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Abstract		
	

While	screening	and	treatment	have	sharply	reduced	breast	cancer	mortality	in	the	
past	50	years,	more	targeted	diagnostic	testing	may	improve	the	accuracy	and	efficiency	of	
care.		Our	retrospective,	age-matched,	case-control	study	evaluated	the	differential	value	of	
mammography	and	genetic	variants	to	predict	breast	cancer	depending	on	patient	age.		We	
developed	predictive	models	using	logistic	regression	with	group	lasso	comparing																		
(1)	diagnostic	mammography	findings,	(2)	selected	genetic	variants,	and	(3)	a	combination	of	
both.		For	women	older	than	60,	mammography	features	were	most	predictive	of	breast	
cancer	risk	(imaging	AUC	=	0.74,	genetic	variants	AUC	=	0.54,	combined	AUC	=	0.71).		For	
women	younger	than	60	there	is	additional	benefit	to	obtaining	genetic	testing	(imaging	AUC	
=	0.69,	genetic	variants	AUC	=	0.70,	combined	AUC	=	0.72).		In	summary,	genetic	testing	
supplements	mammography	in	younger	women	while	mammography	appears	sufficient	in	
older	women	for	breast	cancer	risk	prediction.	
	
Introduction	
	

While	breast	cancer	accounts	for	30%	of	all	new	cancer	diagnosis	in	women,	the	
mortality	rates	have	declined	sharply	in	the	past	50	years1.			This	has	been	largely	
attributed	to	early	detection	and	treatment.			The	current	standard	of	care	is	for	women	to	
be	screened	by	mammography,	with	interest	in	moving	towards	screening	based	off	
estimates	of	women’s	breast	cancer	risk.		Improved	prediction	of	breast	cancer	risk	by	
further	targeting	screening	with	the	tests	demonstrating	the	highest	sensitivity	and	
specificity	for	a	given	population	will	further	improve	breast	cancer	care.		

	
Early	risk	prediction	models	were	based	off	demographic	features,	in	particular	

patient	age,	hormonal	risk	factors,	and	mammographic	breast	density.		Currently,	there	is	
increased	optimism	that	we	can	more	accurately	characterize	patient	risk	with	advances	in	
precision	medicine	that	allow	us	to	select	the	most	predictive	test	for	the	patient.		In	
particular,	Genome	Wide	Association	studies	have	allowed	us	to	collect	a	set	of	single-
nucleotide	polymorphisms	(SNPs)	that	are	predictive	of	breast	cancer	risk2.		These	SNPs	
can	be	paired	with	mammographic	features	to	improve	the	likelihood	that	a	positive	screen	
is	a	true	positive3.		The	indications	for	genetic	testing	are	not	yet	codified,	therefore,	it	
would	be	valuable	to	determine	when	these	variables	will	improve	breast	cancer	risk	
prediction.			
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In	this	paper,	we	aim	to	determine	the	next	best	test	for	breast	cancer	diagnosis	in	

younger	and	older	patients	who	were	included	in	a	personalized	medicine	data	set.		We	
hypothesize	that	while	obtaining	imaging	and	genetic	variance	improves	the	estimation	of	
breast	cancer	risk	compared	to	chance	in	all	patient	age	groups.	Furthermore,	we	predict	
that	there	are	differences	in	the	additive	predictive	value	of	genetic	variants	over	and	
above	mammography	variables	depending	on	patient	age.	
	
Methods	
	
Subjects	

This	study	includes	subjects	derived	from	the	Marshfield	Clinic	Personalized	
Medicine	Research	Project	(Marshfield	PRMP),	details	of	which	have	been	previously	
published4.		This	registry	included	subjects	residing	in	one	of	19	zip	codes	surrounding	
Marshfield,	Wisconsin	who	provided	a	blood	sample	for	genetic	testing,	completed	a	brief	
questionnaire	and	gave	permission	to	link	this	information	with	medical	records.		A	case-
control	cohort	of	western	European	women	was	established	by	selecting	patients	from	this	
registry	who	had	received	a	diagnostic	mammogram	concerning	for	breast	cancer,	a	breast	
biopsy	within	12	months	of	the	mammogram,	and	a	blood	plasma	sample	that	could	be	
assessed	for	genetic	variants	associated	with	an	increased	breast	cancer	risk.		Cases	in	the	
study	were	women	who	were	listed	in	the	Marshfield	cancer	registry	with	a	confirmed	
breast	cancer	diagnosis;	controls	were	selected	as	women	who	had	a	benign	breast	biopsy	
result	and	did	not	have	a	breast	cancer	diagnosis	in	the	Marshfield	EMR.		Cases	and	
controls	were	age-matched	such	that	each	case	had	a	control	within	5	years	of	the	age	of	
each	case.		Exclusion	criteria	included	cases	with	known	BRCA1	or	BRCA	2	mutations,	as	
these	are	likely	to	dominate	other	predictive	variables,	nonwhite	patients	as	the	population	
did	not	have	a	sufficient	number	for	appropriate	distribution	of	nonwhites	to	race-match	
controls,	and	cases	where	BI-RADS	features	were	missing.		This	resulted	in	35	total	
subjects	excluded,	with	738	women	included.		
	
