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Calorimetric studies of protein-ligand binding sometimes yield thermodynamic data that are diffi-
cult to understand. Today, molecular simulations can be used to seek insight into such calorimetric
puzzles, and, when simulations and experiments diverge, the results can usefully motivate further
improvements in computational methods. Here, we apply near-millisecond duration simulations to
estimate the relative binding enthalpies of four peptidic ligands with the Grb2 SH2 domain. The
ligands fall into matched pairs, where one member of each pair has an added bond that preorganizes
the ligand for binding and thus may be expected to favor binding entropically, due to a smaller loss in
configurational entropy. Calorimetric studies have shown that the constrained ligands do in fact bind
the SH2 domain more tightly than the flexible ones, but, paradoxically, the improvement in affinity
for the constrained ligands is enthalpic, rather than entropic. The present enthalpy calculations yield
the opposite trend, as they suggest that the flexible ligands bind more exothermically. Additionally,
the small relative binding enthalpies are found to be balances of large differences in the energies of
structural components such as ligand and the binding site residues. As a consequence, the deviations
from experiment in the relative binding enthalpies represent small differences between these large
numbers and hence may be particularly susceptible to error, due, for example, to approximations
in the force field. We also computed first-order estimates of changes in configurational entropy on
binding. These too are, arguably, paradoxical, as they tend to favor binding of the flexible ligands.
The paradox is explained in part by the fact that the more rigid constrained ligands reduce the entropy
of binding site residues more than their flexible analogs do, at least in the simulations. This result
offers a rather general counterargument to the expectation that preorganized ligands should be asso-
ciated with more favorable binding entropies, other things being equal. Published by AIP Publishing.
https://doi.org/10.1063/1.5027439

I. INTRODUCTION

Calorimetric studies of protein-small molecule interac-
tions decompose the standard free energy of binding into the
binding enthalpy and entropy—the so-called thermodynamic
signature of binding.1–4 These components of the free energy
may provide insight into the forces driving binding.5–7 It has
also been argued that one should aim to design ligands whose
binding is enthalpy-driven, as these may be better drugs than
ones whose binding is entropy-driven.8,9 On the other hand,
small changes in the chemical structure of a ligand often pro-
duce large changes in the binding enthalpy and entropy that
are difficult to rationalize.10 Of particular interest here, several
meticulous experimental studies have compared the binding of
flexible versus extremely similar but preorganized ligands to
small proteins. A more preorganized ligand may be expected
to bind with higher affinity, all other things being equal, due
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to a reduced configurational entropy penalty on binding; but
calorimetric studies have often shown a greater entropy penalty
for constrained ligands.11–13

One elegant experimental study examined the binding
thermodynamics of constrained and flexible phosphopeptides
with the SH2 domain of growth factor receptor protein 2
(Grb2).14 The ligands in this case are amide-capped pseu-
dopeptides which contain a varied central amino acid (X)
flanked by a phosphotyrosine (pY) and an asparagine (N)
(Fig. 1). For each flexible ligand [fpYXN, Fig. 1(a)], a con-
strained analog [cpYXN, Fig. 1(b)] was synthesized and tested
under identical experimental conditions. The cpYXN ligands
are conformationally constrained by cyclization of the phos-
photyrosine to form a cyclopropane ring. As perhaps expected,
the more rigid, and hence better preorganized, constrained pep-
tides bind the protein with higher affinity.11 However, their
greater affinity traces to a more favorable binding enthalpy,
instead of the entropic advantage anticipated due to their
preorganization.11

In recent years, advances in molecular simulations have
opened new possibilities to study drug-protein binding in
atomistic detail.15–20 In particular, although the binding
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FIG. 1. Flexible (a) and constrained (b) ligand structures,
fpYXN and cpYXN, respectively, where Xaa (X) is either
valine (V) or glutamine (Q). In accordance with the exper-
imental study, both the N- and C-termini are capped with
electrically neutral amide groups.

enthalpy can be challenging to compute, with increasing com-
puter power, it is increasingly practical to employ a straightfor-
ward direct approach to this calculation, which has been shown
to yield numerically precise (though not necessarily accurate)
results for host-guest systems.21–25 The direct approach is
appealing for its simplicity, as well as its ability to provide
a breakdown of enthalpy contributions from various compo-
nents of the system, such as the ligand and the binding site
residues.

