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Mammalian (or mechanistic) target of rapamycin (mTOR) is 
one downstream effector of the Akt pathway that, as mTOR 
complex 1 (mTORC1), activates protein translation through 
phosphorylation of ribosomal protein S6 (pRPS6; also 
known as p70S6 or pS6) and eukaryotic initiation factor 
4E binding protein 1 (4EBP1; see review1). Rapamycin, the 

mTOR pathway specific inhibitor originally used to identify 
mTOR,2–5 primarily exerts its effects via mTORC1. However, 
mTORC2 assembly has also been found to be impaired, in 
certain cell cultures, by chronic rapamycin treatment.6

Mammalian TOR signaling is critical for the promo-
tion of cellular growth and proliferation.1 The mTOR 

A molecular cascade modulates MAP1B and confers 
resistance to mTOR inhibition in human glioblastoma

Dan R. Laks, Juan A. Oses-Prieto, Alvaro G. Alvarado, Jonathan Nakashima, Shreya Chand,  
Daniel B. Azzam, Ankur A. Gholkar, Jantzen Sperry, Kirsten Ludwig, Michael C. Condro, 
Serli Nazarian, Anjelica Cardenas, Michelle Y. S. Shih, Robert Damoiseaux, Bryan France, 
Nicholas Orozco, Koppany Visnyei, Thomas J. Crisman, Fuying Gao, Jorge Z. Torres, 
Giovanni Coppola, Alma L. Burlingame, and Harley I. Kornblum

Department of Psychiatry and Biobehavioral Sciences and Semel Institute for Neuroscience & Human Behavior, 
UCLA, Los Angeles, California (D.R.L., A.G.A., J.N., K.L., M.C.C., S.N., A.C., M.Y.S.S., N.O., K.V., T.J.C., F.G., G.C., 
H.I.K.); Department of Pharmaceutical Chemistry, UCSF, San Francisco, California (J.A.O.P., S.C., A.L.B.); Department 
of Molecular and Medical Pharmacology (J.S., R.D., B.F., H.I.K.), Departments of Neuroscience (D.B.A.) and Chemistry 
(A.A.G., J.Z.T.), and Department of Neurology (G.C., H.I.K.), UCLA, Los Angeles, California

Corresponding Author: Harley I. Kornblum, Room 379 Neuroscience Research Building, 635 Charles E. Young Dr South, Los Angeles, 
CA 90095 (HKornblum@mednet.ucla.edu).

Abstract
Background: Clinical trials of therapies directed against nodes of the signaling axis of phosphatidylinositol-3 kinase/
Akt/mammalian target of rapamycin (mTOR) in glioblastoma (GBM) have had disappointing results. Resistance to 
mTOR inhibitors limits their efficacy. 
Methods: To determine mechanisms of resistance to chronic mTOR inhibition, we performed tandem screens on 
patient-derived GBM cultures. 
Results: An unbiased phosphoproteomic screen quantified phosphorylation changes associated with chronic 
exposure to the mTOR inhibitor rapamycin, and our analysis implicated a role for glycogen synthase kinase 
(GSK)3B attenuation in mediating resistance that was confirmed by functional studies. A targeted short hairpin 
RNA screen and further functional studies both in vitro and in vivo demonstrated that microtubule-associated pro-
tein (MAP)1B, previously associated predominantly with neurons, is a downstream effector of GSK3B-mediated 
resistance. Furthermore, we provide evidence that chronic rapamycin induces microtubule stability in a MAP1B-
dependent manner in GBM cells. Additional experiments explicate a signaling pathway wherein combinatorial 
extracellular signal-regulated kinase (ERK)/mTOR targeting abrogates inhibitory phosphorylation of GSK3B, leads 
to phosphorylation of MAP1B, and confers sensitization. 
Conclusions: These data portray a compensatory molecular signaling network that imparts resistance to chronic 
mTOR inhibition in primary, human GBM cell cultures and points toward new therapeutic strategies.
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signaling pathway can be activated by genetic alteration 
of the upstream epidermal growth factor receptor (EGFR) 
signaling pathway, which is frequently mutated and ampli-
fied in glioblastoma (GBM).7 Moreover, inhibition of protein 
kinase B (Akt), a kinase that activates mTOR signaling, has 
been indicated to deplete brain tumor stem cells, the puta-
tive cell type responsible for malignancy and recurrence in 
GBM.8 As a result of upstream activation, mTOR signaling 
is frequently activated in GBM. For these reasons, targeting 
of the mTOR signaling pathway has been an area of intense 
therapeutic interest.

