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Abstract 

Diagnostic codes are crucial for analyses of electronic health record (EHR) data but their accuracy and precision 
are often lacking. Although providers enter precise diagnoses into progress notes, billing standards may limit the 
particularity of a diagnostic code. Variability also arises from the creation of multiple descriptions for a particular 
diagnostic code. We hypothesized that the variability of diagnostic codes would be greater before surgical 
pathology results were recorded in the medical record. A well annotated cohort of patients with brain neoplasms 
was studied. After diagnostic pathology reporting, the odds of more distinct diagnostic descriptions were 2.30 times 
higher (p=0.00358), entropy in diagnostic sequences was 2.26 times higher (p=0.0259) and entropy in diagnostic 
precision scores was 15.5 times higher (p=0.0324). Although diagnostic codes became more distinct on average 
after diagnostic pathology reporting, there was a paradoxical increase in the variability of the codes selected. 
Researchers must be aware of the inconsistencies and variability in particularity in structured diagnostic coding 
despite the presence of a definitive diagnosis.   

Introduction 
The secondary use of Electronic Health Record (EHR) data is an essential resource for biomedical research. 
Currently, a plethora of analysis and computing methods have the capacity to identify new patterns and provide new 
insights from data produced across the translational science spectrum. As new discoveries are introduced, feeding 
them back into clinical practice will build learning healthcare systems that promise to improve population health, 
lower health care costs, empower consumers, and facilitate innovation.1 Consequently, EHR data will increasingly 
become a valuable resource for a number of research fields, including Comparative Effectiveness Research, 
Precision Genomic Medicine, Patient Reported Outcomes, etc.2 Health services researchers, for example, routinely 
use clinical data to carry out a wide variety of statistical and epidemiological studies to uncover actionable 
information to make healthcare delivery systems more efficient and effective.3 These analyses are often supported 
by clinical data that resides in a data warehouse/repository for longitudinal, retrospective and other types of 
studies.4–7  Research data warehouses have been implemented as the platform that will allow researchers to identify 
cohorts and extract data before and/or after Institutional Review Board approval is obtained.8 Diagnoses are usually 
the entry point to identify a patient set in data warehouses. Therefore, the accurate assignment of diagnosis (DX) 
codes is crucial to the successful data reuse of clinical data for evidence based medicine and towards a functioning 
leaning healthcare system.   
 
Furthermore, timely, complete and accurate diagnosis is critical to support the decisions on a treatment regimen 
modality in many clinical oncology practices (e.g. surgery, radiotherapy, chemotherapy, or some combination of 
these),9,10 clinical symptoms are indicative and supportive for a definitive diagnosis, however, a surgical 
pathologist’s tumor diagnosis is essential to establish an adequate level of certainty.11–13 One of the main DX coding 
systems to hierarchically represent all known diagnoses and symptoms is the International Statistical Classification 
of Diseases and Related Health Problems (ICD), which is provided and maintained by the World Health 
Organization (WHO).14 In its 10th revision of the nosology, the ICD-10 classification is routinely employed in 
healthcare practices via its ICD-10 Clinical Modification (CM) form in the United States15 and the WHO’s version 
globally. ICDs are used extensively in research, reimbursement, policymaking16 and its 11th version (i.e. ICD-11) 
anticipated to be released in 2018.  
  
Due to ever growing understanding of diseases and related delineation challenges, diagnosis accuracy has been 
studied for decades and early studies have identified large numbers of errors in diagnostic and procedure code 
assignment.17–21 Despite its usefulness, ICD’s complex hierarchical nature tends to induce concordance errors 
between physician and billing specialist code selection. As newer versions of ICD are released, error rates have 
dropped (e.g. from 20-70% in the 1970s to 20% in 1980s).22 Yet, ambiguity in the ICD-10 hierarchy remains; for 
instance, Malignant neoplasm of brain (C71) and its child in the hierarchy, Malignant neoplasm of brain unspecified 
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(C71.9) refers to the same concept. Nonetheless, research regarding these errors shows that the ICD classification 
structure and the quality of DX recording are both to blame.23,24 Furthermore, it has been suggested that additional 
clinical data should be used to identify patients for secondary analysis of data beyond DX codes due to their 
inaccuracies.25 Still, the focus of past research has been on the coding process, error classifications, identifying 
frequent coding errors and defining preventive measures and minimize the impact of these errors.  
 