Here, we use the direct method to estimate the relative
binding enthalpies of two matched pairs of the Grb2 lig-
ands discussed above, where each pair contains the same
central residue, either valine (V) or glutamine (Q). With the
multiple-graphical processor unit (GPU) version of AMBER
PMEMD26 and long (4 fs) time steps made possible by hydro-
gen mass repartitioning,27 we achieved up to 450 ns of simula-
tion per day and generated over 250 µs cumulative simulation
time for each bound system. The results extend prior work28

which used many short simulations summing to 0.4 µs per
system to compute relative binding enthalpy calculations for
one constrained peptide and one matched flexible phosphopep-
tide binding to the Src SH2 domain. We furthermore examine
how the ligand constraints affect changes in configurational
entropy, of both the ligand and binding-site residues, on bind-
ing. The results are informative about the physics of molec-
ular recognition and the methodology of computing binding
enthalpies.

II. METHODS
A. Calculation of relative binding enthalpies

Relative binding enthalpies (∆∆H) were estimated by
the direct method21,22,28 which involves taking differences
in mean (Boltzmann-averaged) potential energies for simu-
lated systems of interest. With the direct method, the absolute
protein-ligand binding enthalpy can be computed by running
separate simulations of the ligand in solvent, the protein in
solvent, and the protein-ligand complex in solvent and sub-
tracting the mean energies, while ensuring that the composition
of the bound state systems is identical to that of the unbound
state systems; for example, the number of water molecules
must match exactly between the bound and free states. Here,
however, we computed the relative binding free energies of a
series of similar ligands (with the same protein). This avoids
the requirement of converging the mean energy of the free
protein, which might be particularly difficult due to possible
conformational shifts on removal of ligands from the binding
site. The relative binding enthalpies considered in this study

were computed according to the following equations:

∆∆HcV−fV = (〈UPL,cV 〉 − 〈UL,cV 〉) − (〈UPL,fV 〉 − 〈UL,fV 〉), (1)

∆∆HcQ−fQ = (〈UPL,cQ〉 − 〈UL,cQ〉) − (〈UPL,fQ〉 − 〈UL,fQ〉), (2)

∆∆HfQ−fV = (〈UPL,fQ〉 − 〈UL,fQ〉) − (〈UPL,fV 〉 − 〈UL,fV 〉), (3)

∆∆HcQ−cV = (〈UPL,cQ〉 − 〈UL,cQ〉) − (〈UPL,cV 〉 − 〈UL,cV 〉). (4)

Here 〈UL,aX〉 is the mean potential energy of a simulation
of solvent with ligand aX, where a is c or f, indicating
a constrained or flexible peptide, respectively, and X is V
or Q, indicating that the second residue is valine or glu-
tamine, respectively—such that fV refers to ligand fpYVN.
The potential energies for simulations of the corresponding
protein-ligand complexes are given analogously as 〈UPL,aX〉.
Equations (1) and (2) report the energetic consequences of
going from the flexible to the covalently constrained lig-
ands, while Eqs. (3) and (4) report the energetic consequences
of going from a central valine residue to a glutamine, for
either the constrained or flexible case. In order to obtain cor-
rectly balanced energies, the numbers and protonation states
of waters, ions, and buffer compounds were identical across
all simulations, except for the addition of counterions required
to maintain electrical neutrality, and their contributions can-
cel in the final results; simulation details are provided in
Sec. II B.

Because the force field is additive, these relative binding
enthalpies can be decomposed into contributions from struc-
tural components. For example, one contribution to the relative
binding enthalpy of two ligands is the difference in their change
in internal energy on binding. This can be computed by a
post-analysis of each simulation that isolates the ligand and
computes its mean internal energy.