In a clinical trial for glioma,9 half of the patients treated 
with rapamycin responded. However, many of the patients 
did not show evidence of mTOR inhibition, and in fact had 
elevated mortality associated with increased Akt activa-
tion. While there are divergent views on possible modes 
of rapamycin resistance,9–17 one theory is that feedback 
activation of mTORC2 activates that pathway. In fact, 
mixed kinase inhibitors such as BEZ235 were developed, 
in part, to circumvent these modes of resistance by target-
ing mTORC1, mTORC2, and phosphatidylinositol-3 kinase 
(PI3K). Another mode of resistance to mTOR inhibition is 
through activated extracellular signal-regulated kinase 
(ERK), a molecular response to mTOR inhibition in GBM, 
and inhibition of ERK has been shown, in vivo, to sensitize 
GBM to mTOR inhibition.18,19 However, other theories of re-
sistance have also been developed, compelling us to per-
form a comprehensive characterization of the mechanisms 
that modulate resistance to chronic mTOR inhibition within 
GBM cells.

Here, we utilized phosphoproteomic analysis of primary 
GBM cultures under chronic mTOR inhibition followed by 
a targeted short hairpin (sh)RNA screen and functional 
studies to elucidate an ERK-modulated, glycogen synthase 
kinase (GSK)3B–mediated, microtubule-associated protein 
(MAP)1B–dependent mechanism of resistance.

Materials and Methods

See the Supplementary material for a complete methods 
description.

Tumor Collection

Human GBM (World Health Organization [WHO] grade 
IV) brain tumor samples were collected following surgi-
cal resection under institutional review board–approved 
protocols with patient consent and graded by a neuro-
pathologist in accordance with the WHO established 
guidelines.20

Primary GBM Cell Cultures

All cultures used were a subset of those previously 
described by Laks et al21 (Supplementary Table S1). Each 
culture was analyzed initially by microarray at low pas-
sage number. Key features of the lines, including EGFR 
status and phosphatase and tensin homolog status were 
ascertained at low passage number and compared with 
the initial pathology report. If the sample did not agree 
with the pathology report, the sample was not used for 
this study. This procedure was repeated at irregular inter-
vals. All experiments were performed at as low a passage 
number as possible from frozen stocks, and for those 
experiments that required higher passaging, character-
istics of the cells were evaluated at irregular intervals, 
including phosphatase and tensin homolog and EGFR 
status, proliferation rate, general morphology of the 
cultures, and mycoplasma status. If any of these param-
eters became discordant, the culture was not used. For 
some cultures, as described by Laks et al,21 microarrays 
were repeated at low and high passage numbers, which 
showed a general maintenance of characteristics (acces-
sion #GSE98995). Cells were tested annually for myco-
plasma with the LookOut Mycoplasma PCR Detection Kit 
(Sigma). We chose cultures that were expedient for the 
experimental setting. HK296, originally chosen for the 
phosphoproteomics experiment, took too long (2 wk) to 
become rapamycin resistant (proliferate) and was thus 
not an expedient in vitro model. In contrast, HK301 took 
only 2 days to begin to proliferate under rapamycin treat-
ment. HK374 was chosen for in vivo models, as it had 
already been demonstrated by our lab to form rapid sub-
cutaneous tumors.

