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Bariatric surgery dramatically improves glycemic control,
yet the underlying molecular mechanisms remain contro-
versial because of confounding weight loss. We perfor-
med sleeve gastrectomy (SG) on obese and diabetic leptin
receptor–deficient mice (db/db). One week postsurgery,
mice weighed 5% less and displayed improved glycemia
compared with sham-operated controls, and islets from SG
mice displayed reduced expression of diabetesmarkers. One
month postsurgery SG mice weighed more than preopera-
tively but remained near-euglycemic and displayed reduced
hepatic lipid droplets. Pair feeding of SG and sham db/db
mice showed that surgery rather than weight loss was re-
sponsible for reduced glycemia after SG. Although insulin
secretion profiles from islets of sham and SG mice were
indistinguishable, clamp studies revealed that SG causes
a dramatic improvement in muscle and hepatic insulin sensi-
tivityaccompaniedbyhepaticregulationofhepatocytenuclear
factor-a and peroxisome proliferator–activated receptor-a
targets. We conclude that long-term weight loss after SG
requires leptin signaling. Nevertheless, SG elicits a remark-
able improvement in glycemia through insulin sensitization
independent of reduced feeding and weight loss.

Bariatric surgery is currently themost effectivemeasure to in-
duce and sustain weight loss for obese individuals (1). Sleeve
gastrectomy (SG) is a common bariatric surgery in which
;80% of the stomach is removed, and the remaining stom-
ach forms a sleeve that connects the esophagus to the small
intestine. Both SG and very-low-calorie diets often result in

glucose normalization even before dramatic weight loss (2),
and the early effects of surgery have been attributed in part
to reduced food consumption after surgery (3). SG was first
considered to be a restrictive procedure but is now known to affect
appetite andmetabolic control through othermechanisms (3–10).

We sought to uncouple the effects of SG on food intake
and weight loss from glucose homeostasis. The db/dbmouse
has a dysfunctional leptin receptor that leads to obesity and
insulin resistance. SG does not lead to sustained weight loss
in mice deficient in leptin signaling (11–15), but we ob-
served improved glycemic control even after mice had sur-
passed their presurgical weight and when compared with
pair-fed mice. The improvement was reflected mainly in
increased peripheral hepatic insulin sensitivity and not in
b-cell recovery and was characterized by hepatic regulation
of peroxisome proliferator–activated receptor-a (PPARa)
and hepatocyte nuclear factor-a (HNF4a) target genes.

RESEARCH DESIGN AND METHODS

Eight- to 10-week-old db/db mice were fed normal chow
and underwent SG or sham surgery (15) wherein the mouse
stomach was exposed and a 12-mm clip placed by using
a LIGACLIP Multiple Clip Applier horizontally across the
greater curvature of the stomach. The excluded part of
the stomach was excised. Sham surgeries included the ab-
dominal incision and closure of body wall and skin. Mice
were fasted the day before surgery and the day of surgery
and then returned to normal chow. Lean controls were db/+
littermates of the db/db experimental group.
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Clamp studies, triglycerides, cholesterol, and nonesteri-
fied fatty acid (NEFA) measurements were performed by
the mouse phenotyping core of the Diabetes Research Center
at the University of Pennsylvania. The joint ethics commit-
tee of the Hebrew University and Hadassah Medical Center
and the institutional animal care and use committee of the
University of Pennsylvania approved the animal experiments
carried out in Jerusalem and Philadelphia, respectively. Values

shown are mean 6 SEM. See the Supplementary Data for
additional information.

RESULTS

SG Halts Weight Gain and Lowers Blood Glucose Levels
in db/db Mice
Obese diabetic db/db mice that underwent SG did not gain
weight 1 week after surgery (Fig. 1A and B) but continued

