Skip to main content
. 2018 May 18;2018:147–155.

Table 3.

Hyperparameter optimization of the Messidor dataset trained using transfer learning on a pretrained GoogLeNet model from ImageNet. 2-ary dataset classes were group C0:R0, R1 and C1:R2, R3. 3-ary dataset classes were C0: R0, C1:R1, and C2:R2, R3. 4-ary dataset classes were C0:R0, C1:R1, C2:R2, C3:R3. C represents the label within the CNN architecture, and R represents the label from the dataset.

GoogLeNet Rapid Prototyping Results-Raw Images
Model Solver Learning Rate Policy Validation Accuracy% Test Set Accuracy%
2-ary SGD 1e-3 Step Down 83.82 72.75
2-ary NAG 1e-3 Step Down 82.36 72.75
2-ary Adam 1e-4 Step Down 86.40 71.75
2-ary AdaGrad 1e-3 Exponential Decay 84.55 64.25
2-ary RMSProp 1e-4 Sigmoid Decay 79.04 64.25
3-ary RMSProp 1e-4 Exponential Decay 63.97 66.25
3-ary SGD 1e-3 Step Down 71.69 64.25
3-ary Adam 1e-4 Step Down 72.40 61.50
3-ary NAG 1e-3 Step Down 69.85 58.75
3-ary AdaGrad 1e-3 Exponential Decay 72.43 58.25
4-ary Adam 1e-4 Step Down 67.65 57.25
4-ary SGD 1e-3 Step Down 65.07 55.25
4-ary AdaGrad 1e-3 Exponential Decay 66.54 53.25
4-ary NAG 1e-3 Step Down 66.18 52.75
4-ary RMSProp 1e-4 Step Down 62.50 49.75