Importance of the study
This study presents a novel molecular mechanism 
of resistance to chronic mTOR inhibition that delin-
eates posttranslational modifications from the 
kinases ERK and GSK3B to the microtubule interact-
ing protein MAP1B. Aside from the basic insights 
into molecular signaling, this study also informs 
therapeutic intervention. We found that inhibition of 
both mTOR complexes 1 and 2 may trigger inhibi-
tory phosphorylation of GSK3B and, surprisingly, 
a MAP1B-mediated mode of resistance to chronic 
mTOR inhibition. Although mTOR inhibitors have 
not been as effective as hoped in the treatment of 

GBM, new-generation inhibitors of mTOR and ERK 
in combination with MEK inhibitors offer new pos-
sibilities for treatment which must be informed by 
knowledge of molecular signaling involved in resist-
ance to treatment. Furthermore, the identification 
of MAP1B-regulated microtubule stabilization as a 
means of resistance provides a set of therapeutic tar-
gets. This study provides compelling new knowledge 
in our understanding of the molecular response and 
resistance to chronic mTOR inhibition and indicates 
a direction for future combinatorial therapy in the 
treatment of GBM.
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Exposure Groups

Three exposure groups were devised for the purpose 
of the phosphoproteomics study: (i) dimethyl sulfoxide 
(DMSO) as control; (ii) chronic rapamycin treatment (the 
rapamycin-resistant population after 100 nM rapamycin, 
twice weekly; and (iii) acute rapamycin (100 nM rapamy-
cin for 4 h). The latter 2 exposure groups were compared 
with the DMSO-control to normalize changes and serve as 
a baseline.

Isobaric Tags for Relative and Absolute 
Quantitation 

Cells were pelleted and run through the protocol for iso-
baric tags for relative and absolute quantitation (iTRAQ), 
which was used according to standard methods to de-
termine changes in phosphorylation from rapamycin to 
DMSO conditions.22 See the Supplementary material.

Kinase Enrichment Analysis

KEA (http://amp.pharm.mssm.edu/lib/kea.jsp; last accessed 
12 August 2017)23 was utilized to determine candidate 
kinases that were associated with our list of proteins 
with phosphorylation changes under chronic rapamycin 
conditions.

Chronic Rapamycin Treatment

Chronic rapamycin (LC Laboratories, http://www.LCLabs.
com; last accessed 12 August 2017) was administered 
twice weekly at 100 nM for at least 7 days.

Acute Drug Treatments

Five thousand cells were plated in each well of a 96-well 
plate and treated with serial dilutions of each drug and 
after 7 days of proliferation, cell number was assessed (see 
Supplementary Methods for more information).

Sensitization Selumetinib (MEK 
Inhibitor) + Rapamycin or BEZ235

Five thousand cells were plated in each well of a 96-well 
plate and treated with a serial dilution of selumetinib with 
either DMSO, 100 nM rapamycin, or 10 nM BEZ235. After 
7 days, cell number was assessed by relative fluorescence 
of Hoechst labeled cells as detected by the Acumen 3 plate 
reader (TTPLabtech). Relative half-maximal inhibitory con-
centration (IC50) values were generated using GraphPad 
Prism software.

Western Blots

Western blots were performed according to previously 
described methods.21

CDK4 Inhibition

A serial dilution of PD0332991 (Selleckchem) was used in 
combination with 100  nM rapamycin or with DMSO (at 
0.1% final concentration) as a control.

Targeted shRNA Screen

We performed a targeted shRNA screen against 50 of 52 
candidates who underwent phosphorylation changes 
in chronic rapamycin and were associated with GSK3B. 
HK301 GBM cells were grown on 384-well plates (1000 
cells/well) for 3 days with each shRNA. After 3 days, cells 
were treated with and without 100  nM rapamycin. Cells 
were re-treated with agent after another 3 days. After the 
initial treatment, cells were grown for 7 days. Cell number 
was determined using CellTiter-Glo 3D (Promega), which 
estimates cell number based on measured ATP levels.

In Vivo Subcutaneous Xenotransplantation of 
shMAP1B Cells

All animal experiments were done with protocol approval 
by the Office of Animal Research Oversight at UCLA and 
the UCLA institutional animal care and use committee. 
Five hundred thousand HK374 cells with either control or 
MAP1B knockdown (KD) were injected subcutaneously 
into the flanks of NSG mice. After 24 days, all tumors were 
established and we started daily intraperitoneal injection 
treatment with either DMSO or rapamycin in a final volume 
of 100  μL as follows—Group  1: control KD  +  DMSO; 
Group 2: control KD + 5 mg/kg rapamycin; Group 3: MAP1B 
KD + DMSO; and Group 4: MAP1B KD + 5 mg/kg rapamy-
cin (LC Laboratories #R-5000). Tumors were measured with 
calipers every 2 days for 14 days. At day 15 post daily i.p. 
treatment, mice were euthanized and tumors were col-
lected and lysed in radioimmunoprecipitation assay buffer 
(Thermo) with phosphatase and protease inhibitors and 
homogenized with a syringe plunger through a cell strainer 
(100 μm).