Despite these well-known challenges to the accurate and systematic recording of DX, existing EHR system features 
further contribute to diagnostic variability. Many EHRs provide multiple DX descriptions for each individual DX 
code.26 Such features intend to allow clinicians to select the most appropriate textual description. However, this 
additional complexity may have important unintended consequences. For example, (1) providing more DX 
descriptions increases the potential for inaccurate DX selection, as compared to more compact terminologies such as 
ICD-10; (2) giving users multiple descriptions for a single DX code increases the potential DX description 
variability within a patient’s chart and (3) given the broadness and variability in textual DX descriptions, it is likely 
that these descriptions have varying levels of semantic precision. The first consequence is the amplification of the 
issues discussed in the literature,23,24 whereas the latter two are proper to this new mode of DX code selection and, to 
our knowledge, have not been studied in the literature.  

To explore the impact of this setup on the DX recording in EHR systems, we investigated the variability of DX 
descriptions recorded for a group of patients with a specific and well-defined disease. We also investigated the 
variability in the particularity (i.e., how much semantic information is included in the description to differentiate the 
DX) of these DX descriptions as a measure of variation in the semantic specificity of the logged DX. For this 
analysis brain neoplasms were selected because a large annotated dataset was available to corroborate secondary 
data extraction, many textual diagnosis descriptions exist for a limited list of specific diagnosis codes, and definitive 
histopathology is available for all patients to explore changes in diagnosis variability before and after this gold 
standard diagnosis description is made available in the patient’s chart. Specifically, we investigated the differences 
in patient encounter’s primary DX of brain neoplasms (i.e., ICD-10 diagnosis code, C71.*) before and after a 
Diagnostic Biopsy (BX) report is received. We explore three hypotheses: (I) There is a difference between the 
number of distinct DX relating to the brain neoplasm condition before and after the BX is recorded (i.e., the 
variability range is different), (II) The degree of “particularity” (i.e., how much semantic information is included in 
the description to differentiate the DX) of a DX is higher after the BX, and (III) The variability of this degree of 
“particularity” is different before and after the BX is received. Our overarching hypothesis is that the presence of 
presumably true information in the EHR does not guarantee more concordant or particular recording of structured 
EHR data to document care workflows. We present descriptive and summary statistics of the population used for 
this study and then test these hypotheses using statistical modelling. This exploratory analysis contributes to the 
current understanding of DX logging in EHR systems to support the development of a reliable learning healthcare 
system and evidence-based medicine.  

Methods 

Upon obtaining the approval from the Wake Forest University School of Medicine’s Institutional Review Board 
(IRB), the encounter diagnosis codes, diagnosis names, encounter dates, ICD-10 codes for the encounter, surgical 
pathology reports were extracted from the Wake Forest Baptist Medical Center’s Translational Data Warehouse. 
We’ve employed a combination of statistical and natural language processing (NLP) tools to test our hypotheses. 
We built binomial regressions to predict whether DX description data belonged to a pre-BX or post-BX record. 
Specifically, we investigated the difference in number of distinct DX descriptions as well as the degree of DX 
description particularity using mixed models to account for intra-subject correlation. This second analysis was based 
on a “particularity score” derived from clinical concepts extracted from these EHR system-specific textual DX 
descriptions using NLP tools. Lastly, we have investigated particularity score entropy (i.e. a measure of diversity 
representing the average amount of information in the sequences of scores), as a measure of variability in the DX 
descriptions chosen by users before and after the BX.  
 
To understand the impact of BX recoding on the charting of brain neoplasm DX and compare our findings, we’ve 
utilized 36 patient primary DX data sets, which were extracted during a previous chart review of patients with a 
brain neoplasm diagnoses as a “gold standard”. Comprehensive medical record review was performed of each 
patient by two independent reviewers. The primary post-operative diagnosis was determined based on review of 
clinician notes. All treating clinicians were available for consultation when needed. Discrepancies between the two 
reviewers were resolved by an independent neuro-oncologist. Our final analytical dataset was extracted from the 
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Translational Data Warehouse and contained 1,385 primary encounter DX observations of 31 patients, recorded 
from January 1st, 2015 to August 31st, 2017. This time frame was defined to ensure ICD coding version consistency 
(i.e., to include DXs after October 2015; ICD-10 implementation date). Four patients from the initial date did not 
have any neoplasm DX or BX data within the selected time window. One patient was excluded due to a confirmed 
neurofibromatosis DX, which would make the patient’s neoplasm DX timeline much more complex and not 
clinically comparable to other patients in the set.  
 