Features:	mammography	and	genetic	variants	

	One	diagnostic	mammogram	for	each	case	and	each	control	was	selected	from	
within	the	12	months	prior	to	the	biopsy.		If	multiple	mammograms	were	available,	the	
mammogram	with	the	most	suspicious	features,	closest	in	time	to	the	biopsy,	was	
selected5.		Mammography	features	were	drawn	from	the	third	edition	of	the	Breast	Imaging	
Reporting	and	Data	System	(BI-RADS)	lexicon6.		This	lexicon	standardizes	mammography	
findings	using	descriptors	that	categorize	breast	density,	abnormal	features,	and	
assessment	categories.		We	utilized	49	hierarchical	descriptors	that	are	considered	the	
most	predictive	of	breast	cancer7.	BI-RADS	descriptors	included	mass	margins,	micro-
calcification	shape,	micro-calcification	morphology,	architectural	distortion	and	breast	
density,	among	others.		These	findings	were	extracted	from	the	patients’	mammography	
reports	using	a	parser	and	represented	as	a	binary	“present”	or	“not	present”.		

The	Marshfield	PRMP	was	one	of	five	original	biobanks	in	the	eMERGE	network	
funded	by	the	National	Human	Genome	Research	Institute8.			Plasma	samples	were	
sequenced	on	a	Sequenom	MassARRAY	system.			Genetic	features	included	77	common	
high-frequency/	low-penetrance	genetic	variants	that	were	identified	by	recent	large-scale	
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GWAS	studies	as	having	a	higher	prevalence	in	breast	cancer	cases	than	controls,	and	thus	
associated	with	increased	breast	cancer	risk9.		Risk	alleles	were	those	that	had	a	higher	
prevalence	in	cases	than	in	controls.		The	number	of	high-risk	alleles	was	enumerated	for	
each	patient,	where	homozygotes	could	have	up	to	two	high-risk	alleles,	and	heterozygotes	
up	to	one	high-risk	allele.		

	
Model	development	and	statistical	analysis	

We	built	breast	cancer	risk	prediction	models	using	a	logistic	regression	with	group	
lasso	model	[3]	to	assess	the	predictive	power	of	imaging	features	and	genetic	variants.		
These	models	were	developed	utilizing	solely	mammography	features,	solely	genetic	
variants	and	using	both	genetic	variants	and	mammography.		

The	binomial	logistic	regression	with	group	lasso	is	described	in	Fan	et	al	(2016)3.		A	
brief	description	of	the	model	follows.		For	the	binomial	logistic	regression	model,	we	
suppose	that	the	response	variable	can	take	the	value	Y=	{0,	1}.		We	can	thus	model		

	

Pr 𝑌 = 1 𝑋 = 𝑥 =
𝑒!!!!!!

1+ 𝑒!!!!!!
	

	
Given	a	sample	{(𝑥! ,	𝑦!),	i=1,	2…,	N},	the	objective	function	for	the	logistic	regression	

with	lasso	is	given	by	the	negative	binomial	log	–	likelihood:		
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We	note	that	within	the	mammography	features	there	exists	a	natural	group	

structure	given	by	sub-characterizations	of	different	major	features3.		Genetic	variants	also	
contain	a	group	structure	that	can	be	characterized	with	hierarchical	clustering3.		To	
incorporate	the	group	structure	into	the	lasso	logistic	regression,	we	define	the	
optimization	problem	for	the	group	lasso	logistic	regression10,		

	

min
!∈ℝ!
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!

!!!

