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Abstract

Introduction—Mitochondrial genetics are an important but largely neglected area of research in 

Alzheimer’s disease. A major impediment is the lack of data sets.

Methods—We used an innovative, rigorous approach, combining several existing tools with our 

own, to accurately assemble and call variants in 809 whole mitochondrial genomes.

Results—To help address this impediment, we prepared a data set that consists of 809 complete 

and annotated mitochondrial genomes with samples from the Alzheimer’s Disease Neuroimaging 

Initiative. These whole mitochondrial genomes include rich phenotyping, such as clinical, fluid 

biomarker, and imaging data, all of which is available through the Alzheimer’s Disease 

Neuroimaging Initiative website. Genomes are cleaned, annotated, and prepared for analysis.

Discussion—These data provide an important resource for investigating the impact of 

mitochondrial genetic variation on risk for Alzheimer’s disease and other phenotypes that have 

been measured in the Alzheimer’s Disease Neuroimaging Initiative samples.
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1. Introduction

Alzheimer’s disease (AD), the most common form of dementia, affects >20 million people 

worldwide and is the only one of the top 10 causes of death that has no effective treatments 

[1–3]. Full-time care is required as AD progresses, further impacting patients and their loved 

ones and stressing the health-care system. With incidence expected to increase to 1 in 85 

people by 2050 [2], it is essential to achieve early diagnosis, effective treatments, and a 

better understanding of the underlying etiology.

Understanding the underlying mechanisms of risk for AD is a key for both diagnosis and 

treatment. Swerdlow et al. [4] proposed the Mitochondrial Cascade Hypothesis of AD. 

Briefly, an individual’s genetics determine the baseline mitochondrial function and how 

mitochondria change as a person ages and declining mitochondrial function causes AD-

specific pathologies.

In addition to the evidence provided by Swerdlow et al. [4], several lines of evidence support 

a role for mitochondria in AD. First, mitochondria fundamentally change in a number of 

ways in AD and contribute to its progression and onset [5]: metabolism decreases [6], 

mitochondrial fusion/fission are disrupted [7], mitochondrial concentration (i.e. the ratio of 

mitochondrial genomes to nuclear genomes) decreases in cerebrospinal fluid [8,9], 

mitochondrial morphology changes [4,10], mitochondrial-encoded enzymes in the electron 

transport chain are altered [5,11], amyloid plaques aggregate in mitochondria [12,13], and 

many of these changes take place near plaques [14].

Second, individuals with a maternal family history of AD have as high as 9 times the risk of 

AD compared with individuals with a paternal family history of AD [15,16], or no family 

history. Furthermore, individuals with a maternal family history of AD also score lower on 

cognitive tests [17], have a lower age of onset of AD [15,18], and have more pronounced 

brain abnormalities consistent with AD (e.g. cerebral metabolic changes [19], higher 

amyloid β burden [20], reduction in gray matter volume [21,22], and increased global 

Pittsburgh Compound-B uptake Pittsburgh Compound-B-positron emission tomography 

[23]). Moreover, we found that some of these brain abnormalities are associated with 

mitochondrial haplotypes [24].

This mitochondrial impact on AD risk could be influenced by several factors, including 

differential responses to the oxidative stress, variation in nuclear-encoded mitochondrial 

genes, and variation in the mitochondrial genome. In this article, we focus on an important 

resource for investigating mitochondrial genomic variation and others [25]. Several groups 

have reported a relationship between mitochondrial genetics and risk for AD (summarized in 

Ridge et al. [3], Table 2). Twelve different haplotypes have been implicated in mitochondrial 

genetic studies, but the majority of these were reported only once and not replicated [26–33], 

and six different studies reported no association between mitochondrial genetic variants and 