B. Molecular dynamics simulations

Each of the four ligands was simulated in complex with
the Grb2 SH2 domain, and free in solution (i.e., without pro-
tein). The structures of these ligands in complex with the
Grb2 SH2 domain have been solved11 and are available in the
Research Collaboratory for Structural Biology Protein Data
Bank (RSCB PDB):29 fpYVN (3C7I) and cpYVN (2HUW);
fpYQN (3IMD) and cpYQN (3IN7). The starting coordinates
of the complexes were prepared from their respective crys-
tal structures, using Maestro;30 crystallographic waters within
5 Å of the ligand were retained; and missing hydrogens were
added. For the free ligand simulations, the coordinates of the
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ligand alone were extracted from the crystal structure and used
as a starting point.

The complexes and free ligands were then solvated with
TIP3P water, buffer molecules, and ions to approximate the
experimental conditions.11 To facilitate the calculation of rel-
ative binding enthalpies, the contents of each simulation box
were kept identical, except for the choice of ligand, whether or
not the protein was present, and the requirement for additional
sodium ions to ensure electrical neutrality of the overall sys-
tem (see below). Thus, each truncated octahedral simulation
box, measuring 12 Å from the solute to the box edge for the
complex and 23 Å for the free ligand, was populated with 6034
TIP3P31 waters, 6 HEPES molecules, and 17 NaCl to approx-
imate the 50 mM HEPES and 150 mM NaCl solution used
in the isothermal titration calorimetry (ITC) experiments.11

To match the pH 7.45 conditions of the experiments, the
charges on the residues of Grb2 SH2, including the protona-
tion states of the histidines, were determined with the H++ 3.0
server (http://biophysics.cs.vt.edu).32–34 Based on the pKa val-
ues predicted by MarvinSketch 14.10.7.0, 2014, ChemAxon
(http://www.chemaxon.com), three different ionization states
of HEPES were included (see the supplementary material).
At pH 7.45, the total charges of the Grb2 SH2 protein, the 6
HEPES molecules, and each ligand are +3, �3, and �2, respec-
tively. Thus, to neutralize the simulation systems, additional
Na+ ions were added: 2 for the complex systems, and 5 for
the ligand-only systems. In total, the simulated complex sys-
tems comprised approximately 20 050 atoms, while the free
ligand systems comprised approximately 18 400 atoms; the
Grb2 SH2 domain has 1653 atoms.

Force field parameters were assigned to the protein, lig-
ands, and buffer molecules with the LEaP program. The
ff12SB force field35 was used for the protein, general AMBER
force field (GAFF)36 force field parameters were used for
HEPES, and force field parameters for the phosphotyro-
sine (PTY) residue were taken from the set determined
by Steinbrecher et al.,37,38 as available in the AMBER
frcmod.phosaa10 file. The cyclized phosphotyrosine (CPY)
parameters were the same as PTY with the exception of the
cyclopropyl moiety, which used the GAFF parameters for sp3

carbons in triangle systems (cx). Partial charges for both the
HEPES molecules and the modified phosphotyrosine residues
were determined using the restrained electrostatic potential
(RESP) method, as available through the R.E.D. Server39,40

using Gaussian09 C.01.41 The full set of parameters used is
available in the supplementary material.

The MD simulations were performed with the multiple-
GPU version of PMEMD (pmemd.cuda.MPI).26 The systems
were NVT heated to 300 K and NPT equilibrated for 5 ns, and
the resulting equilibrated coordinates were used as the initial
coordinates for the production simulations. The simulations
were performed using periodic boundary conditions, with a
nonbonded cutoff of 9 Å. The SHAKE algorithm was used to
constrain the lengths of bonds involving hydrogen atoms. Pres-
sure and temperature were regulated by using a Monte Carlo
barostat26 and a Langevin thermostat, respectively. Hydrogen
mass repartitioning was enabled, to allow the use of a long
(4 fs) time step.27 A prior study showed that this approach
does not lead to significant differences in computed binding

enthalpies.23 The simulations were run in 200 ns blocks, with
each block seeded by a new random number. Coordinates and
energies were recorded every 500 steps (2 ps).