	

 
where	dg	is	the	number	of	features	(d)	in	group	g,	βg	∈	ℝdg	is	the	corresponding	

coefficient	vector	in	group	g,	λ1	≥	0	is	the	tuning	parameter	and	L(β)	is	defined	as	the	
negative	log	–	likelihood.		
	 The	models	were	applied	to	the	mammography	and	genetic	variant	data	set	and	fit	
with	ten-fold	cross	validation.		We	generated	receiver	operating	curves	(ROC)	that	
indicated	the	risk	of	a	malignant	breast	lesion	and	used	the	area	under	the	curves	(AUC)	to	
compare	performance	for	two	age	groups:	women	age	29	to	59	years	old	and	women	aged	
60	to	90	years	old.		This	division	allowed	two	sufficiently	powered	age	groups	that	
represented	early	breast	cancer	screening	ages	and	later	screening	respectively.		This	
method	was	repeated	100	times,	and	the	mean	AUC	for	each	model	was	calculated,	along	
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with	95%	confidence	intervals	(CI).		A	two-sided	P	value	of	<0.05	was	the	criterion	for	
statistical	significance.		Statistical	analysis	and	graphics	were	done	in	R	3.0.1	and	R	3.3.111.		
	
Institutional	Review	Board	(IRB)		
	 The	Marshfield	Clinic	IRB	approved	the	data	collection	and	informed	consent	was	
obtained	from	participants.		The	Marshfield	and	University	of	Wisconsin	IRBs	approved	
this	study.		Additionally,	Health	Insurance	Portability	and	Accountability	Act	compliance	
was	maintained.	

	
Results	
	
Table	1.	Number	of	cases	and	controls	for	different	age	groups.	

We	identified	362	cases	and	376	
controls,	with	an	age	range	from	
29	to	90	years	old	(Table	1).		The	
subjects	were	predominantly	
Caucasian,	with	4	subjects	that	

were	non-Caucasian	or	of	unknown	race	in	both	the	case	and	control	groups.		The	subjects	
had	a	mean	age	of	62	years	old,	thus	323	subjects	were	in	the	29	to	59	year	old	age	group	
and	415	were	in	the	60	to	90	year	old	age	group.	
	

We	found	that	in	older	women	
(60	years	and	older),	the	
mammography		regression	
models	and	genetic	variant	
regression	models	predicted	
breast	cancer	risk	statistically	
significantly	better	than	
chance,	with	the	
mammography	AUC	=	0.744	
(95%	CI	=	0.740	–	0.748)	and	
the		genetic	variants	AUC	=	
0.540	(95%	CI	=	0.532	–	0.549).		
The	model	using	
mammography	features	was	
statistically	significantly	
superior	to	the	model	involving	
genetic	features,	with	a	
performance	that	was	also	
clinically	significant	(Figure	1).		
The	combined	model	
incorporating	both	imaging	
and	genetic	features	performed	
statistically	significantly	better	

	 29-59	years	old	 60-90	years	old	
Case	 160	 202	
Control	 163	 213	
All	 323	 415	

Figure	1.	Prediction	power	(AUC)	of	imaging	features,	SNPs	and	
combined	model	for	different	age	groups.	
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than	the	genetic	variants	only	model	(Figure	1).		However,	the	mammography	only	model	
continued	to	perform	statistically	significantly	better	than	the	combined	model	(AUC	=	
0.713,	95%	CI	=	0.705	–	0.720).		
	
	 We	found	that	in	younger	women	(less	than	60	years	old),	evaluating	breast	cancer	
risk	with	either	mammography	variables	or	genetic	variants	was	statistically	significantly	
better	than	chance;	mammography	(AUC	=	0.690,	95%	CI	=	0.686	–	0.695),	genetic	variants	
(AUC	=	0.696,	95%	CI	=	0.692	–	0.700)	(Table	2).		However,	their	performances	were	
similar	(Figure	1).		The	combined	model	incorporating	both	imaging	features	and	genetic	
variants	performed	statistically	significantly	better	than	the	genetics	variants	only	model	
and	the	mammography	only	model	(combined	AUC	=	0.724,	95%	CI	=	0.718	–	0.731).							
	