AD [34–39]. Among reported associations, there is no consensus, and sometimes, results 

appear to be contradictory. For example, Haplogroup U has been reported as both a risk and 

protective haplogroup [28,31,32]. However, potentially explaining the confounding nature of 

discoveries to date, the majority of studies used incomplete sequence data and/or had very 
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small sample sizes [26–39], thus most were underpowered and lacked the resolution to 

identify correlations for all but the most common haplogroups. Only a single study used 

whole mitochondrial data [30], whereas most genotyped only a handful of single nucleotide 

polymorphisms (SNPs). Furthermore, only one study used a large data set, but in this 

particular data set, the authors only genotyped 138 SNPs [39]. In summary, there is strong 

evidence to suggest a relationship between the mitochondrial genome and AD, yet the 

relationship remains undefined.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) recently sequenced the whole 

genomes, including mitochondrial genomes, of 809 individuals. Each of the genomes was 

analyzed using tools and pipelines developed for diploid genomes. However, these analysis 

pipelines, particularly variant identification that relies on a likelihood model expecting 

diploid sequences, are inaccurate for use on the mitochondrial genome, which is haploid. 

Here, we report not only an AD data set of 809 annotated whole mitochondrial genomes 

with extensive phenotypes (Table 1) but also an appropriate pipeline to analyze 

mitochondrial genomes. We hope to facilitate research in this important area by providing a 

data set and analysis pipeline for future researchers to augment this initial data set.

2. Methods

2.1. Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partnership and is 

an ongoing, longitudinal, highly collaborative study. The primary goal of ADNI has been to 

test whether serial magnetic resonance imaging, positron emission tomography, other 

biological markers, and clinical and neuropsychological assessment can be combined to 

measure the progression of mild cognitive impairment and used for the early diagnosis of 

AD. ADNI has undergone several phases (ADNI1, ADNI GO, and ADNI 2), with each 

phase adding additional samples. In 2012, 818 ADNI samples were selected for whole 

genome sequencing to further the goals of ADNI. DNA sequence data were collected from 

DNA derived from whole blood. All subjects in our analyses had self-reported ancestry of 

non-Hispanic European American. All the data (whole genome sequence, phenotype, and 

newly assembled and annotated whole mitochondrial genomes) are publically available 

through ADNI (http://adni.loni.usc.edu/data-samples/).

2.2. Genome sequencing, assembly, and variant detection

ADNI genomes were sequenced on an Illumina HiSeq. Reads were paired-end, 100 base-

pair reads. Before read mapping, adapters were removed. ADNI mapped the whole genome 

sequences and called variants using default settings in the Burrows-Wheeler Aligner [40] for 

mapping and standard best practices from the Genome Analysis Toolkit [41,42] for variant 

detection (for details see http://adni.loni.usc.edu/data-samples/genetic-data/wgs/). However, 

these steps needed to be redone for two reasons: First, original mappings were to Hg19. 

Historically, determining a reference mitochondrial genome has been a bit confusing. The 

standard mitochondrial genome, NC_012920, was released first in 1981 (the Cambridge 

Reference Sequence, or CRS) [43] and corrected in 1999 (the new Cambridge Reference 
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Sequence, or rCRS) [44]. NC_012920 is a European haplogroup and thus is a leaf on the 

mitochondrial haplotype phylogenetic tree. A number of other mitochondrial genomes have 

been suggested as the “correct” mitochondrial genome reference, including a reconstructed 

hypothetical mitochondrial genome corresponding to Mitochondrial Eve [45]. Nevertheless, 

NC_012920 remains the standard version of the mitochondrial genome used in 

mitochondrial genetics studies. Hg19, which was used for read mapping by ADNI, has a 

version of the mitochondrial genome, represented as chrM, but sometimes corresponds to 

NC_001807 and sometimes NC_012920. Therefore, to be consistent with mitochondrial 

genetic standards, reads needed to be remapped. Second, the standard Genome Analysis 

Toolkit pipeline includes many steps. One of these steps is the HaplotypeCaller. The 

HaplotypeCaller builds a likelihood model based on possible reconstructed haplotypes in a 

genomic region, but it assumes sequences are diploid. Consequently, mitochondrial genomic 

variants identified using the HaplotypeCaller are likely to include many inaccuracies.