For each system, two replicate simulations, termed Run A
and Run B, were initiated using the same equilibrated starting
coordinates, but different random number seeds. Each replicate
was simulated for 20 µs for the free ligands and over 125 µs
for the complexes so that the total simulation time was 40 µs
for each free ligand and over 250 µs for each complex; see
Table IV for details.

C. Evaluation of uncertainty

In addition to the use of non-identical replicate calcula-
tions (Sec. II B), we used two different methods, previously
detailed in Henriksen et al.,23 to estimate uncertainties based
on the individual trajectories. Using the approach described by
Shirts and Chodera,42 the statistical inefficiency is determined
from the autocorrelation function of the energy to create a sub-
sampled data series that is uncorrelated, at least in principle.
The standard error of the mean (SEM, σ) is then computed
for the resulting uncorrelated series. Blocking analysis43 is
another approach to estimating the uncertainty of the time
series of potential energies, where block-wise SEMs are com-
puted for successively longer blocks of energies. On a plot
of SEM vs. block size, a plateau is generally seen for sim-
ulations that are considered converged, and the SEM value
corresponding to the plateau is taken as the error of the esti-
mation. However, we have observed that, especially when a
clear plateau is absent, a more conservative (i.e., larger), and
more reliable error estimate is the largest SEM reached for any
of the block sizes tested,23 so we use the latter metric.

D. Principal component analysis

To look for large-scale, slow protein motions that might
account for slow convergence of the mean energy in a simu-
lation, we applied principal component analysis (PCA) to the
simulated trajectories of the complexes and free ligands. PCA
is commonly used to determine the essential dynamics of a
simulation44,45 by reducing the dimensionality of the trajectory
motions. Principle components, or PCs, are the eigenvectors
obtained from diagonalizing the covariance matrix of a tra-
jectory, and the eigenvector with the largest eigenvalue is the
linear combination of Cartesian coordinates that captures the
most variance. We used the cpptraj program to obtain the first
three PCs for concatenated trajectories of the simulation repli-
cates for each system (Run A and Run B) and then to project
the individual trajectories onto each PC. All atoms of the lig-
ands and just the Cα atoms of the proteins were included in
these analyses.

E. Structural decomposition of relative
binding enthalpies

We sought insight into the computed relative binding
enthalpies by isolating the mean energies associated with parts
of the overall system, notably the ligand and a set of residues
that form the binding site. We focused on the binding site based
on an expectation, on physical grounds, that this will be the
region with the largest differences across ligands, and because

http://biophysics.cs.vt.edu
http://www.chemaxon.com
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-009899
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-009899
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limiting attention to this smaller region reduces numerical
noise in the component analysis. To generate ligand-only tra-
jectories, we used cpptraj26 to delete the protein and all solvent
molecules, including water, HEPES buffer, and ions, from
each trajectory. We similarly generated trajectories containing
only 13 binding site residues (Arg13, Arg32, Ser34, Glu35,
Ser36, Ser42, Val51, Gln52, His53, Phe54, Lys55, Leu66, and
Trp67), with and without the bound ligand; the rest of the
protein and all solvent molecules were stripped. The potential
energies of the decomposed systems were then evaluated by
specifying imin = 5 and maxcyc = 1 in the sander26 program
to read in the trajectories and calculate a single-point energy
at each frame. PME was disabled by using ntb = 0 so that
no periodicity was applied and long-ranged interactions were
accounted for instead by increasing the nonbonded cutoff to
100.0 Å.

To define the energy components computed here, we
introduce the following notations:

• 〈uBLi〉PLi : mean internal energy of protein binding site
residues and ligand i, in their bound complex;

• 〈uB〉PLi : mean internal energy of protein binding site
residues only, from simulation of bound complex with
ligand i;

• 〈uLi〉PLi : mean internal energy of ligand i only, from
simulation of its bound complex with protein;

• 〈uLi〉Li : mean internal energy of ligand i only, from
simulation free in solution.