Table	2.	Area	under	the	curve	(AUC)	and	confidence	intervals	(CI)	for	models	using	imaging	features,	genetic	
variants	and	combined,	for	younger	vs.	older	subjects.	
	 29-59	years	old	

AUC	(95%	CI)	
60-90	years	old	
AUC	(95%	CI)	

Imaging	Features	Model	 0.690	(0.686	–	0.695)	 0.744	(0.740	–	0.748)	
Genetic	Variant	Model	 0.696	(0.692	–	0.700)	 0.540	(0.532	–	0.549)		
Combined	Model	 0.724	(0.718–	0.731)	 0.713	(0.705	–	0.720)	
	
	 We	found	that	similar	features	were	selected	in	the	combined	model	as	compared	to	
the	imaging	features	alone	and	the	genetic	variants	alone	models.		There	was	complete	
overlap	in	which	mammography	features	were	selected,	with	mass	shape,	mass	margin,	
calcification	distribution,	architectural	distortion,	mass	size,	and	breast	density	predictive	
of	breast	cancer	risk.		Some	additional	variants	were	selected	by	the	genetic	variants	alone	
model,	however	these	were	not	sufficiently	predictive	to	be	selected	by	the	combined	
mammography	and	genetic	model.			
	
Discussion	
	
	 Our	study	demonstrates	the	most	valuable	tests	for	evaluating	the	likelihood	of	
breast	cancer	differs	in	younger	(ages	29-59)	as	compared	to	older	(ages	60	–	90)	patients	
(Figure	2).		For	older	patients,	a	logistic	regression	with	group	lasso	model	incorporating	
solely	mammography	features	outperformed	both	a	model	with	solely	genetic	features	and	
a	model	combining	mammography	and	genetic	features.		This	indicates	that	for	patients	60	
and	older,	genetic	variance	will	not	improve	risk	prediction	after	mammography	variables	
have	been	utilized.		For	younger	patients,	models	based	on	either	genetic	variants	or	
mammography	features	are	comparable,	while	combining	genetic	variants	and	
mammography	improves	performance.		This	indicates	that	for	patients	under	age	60,	
acquiring	genetic	variants	have	the	potential	to	improve	breast	cancer	risk	assessment.	
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	 This	study	expands	on	
previous	work	comparing	the	
information	utility	of	patient	
demographics	and	various	tests	in	
analyzing	breast	cancer	risk.		
Burnside	et	al	(2016)5	found	that	
when	comparing	patient	
demographic	features	and,	
mammography	features	using	a	
logistic	regression	model,	
mammography	features	(AUC	=	
0.689)	was	superior	to	both	
considering	demographics	(AUC	=	
0.598)	and	a	model	of	10	genetic	
variants	(AUC	=	0.601).		A	
subsequent	study	using	logistic	
regression	with	group	lasso	found	
that	combining	genetic	testing	and	

mammography	features	(AUC	=	0.727)	was	superior	to	both	mammography	alone	(AUC	=	
0.716)	and	a	model	of	77	genetic	variants	alone	(AUC	=	0.614)3.	This	study	is	a	logical	next	
step	in	outlining	which	patients	may	most	benefit	from	supplementary	genetic	testing.	

The	group	lasso	model	in	this	study	takes	advantage	of	the	underlying	structure	
information	of	both	mammography	features	in	the	BI-RADS	hierarchy,	and	extracted	
structure	information	in	SNPs,	as	calculated	by	computing	Euclidean	distances12.			Prior	
studies	noted	that	encoding	clinically	relevant	BI-RADS	structure	information	as	well	as	
computationally	extracted	genetic	structure	information	using	a	group	lasso	improves	
breast	cancer	prediction,	in	particular	improving	the	performance	of	genetic	features	in	
combined	model3.			There	are	promising	future	directions	of	research	with	representations	
of	biological	dependencies	using	SNP	linkage	disequilibrium	as	encoded	in	haplotype	maps	
(e.g.	HapMap)13.		The	inclusion	of	structure	representation	in	the	model	also	aligns	with	the	
biologic	basis	for	breast	cancer	development,	as	younger	and	older	women	are	manifesting	
different	risk	factors.	
	

Younger	women	are	more	likely	to	develop	breast	cancer	due	to	an	inherited	
predisposition	to	oncologic	signaling	pathways14.		While	high-penetrance	variants	such	as	
ER/PR	status,	HER2	and	BRCA	genes	have	been	commonly	used	to	assess	breast	cancer	
risk,	GWAS	have	identified	low-penetrance	SNPs	not	only	associated	with	breast	cancer	
risk,	but	with	early	onset	and	poorer	prognosis15.		It	follows	that	information	about	genetic	
risk	factors	would	be	valuable	in	screening	younger	populations.			