Our initial dataset consisted of DX records with their corresponding timestamp and patient identifier. Each DX had a 
specific DX description and was associated with an ICD-10 code. Each patients’ initial BX result recording date was 
added to each DX record with the ‘After BX’ indicator that served at the dichotomous main outcome variable for 
our binomial regressions. Additionally, the summary statistics such as mean, median and extreme values were 
employed to screen the data for outliers, missing values and erroneous input. Dates were also reviewed for potential 
errors such as values being outside the study’s time window. We verified the normality of continuous variables 
using histograms.  
 
To augment our dataset with a measure of each DX description’s particularity, we first created a DX particularity 
scoring system based on clinical concepts extracted using an NLP tool. We generated particularity scores for each 
DX description in our dataset. These DX descriptions are part of the EHR system and aim to provide clinicians with 
clinically-relevant and specific labels to facilitate the selection of DX codes on the clinical practice side (i.e., each 
DX description was linked to an ICD-10 code, C71.* codes in our dataset). We extracted all medical concepts 
mentioned in these descriptions using NOBLE Coder27, an NLP named entity recognition tool for biomedical text, 
based on the NCI thesaurus terminology28. Extracted concepts were of three kinds: Neoplastic processes, Body 
locations28 and other concepts that did not increase particularity (i.e., non-diagnostic finding, procedure, functional 
and non-specific spatial concepts). We scored each DX according based on these concepts by 1) classifying the 
neoplastic process concepts according to their “depth” in the NCI thesaurus28 concept hierarchy using score "0" for 
the most general neoplastic process concept found and adding one score point per child concept separating them 
highest level (e.g., glioma was one of the most general neoplastic processes and had a score of "0", whereas more 
specific concepts such as glioblastoma scored "1" as a direct child of the glioma concept) and 2) adding a score 
point for a body part/organ or tissue concept present in the description or when the DX description corresponded to a 
location-specific ICD-10 code such as C71.2 (i.e., Malignant neoplasm of temporal lobe). The scores for all 
concepts extracted per DX were added up, which provided a particularity score for each DX label appearing in the 
dataset. As a result, we had DX descriptions had particularity degrees ranging from “Malignant neoplasm of brain, 
unspecified location” to “Oligoastrocytoma of frontal lobe” from least to most particular (scored 0 and 3, 
respectively). Finally, we calculated the entropy (i.e. a measure of diversity representing the average amount of 
information in the sequences of scores) of each DX particularity score sequence and DX description sequence for 
each patient record before and after DX, using the ‘entropy’ R package.29 This measure served to provide additional 
insights into the variability of DX particularity around the around the BX date. More specifically, entropy results 
served as a measure of DX particularity score variation and DX description diversity. 
 
To test our hypotheses, we built binomial regressions using R’s generalized linear model (GLM)30 and mixed 
models (lme4) packages.31 We selected binomial regressions because our main outcome variable carried across 
regressions, ‘After BX’ was dichotomous. It described whether each DX description group was recorded before or 
after the BX results were recorded in the EHR. This variable was selected because all our hypotheses aimed to 
explore differences in counts, continuous values and other derived features before and after the BX. To evaluate 
hypothesis (I) on the differences in distinct DX counts, we built a model predicting the ‘After DX’ variable based on 
the number of distinct DX descriptions. We used a binomial mixed model regression to assess the relationship 
between DX particularity scores before and after BX (i.e. hypothesis II). We chose a mixed model to account for 
each DX score as an independent test and subjects as independent from each other, but also be able account for 
intra-subject correlation; we attributed random intercepts to each patient. We used a GLM binomial regression 
model to explore relationships between the ‘After BX’ dichotomous variable and variables derived from the 
particularity score (i.e., mean, median and standard deviation across each patient’s record). Hypothesis III was tested 
with an additional GLM binomial regression to evaluate differences in entropy32 of DX particularity scores before 
and after BX within each patient record. We re-ran each of these regressions using a time window of 90 days before 
and after the BX to confirm the effect’s robustness, eliminate potential censorship and temporal biases. We tested 
for model improvement by the including covariates such as DX recording time, the max number of days before and 
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after the BX per patient, the number of distinct clinicians recording DX codes, the number of total DX per patient 
and the number of departments associated with the encounters. We also tested for variable interactions in all models 
with more than one variable.  
 