Then the mean interaction energy of ligand i and binding-site
residues from the simulation of their bound complex is

∆uinter,i = 〈uBLi〉PLi − 〈uB〉PLi − 〈uLi〉PLi . (5)

The change in the internal energy of ligand i on binding is

∆uLi = 〈uLi〉PLi − 〈uLi〉Li . (6)

The difference between the binding site internal energy when
ligand i is bound versus when ligand j is bound is

∆uBij = 〈uB〉PLi − 〈uB〉PLj . (7)

F. Changes in first-order configurational entropy

We estimated changes in configurational entropy of the
ligands and binding-site residues, to further study the con-
sequences of ligand preorganization. The configurational
entropy, S, may be written as an expansion in terms of first-
order terms, pairwise mutual informations, third-order mutual
informations, and so forth.46–48 Here, we examine only the
relatively tractable first-order term S(1), which provides a use-
ful look at overall trends.48 The change in first-order entropy
of ligand i on binding for dihedral angle n is obtained by
binning the dihedral, φin, into m = 1. . .Nbins to create a nor-
malized probability distribution and computing its first-order
contribution to the binding entropy as

∆Sin,bind = −R
Nbins∑
m=1

P′m(φin) ln P′m(φin)

+ R
Nbins∑
m=1

Pm(φin) ln Pm(φin)), (8)

where Pm(φn) and P′m(φn) are the probabilities in bin m for
the free and bound states, respectively, and we have omitted
the superscript (1) for simplicity. The total first-order bind-
ing entropy for ligand i is then calculated as the sum of the
contributions from its Ndih dihedral angles

∆Si,bind =

Ndih∑
n=1

∆Sin,bind . (9)

The relative binding entropy of ligands i and j then is
∆∆Sij,bind = ∆Sj,bind � ∆Si,bind .

One may also compare the absolute configurational
entropies of two ligands, i and j, as

∆Sij =−R
Ndih∑
n=1



Nbins∑
m=1

Pm(φjn) ln Pm(φjn)

−

Nbins∑
m=1

Pm(φin) ln Pm(φin)

,

∆S′ij =−R
Ndih∑
n=1



Nbins∑
m=1

P′m(φjn) ln P′m(φjn)

−

Nbins∑
m=1

P′m(φin) ln P′m(φin)

,

(10)

where subscripts i and j indicate the ligand associated with
each probability distribution, the first equation pertains to
the free state, and the second equation pertains to the bound
state.

To compute the torsional entropies of the peptide ligands,
we analyzed a minimal, non-redundant, set of rotatable tor-
sions. Although an additional bond is present in the constrained
ligands, we note that it does not introduce any new non-
redundant torsions, so the constrained and flexible phosphoty-
rosines (cpY and fpY) were defined by the same minimal set
of torsions. When computing such relative entropies compar-
ing ligands containing glutamine versus valine, the additional
glutamine-specific torsions were excluded, so equal numbers
of degrees of freedom were considered. Analogous calcula-
tions yield the difference in entropy of torsions in the binding
site residues, with ligand i versus j bound:∆SB,ij. The rotatable
torsions of the following binding site residues were analyzed:
Arg13, Arg32, Ser34, Ser36, Ser42, His53, Phe54, and Lys55
which are a subset of the 13 residues used in the structural
decomposition analysis (Sec. II E) that had native contacts of
4 Å or less for greater than half the simulation (see Sec. II G).
In the following, we report entropies as free energy contri-
butions of the form �T∆S, in units of kcal/mol, to facilitate
comparison with energies. The dihedral angles used for these
analyses are listed in the supplementary material. Histograms
for the selected dihedrals were generated from the trajectories
with cpptraj, using 180 bins of size 2◦.

G. Native contact analysis

We used the nativecontacts program within cpptraj to
determine, for each simulation of a protein-ligand complex,
the fraction of time; the native protein-ligand contacts were
maintained, in the sense of being shorter than 4.0 Å. This anal-
ysis tracked all protein-ligand interatomic distances that were

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-009899
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≤4.0 Å in the starting (crystal) structure of each simulation,
omitting distances involving hydrogen atoms.

III. RESULTS

This section begins by comparing the computed and
experimental relative binding enthalpies of the four ligands
and by providing structural analyses that help explain the
computational results. The four molecular recognition events
are then further characterized in terms of changes in con-
figurational entropy and flexibility. Finally, we provide a
detailed analysis of convergence and numerical precision of
the mean potential energies that are used to characterize the
enthalpies.