Tumor Volume Measurements

The tumor volume was calculated for the volume of a 
sphere with the formula Volume = 4/3*3.1415*(Diameter/
2)^3. The mean diameter of the tumors for each mouse 
was utilized. Tumors that failed to form significant sizes 
before the onset of treatment (within the 95th percentiles) 
were excluded from further analysis.

Western Blots of Subcutaneous Tumors of 
shMAP1B Cells

Protein from subcutaneous tumors was collected individu-
ally and then by treatment category. Protein concentration 
was determined by Bradford assay. Protein was boiled 
in an equal volume of Laemmli Sample Buffer (Bio-Rad 
#161-0737) with 5% beta mercaptoethanol for 5 minutes. 

http://amp.pharm.mssm.edu/lib/kea.jsp
http://www.LCLabs.com
http://www.LCLabs.com
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Western blots were carried out to validate inhibition of 
therapeutic targets, with beta actin (Abcam #8277) as a 
loading control. The antibodies used were the same as the 
antibodies used in the “Western Blots” section above.

In Vivo Subcutaneous Xenotransplantation for 
Combinatorial Treatment

Injected into both flanks of 24 male, 2-month-old, NOD/SCID-
gamma null mice was 1 × 106 HK374 firefly luciferase–green 
fluorescent protein GBM cells. Each of the 4 treatment groups 
(DMSO, rapamycin [Rapa], selumetinib [Sel], and Rapa+Sel) 
consisted of 6 mice. Daily i.p. injection treatment in 1 of 4 
groups was initiated after 14 days of tumor proliferation—
Group 1: DMSO; Group 2: rapamycin 5 mg/kg; Group 3: selu-
metinib 35 mg/kg; Group 4: Rapa (5 mg/kg) + Sel (35 mg/kg). 
Each treatment was delivered in DMSO as a vehicle + 12.5% 
Carbowax (Polyethylene Glycol 400, Fisher Scientific) in a 
final volume of 100 μL. Rapamycin was from LC Laboratories 
(#R-5000). Selumetinib was from Selleckchem (#S1008). 
Tumors were measured with calipers every 2 days. A similar 
in vivo study was performed in the same manner in a sep-
arate trial but with 75 mg/kg selumetinib.

Western Blots of Subcutaneous Tumors for 
Combinatorial Treatment

Protein from subcutaneous tumors was collected and 
pooled by treatment category. Protein concentration was 
determined by Bradford assay.

Microtubule Staining and Quantification

Immunofluorescence microscopy was carried out es-
sentially as described previously.24 See Supplementary 
Methods for details.

Statistics

Summary statistics were performed using ANOVA fol-
lowed by post hoc Student’s t-tests as implemented by 
Stata 8.0 or GraphPad Prism 5 software. In certain cases, 
Welch’s correction for unequal variances was utilized. In 
other cases, the nonparametric Mann–Whitney test was 
employed. IC50 values were generated and compared 
using GraphPad Prism. A P-value < 0.01 was used to de-
termine significance and adjust for multiple comparisons.

Results

GSK3B Is Associated with Phosphorylation 
Changes Under Chronic mTOR Inhibition

We compared the phosphoproteome of HK296 GBM cells 
treated with vehicle control (DMSO), acute rapamycin, 
or chronic rapamycin. Many proteins demonstrated in-
verse changes in acute compared with chronic rapamy-
cin conditions (Fig. 1A). We applied stringent criteria (see 
Supplementary Methods) and identified 425 proteins with 

phosphorylation changes after chronic rapamycin treat-
ment. Validation of 2 of these phosphorylation changes via 
western blot is shown in Fig. 1B.

