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It is now generally accepted that diabetes increases the
risk for cognitive impairment, but the precise mechanisms
arepoorly understood.Acritical problem in linkingdiabetes
to cognitive impairment is that patients often have multiple
comorbidities (e.g., obesity, hypertension) that have been
independently linked to cognitive deficits. In the study
reportedherewe focusedon youngadultswith andwithout
type 1 diabetes who were virtually free of such comorbid-
ities. The two groups were matched on major health and
demographic factors, and all participants completed
a verbal working memory task during magnetoencephalo-
graphic brain imaging. We hypothesized that patients
would have altered neural dynamics in verbal working
memory processing and that these differences would
directly relate to clinical disease measures. Accordingly,
we found that patients had significantly stronger neural
responses in the superior parietal cortices during memory
encoding and significantly weaker activity in parietal-
occipital regions during maintenance compared with
control subjects.Moreover, disease duration and glycemic
control were both significantly correlated with neural
responses in various brain regions. In conclusion, young
healthy adults with type 1 diabetes already have aberrant
neural processing relative to their peers without diabetes,
using compensatory responses to perform the task, and
glucosemanagement and durationmay play a central role.

The human brain is one of the most metabolically active
organs in the body, so it follows that glucose metabolism
dysregulation, a hallmark of diabetes, would cause a variety
of deleterious effects on neural and cognitive processes.

Accordingly, several metrics of brain structure, including
white matter tract integrity, white matter hyperintensities,
and gray matter volume, are known to be abnormal in
patients with type 1 diabetes (1–3). Early studies of brain
function also found impairments in this patient group (4–6).
Such brain abnormalities likely underlie the various neuro-
psychological impairments that have been described in
patients with type 1 diabetes, including deficits in measures
of intelligence, attention, psychomotor speed, visual per-
ception, cognitive flexibility, and executive functioning (7,8),
but to date, links between brain aberrations and cognitive
decline in these patients have not been firmly established.
The existence of neuropsychological deficits in this popu-
lation is well appreciated, however, and several studies have
connected these deficits to glycemic control, disease duration,
major comorbidities, and other disease factors (9,10) and have
begun to distinguish the cognitive functions most severely
affected (11).

Executive functioning, including processes such as working
memory, appears to be uniquely impaired in patients with
type 1 diabetes as shown by recent meta-analyses (10,11).
Working memory is generally defined as the mechanism by
which information is temporarily stored and/or transformed
for utilization toward current goals and/or processes (12,13).
Thus, working memory plays a critical role in daily mental
function and supports higher-order cognitive processes such
as decision-making and language comprehension. The brain
regions and responses serving working memory processing
have been widely studied in healthy (13–17) and diseased
populations (18–21), but to date, far fewer studies have been
conducted in patients with diabetes.
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Electrophysiological studies of verbal working memory in
healthy participants have shown strong neural responses
across left hemispheric brain regions known to be central to
language processing, including left superior temporal cortices,
the left supramarginal gyrus, and the left prefrontal cortex
(16,22). These studies have also shown robust activity in
visual occipital areas, parietal cortices, and left frontotem-
poral cortices, and, importantly, response strength across
these regions was highly dynamic and varied by phase of
working memory processing. Interestingly, recent work has
also shown increased activity in homolog right prefrontal and
temporal cortices of older control subjects and patients with
psychiatric or neurological conditions, which is thought to
reflect compensatory activity that enables adequate task
performance (19–22). Although research has been limited,
these compensatory activation patterns have also been
found using functional MRI (fMRI) and verbal working
memory tasks in patients with type 1 diabetes (5).

In the current study, we used magnetoencephalography
(MEG) to identify dynamic alterations in cortical neurophys-
iology between patients with type 1 diabetes and demograph-
ically matched control subjects without diabetes. MEG is an
emerging technique that measures neural activity directly and
offers a finer temporal resolution than comparable methods
such as fMRI. The millisecond-scale time resolution of MEG
provides the ability to examine differences in the phases of
working memory processing (e.g., encoding vs. maintenance)
and thus allowsmore subtle differences to be identified between
groups. This enhanced sensitivitywas especially important in the
current study, because our patient group was relatively young,
free of common comorbid conditions, and was examined
in the normoglycemia range. We focused on this group of
patients because it would allow for stronger conclusions
about the unique impact of the disease on brain physiology.