A. Analysis of relative binding enthalpies

One of the more intriguing experimental observations
regarding this system is that the constrained peptides have
more favorable binding enthalpies than their corresponding
flexible peptides, by 1.1 and 2.5 kcal/mol,11 as listed in the first
two rows of Table I. By contrast, the calculations assign both
flexible peptides more favorable binding enthalpies, by 1.3 and
5.4 kcal/mol (∆∆H in Table I), relative to their corresponding
constrained peptides. This deviation between calculation and
experiment holds across both peptide sequences. In addition,
the differences are substantial on the scale of the experimen-
tal and computational uncertainties, particularly for cV and
fV, where calculation deviates from experiment by nearly
8 kcal/mol.

The fact that the flexible ligands bind more favorably in
these calculations traces in part to the fact that they make
more favorable contacts with the protein binding site, by over
20 kcal/mol, as evident from the values of ∆∆uinter in Table I.
In addition, the internal energy of the binding site is more
favorable when the flexible ligands are bound, relative to the
constrained ligands, as evident from the values of ∆uB in
Table I. Presumably, the flexible ligands can form more inti-
mate interactions and also allow the binding site to adopt a
more relaxed conformational ensemble, compared with the
more rigid constrained ones. Indeed, the flexible ligands main-
tain their crystallographic interactions with the binding site
during more of the simulations than do the constrained lig-
ands. This is shown in Fig. 2, which depicts the native contacts

present for greater than 50% of each complex simulation. The
flexible ligands maintain multiple native contacts [Figs. 2(a)
and 2(c)], with many formed between the central residue of
the ligand (Val or Glu) and the protein backbone (His107,
Phe108, and Lys109); the corresponding contacts are poorly
maintained by the constrained ligands [Figs. 2(b) and 2(d)].

By contrast, the corresponding crystal structures tend to
show more favorable polar contacts between the constrained
peptides and the protein, relative to the flexible ones.11 This
observation is broadly consistent with the fact that the exper-
iments assign more favorable binding enthalpies to the con-
strained peptides, while the calculations show the opposite
pattern. It is also worth keeping in mind, when making detailed
comparisons among the four crystal structures, that they were
solved in four rather different solvents and represent three
different space groups (Table II).

Subtracting the component energies, ∆∆uinter , ∆uB, and
∆∆uL, from the relative binding enthalpies, ∆∆H, yields
∆∆uother , the contribution of the solvent and the remainder of
the protein, which includes their interactions with the ligand
and binding site, to the overall relative binding enthalpies. This
“other” contribution strongly favors binding of the constrained
ligands (Table I), and, indeed, nearly cancels the contributions
of the other components. Intuitively, the formation of favor-
able interactions between the ligands and the binding site,
and within the binding site, is largely balanced by losses in
favorable interactions involving the solvent and the rest of the
protein.

The present calculations do replicate the experimental
trend that the glutamine-containing peptides, fQ and cQ, have
more favorable binding enthalpies than their valine-containing
counterparts, fV and cV. Here, since the computed relative
binding enthalpies are within 5.2 kcal/mol of zero, the uncer-
tainties of up to about 2 kcal/mol in the calculations (above)
are more problematic. However, the consistency of the results
between both pairs of peptides supports the solidity of the con-
clusion. The more favorable binding enthalpy of the glutamine-
containing peptides does not correlate clearly with stronger
ligand-protein interactions (∆uinter , Table I), although this
might have been expected given the ability of the Q residue
to hydrogen-bond with the protein. The absence of hydrogen
bonds between the ligand glutamines and the protein is consis-
tent with the crystal structures. Instead, the binding site itself

TABLE I. Experimental (ITC) and simulated relative binding enthalpies (∆∆H), along with simulated binding
site energy differences (∆uB), relative ligand-protein interaction energies (∆∆uinter ), and relative changes in ligand
internal energy on binding (∆∆uL) for each ligand pair. Computations are based on the combined (concatenated)
parallel runs for each system (Runs A and B). The relative difference in all remaining terms is also reported, as
∆∆uother ; see main text. The standard errors of the mean (SEM) (σ) are propagated from those estimated using
the statistical inefficiency applied to combined runs. The experimental errors are taken from Ref. 11, which are
propagated from the errors in ligand concentration. Units: kcal/mol.