KEA23 revealed that GSK3B is significantly associated 
with 52 out of 425 of these phosphorylated proteins 
(P  <  0.001; Supplementary Table S1). GSK3B had the 
most substrates and the second lowest P-value on this 
list of kinases, while cell division cycle 2 (cyclin-depend-
ent kinase 4 [CDK4]) had the lowest P-value (P < 0.0001; 
Supplementary Table S1). Preliminary experiments found 
no sensitization to rapamycin upon combinatorial treat-
ment with a CDK4 inhibitor, PD0332991 (data not shown).

Attenuation of GSK3B Confers Resistance to 
Chronic mTOR Inhibition

Combinatorial treatment of GBM cultures with a serial 
dilution of rapamycin or BEZ235 in the presence of 1 μM 
CHIR99021, a selective GSK3B inhibitor, conferred resist-
ance to rapamycin (Fig. 2A) and to BEZ235 (Fig. 2B). This 
was true in a variety of cell cultures tested (Supplementary 
Figure S1A–G). Western blot of the CHIR99021-treated GBM 
culture demonstrated that GSK3B activity was attenuated 
as its downstream target p-4EBP1-T46 was diminished 
(Fig.  2C). Furthermore, depletion of GSK3B via shRNA 
(Fig. 2D) did not affect GSK3 alpha and resulted in a dra-
matic increase in resistance to rapamycin (Fig. 2E) and to 
BEZ235 (Fig. 2F) in HK301 and in other cell cultures tested 
(Supplementary Figure S1H–K). These trends were vali-
dated with a second shGSK3B construct (Supplementary 
Figure S2). These data indicate that GSK3B modulates 
resistance to mTOR pathway specific inhibition, even when 
mTORC2 and PI3K are additionally targeted by the com-
binatorial inhibitor BEZ235.

The Relative Roles of RICTOR and RAPTOR in 
Conferring Inhibitory Phosphorylation of GSK3B 
Vary Among GBM Cultures

Phosphorylation of GSK3B at serine 9 is known to inhibit 
its kinase activity.25 We discovered that GSK3B consist-
ently becomes phosphorylated at serine 9 in response to 
prolonged rapamycin treatment in human GBM cell cul-
tures (Fig.  4D). As mTOR exists in 2 distinct complexes, 
mTORC1, associated with regulatory associated protein 
of mTOR (RAPTOR), and mTORC2, associated with rapa-
mycin-insensitive companion of mTOR (RICTOR),26 we 
sought to determine which mTOR complex was respon-
sible for GSK3B phosphorylation. In HK157, shRNA-medi-
ated knockdown of either RAPTOR or RICTOR resulted in 
phosphorylation of GSK3B (Fig.  3A). However, in HK301, 
RAPTOR knockdown resulted in enhanced phosphoryl-
ation of GSK3B while RICTOR knockdown did not.

GSK3B is known to be phosphorylated by Akt25,27 and 
through ERK-activated P90-RSK1.28 In HK157, RAPTOR 
knockdown resulted in a minor elevation of phosphoryl-
ated ERK, while RICTOR knockdown did so more convin-
cingly (Fig. 3A), suggesting that phosphorylated ERK could 
mediate the induction of phosphorylated GSK3B resulting 
from RICTOR knockdown. No such effects were detectable 
in HK301.
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We then sought to determine the impact of these find-
ings on rapamycin sensitivity. While RICTOR knockdown 
did not influence sensitivity to either drug in HK301, it did 
protect HK157 cells against both rapamycin and BEZ235 
(Fig. 3D, E). RAPTOR knockdown prevented the cells from 
proliferating and was therefore not suitable for further in 
vitro study.

Taken together, the data indicate that the relative roles of 
mTORC1 and mTORC2 inhibition in mediating GSK3B phos-
phorylation can vary from tumor to tumor. Moreover, these 
results provide a bridge between mTORC2 inhibition, ERK acti-
vation, and the GSK3B-mediated mechanism of resistance.

Resistance to mTOR Inhibition by 
Phosphorylation of GSK3B Is Not Mediated by an 
Effect on β-Catenin

GSK3B phosphorylates β-catenin, marking it for degrada-
tion.29–31 We therefore studied whether activated β-catenin 

mediates the observed attenuation of GSK3B-mediated 
resistance to rapamycin. Depletion by shRNA of β-catenin 
mRNA, catenin beta-1 (CTNNB1), did not confer sensitivity 
to either rapamycin (Supplementary Figure S3B) or BEZ235 
(Supplementary Figure S3C). Likewise, overexpression of 
constitutively active β-catenin (CTNNB1-delta90) did not 
confer resistance to chronic mTOR inhibition by either 
rapamycin or BEZ235 (Supplementary Figure S3E, F).