Multiple software tools were used to carry out this analysis. Data massaging was done using a DataGrip software 
client (version 2017.2.2, JetBrains s.r.o., Prague, Czech Republic). Visual exploration and analyses were done using 
Tableau (version 10.2.4, Tableau Software, Inc., Seattle, WA). All statistical analyses and data manipulation such as 
data scrubbing and reshaping were done in R version 3.4.130 and RStudio (version 1.0.136, RStudio, Inc., Boston, 
MA); Statistical significance was set at p=0.05 for all models.  
Results  

The final analytical dataset included contained 1,385 DX recordings for 31 patients out of which 19 had a total of 
186 C71.* DX recordings before their first biopsy dates (Table 1). Only the site-specific ICD-10 C71.0 through 
C71.4 appeared in the dataset but most DX were associated with C-71.9, Malignant neoplasm of brain, unspecified 
(73.6% overall, 84.4% before BX and 71.9% after BX); Only C71.1 and C71.2 were present before biopsy besides 
C71.9. 34 standardized DX descriptions were associated with this 6 ICD-10 codes overall with only 21 appearing 
before biopsy. 8 distinct providers appeared in the dataset from 31 distinct encounter departments. The number of 
days before and after biopsy oscillated between 881 days after BX and 780 days before BX, averaging 180±264 
days. The particularity score attributed to each DX oscillated between 0 and 3 with averages of 1.25±0.60 overall, 
1.20±0.47 before BX and 1.26±0.62 after BX. 

 
Table 1 – Descriptive statistics  

Measure Overall Before	BX After	BX 

Distinct	Patients 31 19 31 

Number	of	DX	Records 1385 186 1,199 
Distinct	ICD-10	Codes 6 3 6 

Distinct	DX	Descriptions 34 21 32 

Distinct	Providers 8 6 8 
Distinct	Hospital	Department 31 13 29 

Days	from	Biopsy	(Mean±Std.Dev.)	 180±264 254±222 247±197 

DX	Particularity	Score	
(Mean±Std.Dev.) 

1.25±0.60 1.20±0.47 1.26±0.62 

 
The difference between the number of distinct DX before and after BX was clearly shown by our first binomial 
regression model returning an odds ratio of 2.30 (b=0.833, p=0.003). This confirms hypothesis I, showing that with 
an increase of one distinct DX, a patient’s DX list would be 2.3 times more likely to be recorded after the BX (Table 
2). This is not to be confused with the number of visits and correspondingly number of primary diagnosis pre- and 
post-BX. Covariates such as number of distinct clinicians and distinct number of departments were included in 
preliminary models but did not show a significant effect on whether the distinct DX list occurred after the BX. The 
maximum number of days from BX was significant but was not included in either model because of its very small 
coefficient (b=0.00082, OR=1.00082, p= 0.0165).  The same regression models for data windowed 90 days before 
and after the BX date yielded the same results.  

 
Table 2 – Number of Distinct DX Regression 

Model Type Term Estimate 
(ß) 

Ratio 
(exp(ß)) 

Std. 
Error 

Ratio Confidence 
Interval (95%) p-value 

Binomial 
GLM 

Intercept -1.59 0.203 0.722 0.0437 0.770 0.0271 
Number of Distinct 

DX 0.833 2.30 0.286 1.40 4.26 0.00358 
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We were unable to find a statistically significant relationship between pre-post biopsy timing and the DX 
particularity scores or any derivate measure and were not able to confirm hypothesis II. Particularity scores varied 
between 0 and 3 with a mean of 1.25±0.60. We derived two additional variables from this score: the difference to 
each patient’s maximum score and the difference to the maximum score after BX. Our mixed model regressions 
revealed no significant relationships between the pre-post BX indicator or the time variable and this score or its 
derivate variables. The resulting binomial mixed models yielded predicted effects in the expected direction (i.e. DX 
scores are more specific after BX on average) but no statistical significance was reached for any of the models. We 
also found that a DX with a one point higher particularity score would be 64% more likely to be recorded after BX 
(b=0.495, OR=1.64, p= 0.062) at the lowest p-value (Table 3). None of the explored covariates (e.g. number of DX, 
number of distinct provides and number of distinct departments) showed any statistically significant relationship, 
nor improved the fit for the DX particularity score. The regression windowed 90 around the BX yielded the same 
results.  
 