Figure 1—Weight and glucose levels in SG- and sham-operated mice. A–F: Weight and random glucose levels of SG- (n = 15–20) and sham-
operated (n = 11) mice 1 week after surgery. Glucose and weight were measured on days 1, 4, and 7 after surgery. A: Change in weight in SG-
and sham-operated mice relative to the weight at time of surgery. Median weight shown in dark colors and individual weight in light colors. B:
Average weight of mice on the day of surgery and 7 days after surgery. C: Mean food consumption per mouse in the days after surgery. D:
Change in nonfasting glucose levels compared with the day before surgery. Colors as in A. E: Glucose levels at the day before surgery and after
surgery. Colors as in A. F: Mean glucose levels at the day before surgery and 7 days after surgery. G–I: Weight and nonfasting glucose levels of
SG- and sham-operated mice 30 days after surgery. Glucose and weight were measured at days 1, 4, 7, 16, 24, and 30 (n = 8–11). G: Change in
weight in SG- and sham-operated mice relative to weight at surgical time. Colors as in A. H: Change in nonfasting glucose levels compared with
the day before surgery. Colors as in A. I: Mean nonfasting blood glucose levels at the day before surgery and 30 days after surgery. Error bars
indicate SEM. *P , 0.05, **P , 0.01 by two-way ANOVA with Bonferroni-corrected Tukey honest significant difference test. gast., gastrectomy;
ns, not significant.
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to gain weight afterword (Fig. 1G). Plasma glucose levels
dropped in the week after surgery compared with sham-
operated controls (Fig. 1B) and to preoperative levels (Fig.
1F and I). As expected, SG led to a dramatic early reduction
in food consumption but reapproached the intake of sham-
operated mice after 1 week (Fig. 1C), suggesting that hyper-
phagia caused by the absence of leptin signaling overrode
the physical restriction on feeding imposed by the surgery.
Both SG and sham-operated db/db mice gained weight
compared with the presurgical starting point at a similar

rate between days 10 and 30 after surgery (Fig. 1G). Nev-
ertheless, blood glucose levels of SG-operated mice were im-
proved significantly compared with sham-operated mice and
to the presurgical levels, which agrees with previous results
in leptin pathway–deficient rats (11) (Fig. 1E, F, H, and I).

SG Improves Hepatic and Pancreatic Morphology One
Week After Surgery
The liver of SG-operated mice displayed a dramatic decrease
in the abundance of lipid droplets compared with sham-
operated mice (Fig. 2A). This finding is especially striking

Figure 2—Hepatic and pancreatic response to SG. A: Hematoxylin-eosin staining of liver section 1 week after SG (left) or sham surgery (middle)
and 1 month after SG (right). Fractional area of lipid droplets in livers of operated mice shown on the right (n = 3–6). B–F: Immunohistochemical
staining of pancreata from sham-operated (top) and SG-operated (bottom) mice. Quantification of staining shown below the images (n = 5–7 mice). B:
SG reduces b-cell proliferation back to levels seen in lean mice. Nuclear Ki67 staining marking proliferating cells shown with arrows. C: SG
transiently reduces DNA damage in b-cells to levels seen in lean mice. Red foci indicate nuclei experiencing DNA damage (arrows). D: SG
increases nuclear colocalization of the b-cell transcription factors Pdx1 and Nkx6.1. E: SG reduces the number of gastrin-expressing cells
(arrows), marking stressed endocrine cells. Gastrin is not expressed in pancreatic islets of lean mice. F: SG increases the fraction of islets expressing
high levels of Ucn3, marking functional islets. All images taken under the same settings. Quantification shows pooled islets from all mice because
of high intramouse variability among islets. Error bars indicate SEM. *P , 0.05, **P , 0.01 by unpaired Student t test. gast., gastrectomy.
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considering that both sham-operated and SG-operated mice
gained ;5 g 7 and 30 days after surgery, respectively,
indicating a weight-independent effect of SG on hepatic
metabolism.

Immunohistochemical staining of pancreatic marker
proteins associated with type 2 diabetes and b-cell stress
showed improvement in the b-cells of SG-operated mice
primarily 1 week after surgery (Supplementary Fig. 1). Com-
pared with db/+ lean control mice, b-cell proliferation was
increased in db/db mice and reduced after SG to levels sim-
ilar to those of controls (Fig. 2B). We have documented
previously that diabetes leads to DNA damage in b-cells
in mice and humans (16). SG reduced the frequency of
53BP1 foci that marked sites of DNA damage repair back
to levels observed in lean mice. However, this improvement
was transient, and 1 month after SG, the frequency of
53BP1 foci in b-cells had increased back to the levels pres-
ent in sham-operated mice (Fig. 2C).