MAP1B Mediates Attenuated GSK3B-Conferred 
Resistance to mTOR Pathway Specific Inhibition

We performed a targeted shRNA screen to knock down 
expression of 50 out of 52 of the proteins that underwent 
phosphorylation changes under chronic rapamycin and 
were associated with GSK3B in our KEA analysis. Sixty-two 
percent of these proteins had decreased phosphorylation 
sites under chronic rapamycin, 38% had increased phos-
phorylation. From this screen, 5 sensitizing candidates 
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771Laks et al. A molecular cascade modulates MAP1B and confers resistance to mTOR
N

eu
ro-

O
n

colog
y

were chosen (Z-score ≤ −2; Supplementary Table S2). Each 
of these candidates except for pre-mRNA processing fac-
tor 4B (PRPF4B) was hypophosphorylated under chronic 
rapamycin conditions, consistent with attenuated GSK3B 
function.

We found that sensitization effects were not consistently 
reproducible for knockdown of PRPF4B, K homology RNA 
binding domain containing signal transduction associ-
ated 1 (KHDRBS1), protein tyrosine kinase 2 (PTK2), and 
Lin11/Isl-1/Mec-3 (LIM) domain only protein 7 (LMO7) 
(Supplementary Figure S4). However, knockdown of 
MAP1B consistently conferred sensitization to mTOR in-
hibition (Fig.  4A–C). In GBM culture HK217, the IC50 of 
rapamycin for shMAP1B-treated cells was reduced by 
over 25-fold from the IC50 for shControl cells (P = 0.0002; 
Fig. 4B). These results were reproduced using 3 different 
constructs to knockdown MAP1B with the effects on sen-
sitization roughly associated with the efficacy of MAP1B 
knockdown (Supplementary Figure S4E, F1). These asso-
ciations of MAP1B depletion and sensitization to mTOR 
inhibition were also apparent in GBM cultures HK296 
(Supplementary Figure S4F2), HK374 (Supplementary 
Figure S4F3), and HK301 (data not shown).

In HK217, the IC50 of BEZ235 for shMAP1B-treated cells 
was lower by 1.6-fold from the IC50 for shControl cells 
(P = 0.0028; Fig. 4C). These data indicate that for some GBM 
cultures, MAP1B promotes resistance to mTOR inhibition 
in a manner that is not completely abrogated by inhibition 
of mTORC2.

In our phosphoproteomics screen, MAP1B had 
decreased phosphorylated serine 1265 upon chronic rapa-
mycin treatment (0.435 ratio of phosphorylated MAP1B 
for chronic rapamycin/DMSO treated controls). We found 
that in addition to increased phosphorylation of GSK3B, 
chronic rapamycin resulted in diminished phosphoryl-
ation of MAP1B at residue T1270 (Fig. 4D). Moreover, de-
pletion of GSK3B diminished phosphorylation of MAP1B 
(Fig. 4D).

To determine the effects of MAP1B on rapamycin sen-
sitivity in vivo, we performed subcutaneous xenografts 
of HK374 cells that were either control shRNA treated or 
depleted of MAP1B by shMAP1B lentivirus infection prior 
to transplantation. Incipient tumors were treated with ei-
ther DMSO or rapamycin and tumor growth was measured 
over time. Strikingly, the shMAP1B cohort had a significant 
sensitization to mTOR inhibition by rapamycin, as evident 
by reduced tumor growth (Fig. 4E). These shMAP1B tumor 
cells maintained their depletion of MAP1B throughout the 
treatment until the endpoint as depicted in western blots of 
the resultant tumors (Fig. 4F). In addition, the western blot 
of tumor lysates for phosphorylated RPS6 demonstrates 
that rapamycin effectively inhibited its pathway in vivo 
(Fig. 4F). Tumors in each cohort had similar appearances 
on hematoxylin and eosin staining with a relatively high 
cellular density and somewhat diminished cellular density 
in the middle of the sections (Supplementary Figure S4G). 
These data indicate that depletion of MAP1B sensitizes 
GBM cells to mTOR inhibition in an in vivo model of GBM 
tumor growth by about 50%, which is an effect equiva-
lent to the reduction of the IC50 for HK374 cells in vitro 
(Supplementary Figure S4F3).