Participants in each group completed a Sternberg-type
working memory task during MEG, and we followed a data-
driven approach to identify and image the oscillatory neural
responses serving working memory processes. Subsequently,
we used time-series analysis methods to examine the neural
dynamics underlying encoding and maintenance operations.
We hypothesized that patients with diabetes would exhibit
increased recruitment of regions involved in working memory
processing during the encoding and maintenance phases and
that the specific regions being recruitedwould vary across these
phases. Furthermore, we hypothesized thatmeasures of disease
duration and glycemic control would relate to brain activity,
such that greater disease duration and higher HbA1c levels
would result in the activation of compensatory mechanisms,
such as hyperactivity in core working memory brain regions
and/or increased recruitment of right hemispheric homolog
brain regions, to maintain behavioral performance levels.

RESEARCH DESIGN AND METHODS

Participants
The study recruited 38 patients (14 females) with type 1
diabetes and no known comorbidities for participation in

the study (age range: 19–35 years). A demographically
matched control group (n = 38) was also enrolled for
comparison. The two groups were matched on age, sex,
education, BMI, ethnicity, and handedness. Participants
with type 1 diabetes were recruited from the University of
NebraskaMedical Center (UNMC)Diabetes Clinic. All patients
were receiving insulin therapy in the form of basal-bolus
therapy delivered via insulin pump or insulin injections.
Control subjects were recruited from the greater Omaha
area.

Exclusionary criteria for both groups included any
medical diagnosis primarily affecting central nervous system
function (e.g., psychiatric and/or neurological disease); known
brain neoplasm or lesion; history of significant head trauma;
current substance dependence; pregnancy or lactation; any
hospitalization within the previous 3 months; any type of
cancer; treatment with antipsychotics, antidepressants, and
related medications known to affect brain function, with the
exception of as needed antidepressants after a 24-h washout
period; current or prior treatment with statins; and ferro-
magnetic implants. Additional exclusionary criteria for
patients included the presence of micro- or macrovascular
disease, defined as a urinary albumin-to-creatine ratio of
.30 mg albumin/mg creatinine in the previous 12 months;
hypertension (blood pressure .130/85 mmHg); kidney
disease, defined by glomerular filtration rate ,60 mL/
min/1.73 m2; aspartate transaminase–to–alanine trans-
aminase ratio.2 units/L; a severe hypoglycemic episode
within the past 3 months, defined as an event requiring
third-party assistance; and untreated thyroid and/or vitamin
B12 deficiency. Written informed consent was obtained
from each participant following the guidelines of the UNMC
Institutional Review Board, which approved the study
protocol.

Laboratory Blood Tests
Before MEG, participants underwent a panel of blood tests
according to the standards of care described by the American
Diabetes Association. These tests included measurements of
glycated hemoglobin (HbA1c), creatinine, glucose, aspartate
transaminase, alanine transaminase, albumin-to-creatinine
ratio, thyroid-stimulating hormone, and vitamin B12

(see Table 1). Demographic and medical history data
were collected, and patients were given a brief question-
naire about the number of hypoglycemic episodes they
experience per week. On the day of the MEG, patients
checked their blood glucose level using a point-of-care
device. Those whose measurements were within the 70–
200 mg/dL range started their MEG session shortly there-
after, whereas thosewhosemeasurementswere 55–70mg/dL
were asked to raise their blood glucose to the normal range, and
after 1 h in the normal range, these participants started
their MEG session. Participants whose blood glucose
levels were ,55 mg/dL—because values lower than this
threshold equate to clinically significant hypoglycemia—
or .200 mg/dL were rescheduled for a different day at least
1 week later.
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Working Memory Task Experiment
During the MEG session, participants were seated in a non-
magnetic chair and instructed tofixate on a crosshair presented
centrally for 1.0 s. A grid containing six letters was then
presented for 2.0 s (encoding). These letters then disappeared
from the grid, and 3.0 s later (maintenance phase), a single
“probe” letter appeared for 0.9 s (retrieval phase) (Fig. 1).
Participants were instructed to respond with a button press
indicating whether the probe letter was one of the six letters
previously presented. Each trial lasted 6.9 s, including a 1.0-s
prestimulus fixation. Each participant completed 128 trials.
Our group has validated this same task in several previous
studies (16,21,22).