Diabetes leads to a partial loss of b-cell identity and a re-
duction in the expression of key b-cell transcription factors
(17–19). Gastrin, expressed normally only in the fetal
mouse pancreas and in diabetes (20), was detected in islets
of sham-operated db/db mice but was virtually absent after
SG (Fig. 2D). The frequency of Pdx1 and Nkx6.1 coexpres-
sion did not increase significantly after SG and remained
much lower than in lean mice. However, a large fraction of
islets (47%) restored high levels of the b-cell maturity marker
Ucn3 in SG-operated mice 1 week and 1 month after sur-
gery compared with 25% in sham-operated controls (Fig.
2F), supporting a partial return to the healthy state (21).

SG Reduces Glycemia Independent of Weight One Week
After Surgery
We pair fed sham-operated db/db mice to SG-operated
db/db mice for the week after surgery. As intended, the two
groups did not differ in weight or weight loss (Fig. 3A and
B). Blood glucose levels of SG-operated mice were signifi-
cantly lower compared with pair-fed mice and presurgical
levels (Fig. 3C–E). Similar results were obtained in diet-
induced obese SG-operated mice compared with sham-
operated weight-matched controls (Supplementary Fig. 2).
Serum triglyceride and NEFA levels also were improved
7 days after surgery, whereas no differences were observed in
total cholesterol levels between the two groups (Fig. 3F and G).

SG Does Not Affect Insulin Secretion Compared With
Pair-Fed Mice
Islets of SG and pair-fed operated mice were perifused
ex vivo with glucose to determine whether improved b-cell
function underlies improved glycemia after SG. However,
we found no difference between the two experimental
groups. Islets from both groups did not display a first phase
insulin secretion response but exhibited comparable sec-
ond phase insulin release in response to a glucose ramp
(Fig. 4A). This secretion pattern is characteristic of islets of
patients and mice with type 2 diabetes, suggesting that
neither SG nor pair feeding lead to islet recovery 1 week
after surgery (22).

SG Increases Insulin Sensitivity ComparedWith Pair-Fed
Mice
We applied the hyperglycemic-euglycemic clamp 5 days
after surgery and found that SG-operated mice were more
insulin sensitive than the pair-fed controls. Glucose in-
fusion rate was significantly higher in SG-operated mice.
Basal endogenous glucose production was equivalent in the
two groups, but glucose production was inhibited by insulin
infusion only in the SG-operated mice, revealing a striking
difference in hepatic insulin sensitivity (Fig. 4B and C). In
addition, 14C-2-deoxyglucose tracing demonstrated that
skeletal muscle but not epididymal adipose tissue was
more insulin sensitive in SG-operated mice (Fig. 4D). His-
tochemical staining of the liver showed that pair-fed mice
retained a higher density of hepatic lipid droplets than
SG-operated mice, suggesting a defect in hepatic lipid me-
tabolism not normalized by weight loss alone (Fig. 4E). SG
led to a reduction in the phosphorylation of S6 in the liver,
indicating lower activation of mTORC1, which may contrib-
ute to the increased hepatic insulin sensitivity observed (23)
(Fig. 4F and Supplementary Fig. 3).

RNA sequencing of liver tissue harvested immediately
after the hyperinsulinemic clamp revealed a stronger tran-
scriptional response to insulin signaling in SG-operated
mice in agreement with the clamp results (Fig. 4F and
Supplementary Table 1); genes involved in amino acid
catabolism pathways were downregulated significantly in
SG-operated mice compared with sham-operated mice
(Supplementary Fig. 3 and Supplementary Table 2). Choles-
terol production and uptake enzymes were upregulated
after surgery, and genes involved in bile acid synthesis
were expressed at lower levels in the SG group; however,
farnesoid X receptor activation was not evident from the
transcriptome data (4) (Supplementary Fig. 3 and Supple-
mentary Table 3). Lipid synthesis and secretion pathway
genes were activated after SG. Conversely, fatty acid oxi-
dation enzymes were repressed (Supplementary Fig. 3 and
Supplementary Table 4). By using ENCODE ChIP-seq data,
we identified HNF4a as the transcription factor most
enriched for binding differentially regulated genes in
the current data (q , 1023) (24) (Supplementary Table
5). HNF4a target genes identified from primary hepato-
cytes also were enriched in our data (P , 1024) (25).
HNF4a and PPARa-retinoid X receptor-a control hepatic
metabolism (26,27), and both PPARa targets (P , 0.01)
(28) and genes identified by retinoid X receptor-a ChIP-seq
(q , 0.01) (24) were enriched in differentially regulated
genes between SG and weight-matched sham control mice
(Supplementary Table 6 and Supplementary Fig. 3). PPARa
itself was upregulated at the protein and mRNA level (Fig.
4G, Supplementary Fig. 3, and Supplementary Table 7).