As phosphorylated MAP1B is known to destabilize micro-
tubules,32 we examined the effects of chronic rapamycin and 
MAP1B on microtubule stability. Depletion of MAP1B with 
shRNA resulted in effective knockdown of MAP1B even after 
7 days of treatment with chronic rapamycin (Supplementary 
Figure S5A). In control-infected cells (shCtrl), chronic rapam-
ycin induced increased resistance to the microtubule desta-
bilizing agent Nocodazole compared with DMSO treated 
cells (Mann–Whitney test, P = 0.001; Fig. 4G, H) as measured 
by alpha tubulin immunocytochemistry. This resistance was 
abrogated by MAP1B depletion (Fig. 4G, H). Upon depletion 
of MAP1B (shMAP1B), the level of acetylated alpha tubulin, 
an indicator of stabilized microtubules, was significantly 
reduced compared with control cells (Mann–Whitney test, 
P = 0.0021, Supplementary Figure S5B, C). These data indi-
cate that in primary human GBM cultured cells, chronic 
rapamycin treatment stabilizes microtubules in a MAP1B-
dependent manner.

Combinatorial Therapy Targeting ERK and 
mTOR Abrogates the GSK3B/MAP1B-Dependent 
Mechanism of Resistance

As our mechanistic studies in vitro implicated ERK activa-
tion in the regulation of GSK3B phosphorylation, we next 
sought to determine whether MAP1B is modulated by ERK 
signaling to impart resistance to mTOR inhibition in an in 
vivo model of human GBM.

First, we demonstrated, in vitro, that HK374 GBM cells 
have a dramatic sensitization to mitogen-activated pro-
tein kinase kinase (MEK) (the immediate upstream modu-
lator of ERK) inhibition by selumetinib upon additional 
mTOR inhibition by either rapamycin or BEZ235 (Fig. 5A). 
Next, we utilized a subcutaneous xenograft model to study 
whether MAP1B was modulated by ERK within the context 
of inhibition of mTOR and MEK. Caliper measurements 
of tumor size (mm3) over days of treatment depict the 
responses of tumors to combinatorial or single agent treat-
ment with selumetinib (35 mg/kg) and rapamycin (5 mg/
kg; Supplementary Figure S6A). Volume quantification of 
tumors at day 9 indicates a significant reduction in tumor 
size between combinatorial treated mice and single agent 
treated mice or controls (Fig. 5B).

The in vivo experiment was repeated with a higher 
dose of selumetinib (75  mg/kg). Again, subcutaneous 
tumor sizes were significantly reduced in this combina-
torial treatment compared with single agent treatment 
(Supplementary Figure S6B), but toxicity issues at this 
higher dose caused the loss of several mice.

Western blots (Fig.  5C) of protein recovered from the 
tumors in the lower dose cohort demonstrate that adminis-
tered therapeutic treatments effectively inhibited their mo-
lecular targets. Rapamycin inhibited phosphorylated RPS6 
(pRPS6), and selumetinib inhibited levels of phosphoryl-
ated ERK (pERK). Phosphorylated Akt-S473 (pAkt) is down-
regulated in the chronic rapamycin group, suggesting that 
chronic rapamycin inhibited mTORC2 as well as mTORC1 in 
these HK374 GBM cells. Importantly, the western blot also 
depicts activation of pERK in the chronic rapamycin group. 
These data indicate that abrogating the activated ERK re-
sponse to mTOR inhibition can diminish tumor growth.
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Our data indicate that GSK3B and MAP1B are signal-
ing nodes downstream from the ERK activation response 
to mTOR inhibition. Chronic rapamycin conditions dem-
onstrated increased inhibitory phosphorylation of GSK3B 
and diminished phosphorylation of MAP1B (Fig. 5C). With 
combinatorial mTOR and ERK inhibition (Rapa + Sel), these 
mechanisms of resistance were diminished: GSK3B had 
attenuated phosphorylation and MAP1B had greater phos-
phorylation compared with the rapamycin treated condi-
tions (Fig. 5C). These data support a model of resistance 

wherein chronic mTOR inhibition leads to activated ERK, 
inhibitory phosphorylation of GSK3B, and diminished 
phosphorylation of MAP1B (Fig. 5D).