MEG Methods and Analyses
TheMEGmethods and statistical analyses used in this study
closely correspond to those used in previous normative
studies by our group (23,24). Briefly, MEG recordings were
conducted within a magnetically shielded room using an
Elekta MEG system with 306 magnetic sensors (Elekta,
Helsinki, Finland). MEG data were sampled at 1 kHz us-
ing an acquisition bandwidth of 0.1–330 Hz, individually
corrected for head motion (offline), and subjected to noise
reduction using the signal space separation method with
a temporal extension (25). Each participant’sMEG data were
then coregistered with structural T1-weighted MRI data.

After removal of cardio artifacts, the continuousmagnetic
time series was divided into epochs of 6.9-s duration, with
the baseline defined as 20.4 to 0.0 s before initial stimulus

onset. Artifact-free epochs were transformed into the time-
frequency domain using complex demodulation, and the re-
sulting spectral power estimations per sensor were averaged
over trials to generate time-frequency plots of mean spectral
density. These sensor-level data were normalized using the
respective bin’s baseline power, which was calculated as the
mean power during the 20.4- to 0.0-s period.

The precise time-frequency windows used for imaging
were determined by statistical analysis of the sensor-level
spectrograms across the array of gradiometers during the 5-s
“encoding” and “maintenance” time window. Each data point
in the spectrogram was initially evaluated using a mass
univariate approach based on the general linear model
(GLM) and then corrected for multiple comparisons in
stage two. First, one-sample t tests were conducted on each
data point, and a threshold of the output spectrograms
of t values was set at P , 0.05 to define time-frequency
bins containing potentially significant oscillatory deviations
across all participants. In stage two, time-frequency bins
that survived the threshold were clustered with temporally
and/or spectrally neighboring bins that were also signifi-
cant, and a cluster value was derived by summing all of the
t values of all data points in the cluster. Nonparametric
permutation testing was then used to derive a distribution of
cluster values, and the significance level of the observed clusters
was tested directly using this distribution (16,26,27). Based on
these analyses, the time-frequency windows that contained
significant oscillatory events across all participants during
the encoding and maintenance phases (see RESULTS) were
subjected to beamforming.

Cortical networks were imaged at 4.0 3 4.0 3 4.0-mm
resolution using the dynamic imaging of coherent sources
beamformer (28,29), which uses spatial filters in the fre-
quency domain to calculate source power for the entire
brain volume. Following convention, we computed the noise-
normalized source power per voxel in each participant using
active (i.e., task) and passive (i.e., baseline) periods of equal
duration and bandwidth. Such images are typically referred
to as pseudo-t maps, with units (i.e., pseudo-t) that reflect
noise-normalized power differences per voxel. All source
imaging used Brain Electrical Source Analysis (BESA) version
6.1 software (BESA GmbH, Gräfelfing, Germany). Before
statistical analysis, each participant’s functionalMEG images
were transformed into standardized Montreal Institute
space using the transform that was previously applied to
the structural images and then spatially resampled (23,24).
The resulting three-dimensional maps of brain activity were
averaged across participants in each group to assess the
neuroanatomical basis of significant oscillatory responses
identified through the sensor-level analysis. These images
were also statistically evaluated using a mixed effects, mass
univariate approach based on the GLM and a whole-brain
correlational approach. The effect of group (type 1 diabetes/
control subjects) was determined using two-tailed independent--
samples t tests per time-frequency bin. Whole-brain corre-
lation maps were computed using the functional images
and clinical metrics, including disease duration and HbA1c,

Table 1—Demographics and laboratory test results

Patients
(n = 33)

Control
subjects (n = 34)