Table 3 – DX Particularity Score Regression	

Model	Type	 Term	 Estimate	
(ß)	

Ratio	
(exp(ß))	 Std.	Error	 Ratio	Confidence	Interval	

(95%)	 p-value	

Binomial 
Mixed Model 

Intercept 3 20.1 0.728 5.26 104.6 0.0000363 
Particularity 

Score 0.495 1.64 0.265 0.968 2.74 0.062 

 

We found differences in the standard deviation and entropy of the DX particularity score as well as the entropy of 
DX sequences before and after the BX. This confirms hypothesis III. Predicting our ‘After BX’ binary from 
particularity score’s standard deviation with a binary GLM model, showed that for an increase of 1 unit, the DX 
description sequence would be 28% more likely to be part of the post-BX timeframe (p=0.00394) (Table 4). Our 
binomial GLM regression on particularity score entropy measures showed that for an increase of 1 unit in the DX 
particularity’s score entropy value, the odds of such particularity score sequence belonging to a post-BX recording 
would be 15.5 times those of being a recorded in pre-BX (p=0.00394), controlling for the number of distinct 
providers logging the sequence. Similarly, our binomial GLM regression on DX description sequence entropy 
values showed that for an increase of 1 unit in the DX sequence entropy value, the odds of such sequence belonging 
to a post-BX recording would be 9.58 of the odds of being a recorded in pre-BX (p=0.0259), controlling for the 
number of distinct providers logging the sequence. The effect of the number of distinct DX-logging providers was 
similar for both regressions (OR=1.26, p=0.00127 and OR=1.23, p=0.00769), suggesting that the odds of having a 
post-DX sequence, for an increase of one DX-logging provider are 26% and 23% higher in each case, respectively. 
We explored the inclusion of other covariates such as max number of days, number of distinct DX descriptions and 
number of distinct departments showed improved the model’s predictive power, nor improved model fit. The 
regression windowed 90 around the BX yielded the same results. 
 

Table 4 –Variability Regressions	

Model Type Term Estimate 
(ß) 

Ratio 
(exp(ß)) 

Std. 
Error 

Ratio Confidence 
Interval (95%) p-value 

Binomial 
GLM 

 

Intercept 0.137 1.15 0.065 1.01 1.30 3.97E-02 
Std. Dev. 

(Particularity Score) 0.25 1.28 0.0825 1.09 1.51 0.00394 

Binomial 
GLM 

Intercept -2.32 0.0983 0.626 0.0124 0.29 0.000202 
Entropy 

(Particularity Score) 2.74 15.5 1.28 1.42 242.3 0.0324 

Distinct Provider 
Count 0.228 1.26 0.0707 1.11 1.47 0.00127 

Binomial 
GLM 

 
 

Intercept -2.42 0.0889 0.65 0.02 0.273 0.000192 
Entropy 

(DX Sequence) 2.26 9.58 1.02 1.53 90.7 0.0259 

Distinct Provider 
Count 0.203 1.23 0.0762 1.07 1.45 0.00769 
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Discussion 

We used statistical regressions to evaluate the differences in DX sequences before and after the BX in records 
representing patients with confirmed brain neoplasm diagnoses. We found that: (1) The number of distinct brain 
neoplasm DX attributed to the patient was statistically larger after the BX (hypothesis I), (2) Although, our 
particularity score failed to show a statistically significant relationship to the ‘After BX’ variable, the regressions 
hinted at more particular DX descriptions after the BX (hypothesis II) and (3) The variability of DX particularity 
scores along with their entropy and DX description sequences are higher after the BX (hypothesis III). The results 
also show a dependency on the number of providers involved in the DX recording process. Our results support the 
validity of our overarching hypothesis, showing that the presence of biopsy information (i.e. presumably true 
information) does not guarantee a more particular and concordant recording of DX codes within electronic patient 
record. In fact, we were able to show that the variability of DX recording was much higher after the BX. 

Our study extends the existing literature by exploring aspects beyond the accuracy of DX codes. Most previous 
work has focused on evaluating the accuracy of DX code charting 2,16,33 rather than understanding the evolution of 
the recording. We have considered the DX descriptions and logging patterns with the focus on particularity and 
variability while the accurate diagnosis for a patient and their specific condition is available in the EHR (i.e. BX 
report). We were unable to find other studies using or describing our method to measure DX description 
particularity using NLP methods paired to the NCI Thesaurus Classification. However, our findings are congruent 
with previous studies.34,35 We also studied the variability of DX codes over time and found congruent results with 
the existing literature.33–36  We conceived this as a proxy to concordance, an indirect indicator of data quality.37–39 
Per Kahn et al.’s definition of the plausibility and concordance data quality dimension38,39 and our findings, EHR 
systems should enforce DX entries to be align with pathological findings in cancer patients to avoid unnecessary and 
inaccurate fluctuations over time.  

