing literature, since 
it is the first study that performed (i) independent test-retest 
analysis to identify stable radiomic features in neuro-oncol-
ogy and (ii) comparison of radiomic imaging signatures 
with already established hallmark molecular, clinical and 
imaging parameters as a benchmark to prove incremental 
benefit of radiomics for clinical decision making.

Imaging-related limitations may result from the lim-
ited through-plane resolution of the T2 and FLAIR data 
compared with the higher-resolution T1 data. As a result, 
assessment of fine structural detail in one of the 3 spatial 
dimensions on the FLAIR data was affected by some degree 
of blurring. Furthermore, despite the high degree of auto-
mation of the current postprocessing workflow, supervi-
sion by the radiologist for semi-automated outlining of 
the tumor for radiomic feature extraction is still required. 
However, deep learning based tumor segmentation 
approaches may allow further automation of the workflow 

Fig. 4  Multivariate Cox regression model for PFS and OS with key molecular parameters (MGMT promoter methylation status, molecular glio-
blastoma subtypes), clinical features, and the radiomic signature as explanatory variables. Independent significance for both PFS and OS in 
both discovery and validation sets was only retained for the radiomic signature and MGMT promoter methylation status. MES = mesenchymal; 
RT = radiation therapy.
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and promote seamless integration of this technology into 
clinical practice.44 Moreover, the sophisticated postprocess-
ing workflow involves many steps and currently requires 
about 60 minutes of computation time per patient. With 
the use of customized high-performance and parallel com-
puting, postprocessing time could, however, be shortened 
significantly, thus meeting the requirements of translating 
this technology into clinical practice. Moreover, transla-
tion of the results from our hypothesis-generating study to 
a broader multicenter scale and reaching consensus on a 
standardized set of radiomic features and postprocessing 
workflow are crucial for homogenization and comparability 
of different study findings and to allow successful adoption 
and integration of radiomics in clinical decision making.

In conclusion, our study stresses the role of integrating 
radiomics into a multilayer decision framework with key 
molecular and clinical features to improve disease stratifi-
cation and to advance personalized treatment and clinical 
management of patients with glioblastoma.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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