Age (years) 26.1 (5.0) 26.3 (3.8)

Sex
Male 20 24
Female 13 10

Handedness
Right 28 30
Left 5 4

Disease
duration (years) 12.39 (7.76) —

HbA1c (%) 7.78 (1.37) —

HbA1c (mmol/mol) 62.0 (15.0) —

Hypoglycemic
episodes per
week (n) 3.05 (3.04) —

Creatinine (mg/dL) 0.84 (0.013) —

Glucose (mg/dL) 142.69 (38.29) —

Albumin-to-creatinine
ratio (mg albumin/mg
creatinine) 8.30 (6.86) —

Thyroid-stimulating
hormone (mcIU/mL) 2.72 (1.93) —

Vitamin B12 (pg/mL) 485.06 (218.86) —

Values are depicted as n or as mean (SD).
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partialling out age because it is a confounding factor with
duration and HbA1c. Statistical comparisons for the time-
series analyses used an average value over the maintenance
period for each participant for group-level t test comparisons
for tests of significance. All output statistical maps were
displayed as a function of the alpha level, thresholded at
P , 0.01, and adjusted for multiple comparisons using
a spatial extent threshold (i.e., cluster restriction; k = 300)
based on the theory of Gaussian random fields (30).

RESULTS

Demographic, Behavioral, and Laboratory Results
Five participants from the patient group and four partic-
ipants from the matched control subjects were excluded at
the data analysis phase due to artifactualMEGdata. The final
study group included 33 participants with type 1 di-
abetes (13 females; mean age, 26.1 years; SD 5.0) and
34 demographically matched control subjects (10 females;
mean age, 26.3 years; SD 3.8). Average education level was
16.2 years (SD 1.7) for patients and 17.4 years (SD 3.0) for
control subjects; this difference was not significant. The
mean disease duration in patients was 12.4 years (SD 7.8),
and the mean HbA1c was 7.78% (SD 1.37). Other blood
laboratory test values are reported in Table 1. As was
expected, both groups performed the working memory task
reasonably well, with a mean accuracy rate of 85.53% (SD
12.34) and no between-group differences (t 65 = 1.08, P =
0.283). Note that equivalent performance across groups was
by design, because accuracy differences would have con-
founded our main MEG results (in that case, significant
neural differences could reflect performance disparities and
not the effect of disease).

Sensor-Level Results
To identify the precise time-frequency bins for follow-up
beamforming analyses, the sensor-level time-frequency spec-
trograms were statistically evaluated using t tests comparing
the active period to the baseline period followed up with
nonparametric permutation testing for multiple compar-
isons correction. These analyses indicated that across
patients and control subjects, there was a significant
decrease in 9–16 Hz (extended alpha) activity throughout

the encoding phase of the task in sensors over posterior
and left hemispheric brain regions (P , 0.001, corrected)
(Fig. 2). This activity began ;200 ms after the onset of the
encoding grid and extended until ;2,200 ms. This was
followed by a significant increase in 8–11 Hz (low alpha; P,
0.001, corrected) (Fig. 2) activity that began at ;2,400 ms
and stretched throughout most of the maintenance phase,
peaking in more posterior sensors bilaterally. These signif-
icant time-frequency windows were imaged using beam-
forming to enable group-level statistical modeling to occur in
anatomical space. To this end, we imaged data from 200 to
2,200 ms in the 9–16 Hz range and from 2,200 to 5,000 ms
in the 8–11 Hz range using discrete 400-ms windows to
enable the neural dynamics to be statistically probed.

Dynamic Functional Imaging Analysis
To evaluate the brain dynamics serving working memory
performance, we initially examined the time course of
activity in each group (Fig. 3). Neural responses during the
encoding period were generally similar across groups, with
some divergence emerging during maintenance. Specifically,
we found a strong decrease in extended alpha activity
(9–16 Hz) during encoding, beginning in occipital regions
and quickly spreading to more anterior regions, including
superior temporal and inferior prefrontal regions. In patients,
two distinct peaks could be observed in the 8–11 Hz range
during most of the maintenance phase, strongest in the left
superior temporal region with a weaker more anterior peak
in left inferior frontal regions. In contrast, a left superior
temporal peak dominated the maintenance period in control
subjects, although a smaller inferior frontal peak could also
be discerned. The overall pattern and progression of the left
hemispheric activity were generally similar between groups,
with specific regional differences expanded upon below.