DISCUSSION

SG reduces blood glucose levels in the short and
medium term for most patients with diabetes (8,29,30).
Decoupling weight loss and surgery-induced changes in
diet from direct effects of the surgery on glycemic control
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is difficult because surgery leads to weight loss. Studies
comparing nonobese patients and murine models who had
lost weight after bariatric surgery or food restriction have
identified weight-independent effects of surgery (10,31–33).
Rodents deficient in leptin signaling are hyperphagic and
have been shown by us and others to gain weight after
surgery, highlighting the importance of leptin in weight
loss after SG (11–15,34–36). Moreover, these models de-
couple surgical effects from weight loss while keeping ex-
perimental groups obese. In the current study, we show
that SG lowers blood glucose levels up to 30 days after
surgery, improves fatty liver and hepatic insulin sensitivity,
and reduces expression of pancreatic markers associated
with diabetes.

Leptin affects hepatic glucose production directly and
indirectly through the central nervous system (37). The
current results indicate that improvement in hepatic glu-
cose metabolism is independent of direct leptin signaling.
Nonetheless, the central nervous system likely contributes
to postsurgically improved glycemia and hepatic metabo-
lism through a neuronal gut-brain-liver axis (6), and this
matter warrants further research.

Improved glycemic control can be a result of better b-cell
function and increased peripheral insulin sensitivity. Al-
though some improvement in b-cell histopathology after
surgery was observed, b-cell function did not improve
ex vivo. These results suggest that improvement in b-cell
markers is an outcome rather than the main driver of

Figure 3—Glycemia is improved by SG- but not in pair-fed sham-operated db/db mice. A–E: Weight and nonfasting glucose levels of SG-fed
(n = 15–20) and pair-fed sham-operated mice (n = 9–15) 1 week after surgery. Glucose and weight were measured at days 1, 4, and 7. Data for
SG-operated mice as in Fig. 1. A: Change in weight in SG- and pair-fed sham-operated mice relative to weight at surgical time. Median weight
shown in dark colors and individual weight in light colors. B: Mean weight at day of surgery and 7 days after surgery. C: Change in nonfasting
glucose levels compared with the day before surgery. Colors as in A. D: Glucose levels at the day before surgery and after surgery. Colors as in
A. E: Mean glucose levels at the day before surgery and 7 days after surgery. F: Mean triglycerides (TG) and total cholesterol. G: NEFAs in SG-
and pair-fed sham-operated mice (n = 4–5). *P , 0.05, **P , 0.01 by two-way ANOVA with Bonferroni-corrected Tukey honest significant
difference test (A–E) or Student t test (F and G). gast., gastrectomy; ns, not significant.
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improved glycemia. Of note, in vivo factors such as ele-
vated incretin secretion contribute to improved glycemia
(10,38).

Hepatic insulin resistance was markedly improved in
clamp studies performed 5 days after surgery, and fatty
liver was alleviated 7 and 30 days after SG, supporting
the hypothesis that the liver drives improved glycemic
control after SG. These results were obtained in pair-fed
and weight-matched mice, highlighting the weight loss–
independent effects of SG. Bioinformatic analysis suggests
that HNF4a-PPARa signaling play a key role in the im-
proved hepatic metabolism. Both factors affect lipid me-
tabolism and fatty liver disease development (28,39),
corresponding with the improvement in the accumula-
tion of lipid droplets. Overall, the current results iden-
tify the liver as a driver of rapid and weight-independent

improvement of glycemia after SG through the HNF4a-
PPARa axis.
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