Discussion

Here, we find that inhibitory phosphorylation of GSK3B 
is an adaptive response to chronic mTOR inhibition. Our 
data contribute to and extend the literature supporting a 
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role for GSK3B in the mTOR pathway.33–35 In certain GBM 
tumor cells, we discovered that upstream activation of ERK 
induces phosphorylation of GSK3B and the downstream 
activation of MAP1B. By first demonstrating a functional 
role of MAP1B in resistance to mTOR inhibition, and then 
elucidating the cascade of signaling between activated 
ERK and MAP1B, we infer that MAP1B is an effector of 
upstream ERK activation in its mechanism of resistance to 
mTOR inhibition, in at least some GBM.

Our biochemical study demonstrates that phosphoryla-
tion of MAP1B is modulated by GSK3B, a finding supported 
by previous studies.36–38 The identification of MAP1B as a 
functional protein in GBM is somewhat surprising on the 
surface. MAP1B is highly expressed in neurons, and most 
studies have investigated the role of MAP1B in neuronal 
growth. However, MAP1B is highly expressed in human glial 
progenitors (http://web.stanford.edu/group/barres_lab/
brainseqMariko/brainseq2.html; last accessed 12 August  
2017), although its role in these cells or in glioma is yet 
unknown.

The major function of MAP1B in neurons has been asso-
ciated with stabilization of microtubules. A  role for micro-
tubule stability in mediating resistance to targeted therapy 
has not been described. Our study demonstrates that rapa-
mycin induces microtubule stabilization that is abrogated 
by depletion of MAP1B. Microtubule stability may confer 
aspects of cellular protection, as microtubules function to 
coordinate the cellular stress response, promote cell survival 
under harsh environments, and confer chemoresistance.39 
Furthermore, rapamycin-resistant cells are vulnerable to 
agents that induce further microtubule stability, as rapamy-
cin sensitizes cells to Taxol in a GSK3B-dependent manner,40 
and stabilized microtubules were shown to sensitize ovar-
ian cancer cells to Taxol.41 On the other hand, if microtubule 
stability via MAP1B is a mode of resistance to mTOR inhib-
ition, then one may surmise that microtubule destabilization 
may confer sensitivity to mTOR inhibition. Indeed, this has 
been shown to be the case in certain cancer cells that dem-
onstrate a synergistic response to rapamycin and the micro-
tubule destabilizing agent vinorelbine.42 The combination of 
rapalogs and vinorelbine has undergone clinical trials for 
the treatment of certain cancers, although not GBM due to 
the blood–brain barrier. Thus, molecular resistance to mTOR 
inhibition may be exploited by employing mTOR inhibition 
together with microtubule stabilization agents.

Our results have implications for therapeutic strategies 
in the treatment of GBM. In certain GBM cultures, inhib-
ition of mTORC2 contributes to resistance by promoting 
phosphorylation of GSK3B. These findings suggest that 
treatment with BEZ235 or similar mixed kinase inhibitors, 
designed to overcome resistance, may instead result in 
activation of GSK3B-mediated resistance.

In clinical trials of solid tumors, combinatorial therapy 
targeting MEK and mTOR faced severe clinical issues 
due to drug toxicity.43 We found similar problems in mice. 
However, a novel ERK inhibitor has been shown to syner-
gize with MEK inhibitors44,45 and may allow for lower doses 
of MEK inhibitor to be employed to reduce drug toxicity. 
Thus, despite previous setbacks with toxicity, present and 
future pharmacological advances may permit combinatorial 
therapy targeting MEK, ERK, and mTOR to provide an effica-
cious therapeutic strategy in the treatment of certain GBM. 

Our delineation of this molecular pathway for resistance to 
chronic mTOR inhibition reveals vulnerabilities that may be 
exploited by combinatorial targeting of mTOR, MEK/ERK, 
and microtubule stabilization in the treatment of GBM.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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