Since chrMand NC_012920 only differ by a few bases, we were able to extract only those 

reads that mapped to chrM (with SAMtools [46]), rather than all reads corresponding to the 

whole nuclear and mitochondrial genomes. Extracted reads were remapped to NC_012920 

using Burrows-Wheeler Aligner. Next, we performed local realignments around indels and 

base recalibration, which are not affected by ploidy, with Genome Analysis Toolkit to refine 

the new mappings. Finally, we used FreeBayes (-p 1 –F 0.6, and removed variants with 

quality less than 20) [47] to joint-call variants and converted the resulting variant call format 

(VCF) file to fasta with vcf2fasta (vcflib, https://github.com/vcflib/vcflib). An overview of 

the whole process is outlined in Supplementary Figure 1.

2.3. Genome annotation

We annotated mitochondrial variants and haplotypes for each sample. We downloaded 9228 

mitochondrial DNA coding and RNA sequence variants and 2792 control region variants 

from MITOMAP [48]. For each variant present in the data sets downloaded from 

MITOMAP, we added complete information (i.e. frequency, source, locus names, etc.) to the 

“Info” column in the VCF file and added the corresponding annotation information to the 

header lines. For each variant that was reported by multiple studies in MITOMAP, we 

included all studies in the annotation.

Next, we annotated mitochondrial haplotypes with Phy-Mer [49]. Phy-Mer reports the five 

most likely mitochondrial haplotypes and a score, where 1 is a perfect score. For each of the 

samples, we selected the top hit. All samples had scores >0.99 except for one that had a 

score of 0.988.

2.4. Variant validation

SNP data from the Illumina 2.5 M Array were collected from the same DNA extraction that 

was used for whole genome sequence (WGS) data collected. We compared 256 

mitochondrial variants genotyped on that array to the variant calls from our WGS analysis 

pipeline. Validation was evaluated by simply looking at the concordance of calls on the 

individual level for the two sets of genotype data.
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3. Results

Mitochondrial genomes were sequenced to an average depth of 2986 reads and ranged from 

an average depth of 1515 reads to 7831 reads. We identified 1649 total mitochondrial 

genetic variants from these genomes, of which 1336 have been previously reported. Samples 

had an average of about 27 variants, with a range of 1 to 96 variants. We validated our 

variant calls using 256 mitochondrial genetic genotypes from an SNP array performed on 

the same samples. Overall, 98.18% of WGS variant calls matched SNP genotypes acquired 

from the array.

We identified 506 different mitochondrial haplotypes in the data set, all of which have been 

previously observed. The majority, 350, only appear in a single sample in the data set. The 

most common haplotype, K1A1B1A, is shared by 15 individuals. When considering only 

the major mitochondrial haplogroup (e.g. H, V, U, etc.), the majority of individuals had 

haplotypes in the H and U groups, 338 and 105, respectively. We report number of 

individuals in each major mitochondrial haplogroup in Table 2 and counts of all haplotypes 

in Supplementary Table 1. These frequencies are similar to those observed in other cohorts 

of non-Hispanic European American ancestry [50]. Several individuals have haplotypes 

reported to be associated with risk for AD: five have haplotype H5 (a risk haplogroup [29]).

4. Discussion

We have presented the application of a novel approach to accurately assemble and genotype 

a data set of whole mitochondrial genomes from the ADNI study. Several accurate 

algorithms exist for calling genotypes in diploid NGS data, but use models that are 

inappropriate for haploid samples. We used existing software, but tested and refined 

parameter settings to achieve high levels of genotype accuracy in our mitochondrial genome 

samples. We validated the identified genotypes by repurposing existing publically available 

data. Our genotypes are >98% concordant with genotypes from Illumina SNP chips in the 

same samples. This high level of accuracy is approaching the expected error rate of SNP 

chips and makes it difficult to definitively determine whether our genotypes, or the SNP chip 

genotypes, are correct.

In addition, we have made these data publically available through the ADNI website. A 

multisample VCF file with mitochondrial genomic variants for each subject is available for 

download from the Download—Genetic Data section of the ADNI repository (http://

adni.loni.usc.edu/data-samples/access-data/). Also included is an .XLSX file with 

mitochondrial haplotype information for each subject. The new data sets are named “ADNI 

WGS Whole mitochondrial genome variants” and “ADNI WGS Whole mitochondrial 

genome—Haplotypes”. This data set is now ready to be applied in AD studies and to help 

elucidate the relationship between mitochondria and AD, which has thus far alluded 

researchers.