Next, we compared the two groups to identify regions
with statistical differences in each time window. These
analyses revealed that patients exhibited significantly
stronger decreases in extended alpha (9–16 Hz) relative to
control subjects in bilateral parietal and left lateral occipital
cortices during encoding (P, 0.01, corrected) (Fig. 4A). This
pattern of response differences stretched into the transition
period (data not shown). During maintenance, patients

Figure 1—Task paradigm. Presentation of stimuli during the verbal working memory task started with a 1,000 ms fixation cross, followed by the
appearance of a six-letter grid for 2,000 ms (encoding period), an empty grid for 3,000 ms (maintenance period), and finally, the probe letter for
900 ms (retrieval). During the retrieval phase, participants were to respond with a finger tap indicating whether the probe letter was present in the
previously shown six-letter grid.
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had a significantly weaker increase in low alpha (8–11 Hz) in
the right occipital region compared with control subjects
(Fig. 4B), and this continued throughout most of mainte-
nance (P , 0.01, corrected).

The alpha increase observed during the maintenance
phase has been described in several recent articles (16,22)
and was of particular interest in this study because it has

been linked to the ability to maintain representations in the
face of incoming, distracting visual information (14,15,31,32).
Given this, we compiled the grand average image of patients
and control subjects and extracted the time series of the peak
voxel, which revealed significantly stronger 8–11 Hz alpha
activity in the control subjects relative to the patients within
the maintenance period (t65 = 3.39, P = 0.001) (Fig. 5).

Figure 2—Time-frequency spectrograms. Grand- (far left) and group-averaged (middle and right) time-frequency spectrograms from
a representative parieto-occipital MEG sensor. Time is shown on the x-axis in seconds, and frequency is shown on the y-axis in Hz. The
colors reflect power increases (red) and decreases (blue) relative to the baseline, with the scale bar shown to the far right. Time-frequencywindows
for source imaging (beamforming) were derived from statistical analysis of the sensor-level spectrogram data across all participants. Thus, the
separate group-level spectrograms are provided for visualization purposes only. Weaker low alpha responses in patients can be discerned
throughout most of the maintenance phase.

Figure 3—Left hemisphere response dynamics. Group-averaged images per time window during encoding (red text), transition (white text), and
maintenance (blue text) periods depict the evolution of responses during task performance. Control group averages are shown in the top panel,
with patient group averages below. A strong decrease in alpha activity relative to the baseline can be seen during encoding time bins, starting in
occipital and stretching forward to more parietal, superior temporal, and inferior frontal regions through later encoding, transition, and into
maintenance.
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Whole-Brain Correlations
Lastly, we computed maps of whole-brain correlations using
the disease duration,HbA1c, andMEG images averaged across
encoding and maintenance periods in patients. Because
disease duration and HbA1c both correlated with age (r =
0.41, P = 0.020 and r = 20.46, P = 0.007, respectively), all
correlation maps were generated with age as a covariate
to partial out the influence of age. Supporting a mean-
ingful relationship between right hemispheric activity
and disease markers, these analyses indicated greater
right hemispheric involvement in task performance with
increases in disease duration andHbA1c (Fig. 6). For example,
with increasing disease duration, stronger decreases in
extended alpha activity were found in the right temporal
parietal junction (r =20.52, P = 0.003) and parieto-occipital
region (r = 20.48, P = 0.005). Moreover, increased HbA1c

values were associated with stronger decreases in right
parietal regions (r = 20.52, P = 0.002). Neither disease
duration nor HbA1c correlated with task performance,
measured by accuracy (r = 20.08, P = 0.683 and r = 20.10,
P = 0.572, respectively).