On the practical side, our results show a challenge to the secondary use of the clinical data and the difficulties of 
reliably harvesting the most accurate and semantically rich information available. The current DX code logging 
schemes undermine cohort selection by increasing variability, and in turn uncertainty. This can potentially cause 
incorrect inclusion of patients into analytical cohorts, even when the correct information is available elsewhere in 
the chart. The fluctuation and inconsistency of DX codes can be attributed to a wide array of factors including 
billing code reporting requirements. It is possible that clinicians may be choosing DX codes to facilitate downstream 
processing rather than documenting care with the highest degree of precision.40 Another potential pitfall in EHR 
systems is presenting clinicians with inconsistent DX code selection options for distinct clinical workflows. This 
effect has been noted in existing literature and can go to the extent of threatening patient safety41,42. Lastly, a 
potentially larger issue is the ability to change DX descriptions using free-text labels for any code. This increases the 
possibility for further variations and uncontrolled vocabulary instance inclusions. One could argue that the most 
particular DX is in the clinical progress note, yet to this date it remains challenging to reliably access this 
information programmatically or for a large number of patients.43,44 During such attempts, any precision could be 
lost to knowledge extraction challenges. This leaves researchers with the only option of using manual extraction 
employing qualified professionals, which is expensive, slow for large cohorts and even unfeasible in some cases. 
The literature often cites phenotyping,34,36,45 the use of complex algorithms34,46 and other technological solutions47–49 
to address these problems but these technologies are still in development. Even though, the challenges around the 
ICD-10 are well studied including the National Academies of Medicine (formerly Institute of Medicine) and there 
are frequent calls for a new taxonomy for nosology,50 the variability issue lies deeper on the EHR system side. We 
believe that future EHR improvements to support logging consistency and a reimbursement coding workflow that 
allows clinicians to document to the highest possible particularity level would potentially address these problems. 

Our analysis presents three limitations that are mostly related to its preliminary nature. First, we focused our study 
on a limited population of cancer patients (31 subjects). Some of these subjects met the inclusion criteria but 
returned no data within the study time window selected to ensure DX coding consistency, which further reduced the 
set. However, we had a final dataset with over a thousand DX that returned adequate statistical results to test our 
hypotheses. This focused dataset also ensured a homogeneous patient population that responded to the criterion of 
having a very specific clinical condition that has its diagnosis dictated by a BX report returned in the EHR. A related 
limitation is that we did not consider comorbidities, yet the preliminary nature of this study required focus rather 
than comprehensiveness. Second, our particularity score was defined for this analysis and was not previously 
validated with a gold standard. Regardless, our DX particularity scoring was simple, transparent and systematic 
enough that it can be considered a simple analytical task for feature extraction.51,52  The score was based on 
summing precise features of anatomical location of the neoplasm and then the degree of precision of the neoplastic 
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process as a level of depth in the NCI Thesaurus classification,28 a well-known and standardized classification of 
clinical concepts. Third, we only evaluated DX description variability for one type of cancer. Given the preliminary 
nature of this analysis and the lack of other literature in the field covering this topic, we compiled this series of 
simple statistical analyses showing the phenomenon of higher variability after DX, rather than carry out exhaustive 
analyses to confirm generalizability to all forms of DX. We do expect, however, to find the same kind of 
phenomenon based on the authors’ past clinical and data reuse experiences. This will be confirmed by future 
analyses. 

Future work will be divided into three segments: Confirmatory analyses to verify the robustness and extent of the 
variability in DX records, Exploration of root causes and The development of informatics solutions to reduce DX 
variability, while increasing accuracy. First, we will carry out further analysis to confirm that this variability 
happens for other types of DX within and outside cancer patient records.  Then, we will carry out additional 
secondary analyses of EHR data to explore potential causes for DX variability such as prescribing habits, billing 
considerations and insurance claim transaction requirements. Finally, we will employ more robust NLP methods to 
explore and evaluate the semantic distance between BX reports and DX to further understand the problem, but also 
to use as a basis for the development of informatics solutions to this DX coding problem.  

Conclusion 

DX records in cancer patient EHRs are more variable after the biopsy report is recorded. Interventions must be 
developed and adopted to minimize erratic data recording and automatically increase concordance within the patient 
record. This will avoid uncertainty, misinterpretations and downstream challenges during data integration and 
secondary analyses using DX codes. In the era of the learning healthcare systems, the concerns around the quality of 
the data carries the risk of jeopardizing the successful adoption of the evidence-based care, and thus, introduces 
challenges around the large-scale studies (i.e. phase 3 or phase 4) that are essential for the successful completion of a 
clinical research process.53–55  
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