Complete mitochondrial genomic data result in high resolution of haplotype definition, 

including large numbers of singleton haplotypes. Methods that group haplotypes in 

evolutionarily meaningful ways are necessary to fully leverage these data. In our previous 
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analyses of complete mitochondrial genomics data, we incorporated TreeScanning to 

concentrate statistical power on evolutionarily meaningful groups of haplotypes 

[24,30,51,52]. This approach has been applied successfully in the study of both 

mitochondrial and nuclear genomic contributions to AD risk and related phenotypes 

[24,30,51,53,54].

The ADNI subjects include AD cases, subjects with mild cognitive impairment, and 

cognitively normal controls. Nearly all of these subjects are also associated with extensive 

clinical, imaging, and fluid biomarker data, including some longitudinal data. As such, they 

provide great value in evaluating the multitude of factors that are associated with AD, 

dementia, dementia progression, and conversion from mild cognitive impairment to 

dementia. While this study is underpowered to identify haplotypes associated with AD risk, 

we anticipate it will serve as the foundation for additional data collection and an expanded 

study in the future. These data will also prove valuable for validation and discovery analyses 

related to the multitude of other phenotypes that are available for these subjects. Association 

analyses using imaging and fluid biomarker data are outside the scope of this study, but we 

anticipate that these data will be leveraged by several groups, including ours, for these kinds 

of analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

1. Systematic review: We reviewed existing literature using PubMed and Google 

to identify data sets with whole mitochondrial genome sequences. Although 

several whole genome data sets have been generated for Alzheimer’s disease, 

none of these specifically addressed the whole mitochondrial genomes, which 

require specialized analytic approaches because they are haploid.

2. Interpretation: Mitochondria have a role in Alzheimer’s disease, but the 

precise role has thus far eluded researchers. A primary impediment is a lack 

sufficient data. Our goals were to (1) develop an approach for analyzing 

whole mitochondrial genomes; and (2) develop a data set of whole 

mitochondrial genomes and make them publicly available to encourage 

research in this important area.

3. Future directions: We anticipate that making this data set and analytical 

approach will facilitate additional studies of the effect the mitochondrial 

genome has on risk for Alzheimer’s disease.
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Table 1

Demographics

Count
Sex
(male/female)

Average
age

APOE status
ε2/ε2,ε2/ε3,ε3/ε3,
ε3/ε4,ε4/ε4,ε2/ε4

Cases 191 126/65 74.42 0/8/74/80/25/4

Controls 279 135/144 74.51 0/35/167/68/7/2

MCI 333 183/149* 71.57* 1/26/162/110/25/9

Total 803 444/358* 73.17* 1/69/403/258/57/15

APOE, apolipoprotein E; MCI, mild cognitive impairment.

Demographic and phenotype information is available for 803 of the 809 mitochondrial genomes in the data set. APOE status refers to APOE 
genotype.

*
Missing data for one sample.
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Table 2

Counts and frequencies of major mitochondrial haplogroups

Major
mitochondrial
haplogroup Count Frequency (%)

# Cases/controls/
MCI/unknown

A 5 0.62 3/1/1/0

B 7 0.87 3/1/3/0

C 3 0.37 0/0/3/0

F 1 0.12 1/0/0/0

H 338 41.78 73/128/133/4

I 27 3.34 4/12/11/0

J 69 8.53 24/18/26/1

K 68 8.41 19/24/25/0

L 33 4.08 5/16/12/0

M 11 1.36 2/4/5/0

N 7 0.87 2/2/3/0

R 5 0.62 1/3/1/0

T 78 9.64 16/25/37/0

U 105 12.98 27/31/46/1

V 28 3.46 4/10/14/0

W 15 1.85 3/2/10/0

X 9 1.11 4/2/3/0

MCI, mild cognitive impairment.

Numbers refer to individuals who have the listed major mitochondrial haplogroup or a subgroup (e.g. individuals with H5 are counted as part of the 
H group in this table).
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