	
Our	study	builds	on	prior	work	using	SNPS	for	breast	cancer	risk	prediction	and	

stratification	by	age.		Mealiffe	et	al.	[16]	found	that	risk	scores	determined	from	genetic	
variants	was	independent	from	risk	scores	determined	from	the	Gail	model.		However,	
their	patients	were	all	over	fifty	years	old,	and	most	over	sixty	years	old.		Darabi	et	al.	[17]	
demonstrates	how	models	incorporating	genetic	variants	as	a	risk	factor	in	addition	to	age	

Figure	2.	Clinical	decision	making	model	for	maximal	
predictive	power	for	breast	cancer	risk	detection.	
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increases	the	number	of	younger	patients	screened.		Their	model	was	also	able	to	classify	
older	patients	as	lower	risk,	aligning	with	our	results	demonstrating	that	while	genetic	
variants	are	not	the	next	best	test	for	older	patients,	they	are	predictive	of	breast	cancer	
risk.	
	

There	are	several	limitations	to	consider	in	this	study.		First,	this	study	has	a	
relatively	small	sample	size,	thus	we	needed	to	include	clinical	encounters	over	two	
decades	(1989	–	2010)	to	generate	a	sufficient	number	of	cases	and	controls.			Second,	due	
to	the	population	used,	this	study	was	limited	to	only	Caucasian	women,	and	is	thus	not	
generalizable	to	other	ethnic	groups.		Replication	in	a	data	set	with	broader	ethnic	
variation	would	establish	the	generalizability	of	these	results.		Further,	the	development	of	
BI-RADS	lexicon	and	thus	adherence	to	mammography	descriptors	has	changed	over	this	
time	period.		Increased	utilization	of	BI-RADS	lexicon	has	been	demonstrated	to	improve	
the	predictive	performance	of	these	models5,	and	thus	this	study	may	underestimate	the	
benefit	of	mammography	alone.			

	
The	decision	to	pursue	additional	testing	and	treatment	is	challenging.		

Mammograms	currently	cost	around	one	hundred	dollars,	and	the	cost	of	genetic	testing	
varies	from	one	hundred	to	thousands	of	dollars.		Understanding	the	predictive	power	of	
imaging	features	and	genetic	variants	in	different	age	groups	has	the	potential	to	aid	
clinicians	in	determining	what	tests	can	be	used	to	improve	information	about	the	
likelihood	of	malignancy.	
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Appendix		

Area	under	the	curve	(AUC)	and	confidence	intervals	(CI)	for	models	using	imaging	
features,	genetic	variants	and	combined,	for	younger	vs.	older	subjects	with	logistic	
regression	with	group	lasso	vs.	with	lasso.	
	
Logistic	regression	with	group	lasso	
	
	

29-59	years	old	
AUC	(95%	CI)	

60-90	years	old	
AUC	(95%	CI)	

Imaging	Features	Model	 0.690	(0.686	–	0.695)	 0.744	(0.740	–	0.748)	
Genetic	Variant	Model	 0.696	(0.692	–	0.700)	 0.540	(0.532	–	0.549)		
Combined	Model	 0.724	(0.718–	0.731)	 0.713	(0.705	–	0.720)	
	
Logistic	regression	with	lasso	
	 29-59	years	old	

AUC	(95%	CI)	
60-90	years	old	
AUC	(95%	CI)	

Imaging	Features	Model	 0.689	(0.686	–	0.691)	 0.744	(0.742	–	0.745)	
Genetic	Variant	Model	 0.679	(0.676	–	0.681)	 0.525	(0.521	–	0.528)		
Combined	Model	 0.751	(0.749	–	0.753)	 0.729	(0.728	–	0.731)	
	
	
2-sample	t-tests	at	the	5%	significance	level	were	used	to	compare	the	mean	AUC	from	the	
lasso	method	vs.	the	group	lasso	method.	Compared	to	lasso,	group	lasso	has	statistically	
significant	better	performance	for	the	Genetic	Variant	Models	and	statistically	significant	
worse	performance	for	the	Combined	Models.	The	performances	of	the	Imaging	Features	
Models,	however,	are	not	statistically	significant	different	between	the	lasso	vs.	group	lasso	
methods.		
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