DISCUSSION

We used high-density MEG to investigate the impact of
type 1 diabetes on the neurophysiology serving working
memory processing in young adults. In both groups, our
data indicated a sharp decrease in extended alpha activity
that began in occipital regions during encoding. This decrease
in alpha activity spread to include left temporal and prefrontal
cortices during the latter half of encoding, narrowed to low
alpha during early maintenance, and dissipated during the
latter half of maintenance. This pattern of left hemispheric
oscillatory activity corroborates and extends previous imaging

work from our laboratory and others, which has shown that
verbalworkingmemory activates a network of left hemispheric
language regions. As for group differences, patients with type 1
diabetes exhibited stronger oscillatory alpha responses rela-
tive to control subjects in bilateral superior parietal cortices
during encoding and weaker low alpha responses in occipital
cortices duringmaintenance. Finally, our results indicated that
duration of diabetes and glycemic regulation (HbA1c) were
both correlated with oscillatory MEG responses across the
time series. Below, we discuss the implications of these
findings for understanding the impact of type 1 diabetes on
the brain networks serving working memory processing and
the roles of glycemic regulation and the duration of disease.

The alpha responses observed throughout the task period
in both groups have been linked to a wide range of cognitive
processes involved in working memory and other executive
functions. These primarily left-lateralized decreases in superior
temporal and inferior prefrontal regions have been previously
connected to the Baddeley model of working memory, spe-
cifically to the phonological loop and central executive
subcomponents (12,13,16,17,22,33). The phonological loop
represents vocal and subvocal rehearsal mechanisms to
increase the likelihood of maintaining the information
(33,34). Interestingly, we found that patients with type 1
diabetes exhibited stronger alpha oscillations relative to
control subjects in the superior parietal cortices throughout
most of the encoding period. This brain region, along with
the supramarginal gyrus, has been repeatedly linked to
phonological loop processes (16,21,22), and in our study,
these differences emerged in the left superior parietal as well
as in its right hemisphere homolog. We propose that these
differences reflect compensatory activity in the patients with
diabetes, because control subjects also activated these

Figure 4—Group differences in occipital activity during encoding and maintenance. A: Patients exhibited stronger decreases in extended alpha
activity relative to control subjects in superior parietal regions throughout the encoding period, likely reflecting compensatory activity. B: Patients
also hadweaker low alpha responses (i.e., alpha synchronization) comparedwith control subjects during themaintenance phase in occipital areas,
likely reflecting weakened suppression of incoming visual information. This pattern held throughout most of maintenance, with some
representative time windows shown. All images have been thresholded at P , 0.01, corrected; scale bars to the right. L, left; R, right.
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regions during the encoding period and they are known
to be central to working memory processing.

In regard to maintenance, increased posterior occipital
alpha activity is thought to be a mechanism for inhibiting
incoming (distracting) visual information, which would
facilitate the maintenance of relevant memory representa-
tions in the more anterior, left hemisphere regions discussed
above (14,15,31,32). Both groups exhibited increased oc-
cipital alpha during most of the maintenance period,
but this increase was significantly weaker in patients.
Basically, patients were able to perform at nearly the
same level as control subjects despite this aberrant occipital
processing, so it is plausible that they compensated through
increased processing in other nodes involved in working
memory processing. Similar findings of aberrant processing
in one brain area and compensatory processing in other brain
regions servingworkingmemory processing has been reported
in the aging literature (22). Given the age of our participants,
future studies should probe the impact of aging on these
brain networks in patients with type 1 diabetes, because it is

probable that the common compensatory mechanisms of
healthy aging may be exhausted by the time these patients
reach older adulthood.

Consistent with our MEG/HbA1c correlation findings,
previous behavioral studies have linked deficits in working
memory processing with glycemic control (35). For example,
intensive regulation of glycemic control in adolescents with
type 1 diabetes (36) and adults with type 2 diabetes (37) has
been shown to improve working memory task performance,
although there is also a risk of increased hypoglycemic
episodes with intensive treatment regimens, which may
again lead to worse cognitive outcomes long-term (6,37).
Unawareness of hypoglycemia, another long-term factor, has
also been shown to induce further cognitive impairment.
This hypothesis posits that as cognitive deficits arise, they
affect the patient’s ability to control glycemic levels, alter-
ing the awareness of the glycemic state and leaving the
dysglycemia untreated, which ultimately leads to further
cognitive decline (38,39). This cyclical decline increases the
likelihood of devastating cognitive outcomes, such as mild

Figure 5—Time series of parieto-occipital differences duringmaintenance. The grand average image compiled from patients and control subjects
(far left) illustrates the characteristic parieto-occipital low alpha increase (synchronization) during maintenance, which is thought to reflect the
inhibition of incoming visual information. This grand-averaged image was used to identify the peak voxel (14,280, 25) of this response, and the
time series of this voxel was then extracted for group comparisons. This analysis revealed that control subjects had a sustained, stronger lowalpha
response throughout the maintenance period relative to patients with type 1 diabetes (far right). In this plot, time is shown on the x-axis in ms,
amplitude is shownon the y-axis in percent change frombaseline, and the gray box reflects themaintenance periodwhere the response amplitude
significantly (P = 0.001) differed between groups. L, left; R, right.

Figure 6—Neuroclinical correlation maps. Left: The duration of disease in patients with type 1 diabetes was significantly correlated with response
amplitude across the encoding and maintenance periods in two distinct regions. The right temporoparietal negative correlation (peak voxel:
r=20.52,P=0.003)with disease duration likely reflects compensatory activity in right hemispheric homolog areas,whichgets strongerwith longer
disease duration. However, the negative correlation between parieto-occipital activity and time since diagnosis (peak voxel: r =20.48, P = 0.005)
likely reflects aberrantly decreased occipital inhibition with disease progression. Right: The HbA1c level in patients was negatively correlated with
right parietal activity during encoding andmaintenance (peak voxel: r =20.52, P = 0.002), such that as HbA1c levels increased, there were greater
decreases in alpha relative to the baseline, again suggesting compensatory activity. All correlations were performed using age as a covariate of no
interest, because it was found to correlate with both disease duration and HbA1c levels. L, left; R, right.

1146 Type 1 Diabetes Alters Working Memory Processes Diabetes Volume 67, June 2018



cognitive impairment and Alzheimer disease (38). Apathy
toward the disease and nonadherence to treatment regimens
have also been shown to produce poor cognitive outcomes in
children and adults with diabetes (40–43). These previous
findings clearly illuminate the intricate interrelationship
between disease duration and glucose management, and
thus, it was unsurprising that both correlated with neural
activity related to working memory in the current study.
The areas affected have been previously linked to working
memory processing, as the occipital region has been tightly
connected to blocking incoming visual information that could
disturb representations, whereas the right temporoparietal
area has been linked with compensatory rehearsal processes
in older adults (22). However, given that our findings are
correlational, future studies should consider directly com-
paring good and poor glycemic management groups to
ensure these neurological differences are definitive.

In conclusion, we found aberrant processing in the
networks serving working memory in young adults with
type 1 diabetes who were otherwise healthy. These patients
exhibited stronger responses in the superior parietal area
during encoding and a diminished alpha response in the
parieto-occipital cortices during maintenance. Overall, this
pattern of neural dynamics was closer to that of an aging
population, with increased right hemispheric involvement
during encoding. We suggest that these young patients may
already be compensating for decreased neural resources or
efficiency by using other network resources and that this
may leave less capacity for compensation later in life.
Compensatory capacity may be especially affected in those
with poor glycemic control, because this has been shown to
greatly influence patient outcomes (e.g., cognition) in later
adulthood.

Before closing, it is important to recognize some limitations
of this study, including the specific focus on working memory,
the young age of the participants, and that the participants
were clear of virtually all common comorbidities. Although
these limitations were by design, they still limit the
generalizability of the results.

To close, we found that aberrant neurophysiological
activity duringworkingmemory processing is already present
in young adults with type 1 diabetes and that duration of
disease and glycemic control play a key role. These findings
add to the body of literature implicating these specific disease
factors in cognitive dysfunction, with clear neurophysiolog-
ical differences emerging even before behavioral differences
and likely worsening with age. Future studies should more
directly examine the role of glycemic control and the impact
of aging.
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