Expt.11 Simulated

ITC Err ∆∆H σ ∆∆uinter σ ∆uB σ ∆∆uL σ ∆∆uother σ

cV–fV �2.5 0.32 5.38 2.11 24.73 6.12 10.00 2.68 �4.83 1.05 �24.5 7.01
cQ–fQ �1.1 0.30 1.33 1.25 22.03 4.34 4.12 2.06 0.66 1.85 �25.5 5.01
fQ–fV �3.3 0.27 �1.19 1.87 0.76 4.68 �1.27 1.54 �5.54 1.39 4.86 5.27
cQ–cV �1.9 0.35 �5.24 1.59 �1.94 5.87 �7.15 3.01 �0.04 1.61 3.89 6.95
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FIG. 2. Native contacts (distance ≤ 4.0 Å in the crystal
structure) that are present in at least half of the snapshots
of the combined Run A and Run B simulations of each
protein-ligand complex. (a) fV, (b) cV, (c) fQ, and (d) cQ.

adopts somewhat lower energy conformations in the presence
of fQ and cQ, versus fV and cV, as evident from the positive
values of ∆uB in Table I.

B. Changes in ligand configurational entropy
on binding

We also examined changes in the configurational entropy
of the ligands and the binding site. The first-order estimates
used here, which are based on the probability distribution func-
tions of rotatable bonds, quantify changes in thermal motion
on binding. We checked the convergence of these calculations
by computing the first-order entropies for subsets of frames
from the total simulation and found that the final values were
always within a standard deviation of the values estimated by
the subsets (see Figs. 2 and 3 of the supplementary material).

Although it may be expected that a more rigid ligand will
incur smaller losses in configurational entropy on binding, we

see the opposite pattern: the constrained peptides lead to con-
siderably more unfavorable changes in configurational entropy
on binding than the flexible ones, by 7-8 kcal/mol, at least for
the ligand and binding-site torsions considered here (Table III,
Sum). This result is consistent with the paradoxical experi-
mental observation that the entropy of binding is less favorable
for the constrained than the flexible ligands. (Note, however,
that the experimental entropies account for the entire system,
including the solvent, whereas the present results account only
for a small number of ligand and binding-site torsions.) That
the constrained ligands lead to more unfavorable changes in
configurational entropy on binding traces primarily to the bind-
ing site torsions, rather than the ligands themselves: binding
of the constrained ligands leads to about a 5 kcal/mol greater
loss of configurational entropy in the binding site than does
binding of the flexible peptides (Table III, �T∆SB,ij). This is
physically plausible because a more rigid ligand may constrain
the binding site more, as previously suggested.11,49

TABLE II. Crystallization conditions and crystal properties for the protein-ligand complexes simulated here.

fV cV fQ cQ

pH 5.0 6.0 8.5 7.5
Solvent Formate Cacodylate, PEG HEPES, PEG MgCl2, TRIS, PEG
Resolution (Å) 1.7 1.9 2.0 2.0
Space group P 43 21 2 P 1 21 1 P 21 21 21 P 21 21 21
T (K) 100 100 100 100
Mean B (Å2) 20 25 11 32
Solvent content (%) 30 40 31 43

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-009899
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TABLE III. Differences in first-order contributions to the configurational
binding entropy, for ligands only (�T∆∆Sij,bind ), for binding site residues
only (�T∆SB,ij), and for ligand and binding site combined (Sum). Results
are computed with the combined (concatenated) parallel runs for each system
(Runs A and B), and are presented as free energy contributions, in kcal/mol.

�T∆∆Sij,bind �T∆SB,ij Sum

cV–fV 1.62 5.50 7.12
cQ–fQ 3.29 5.01 8.30
fQ–fV �1.64 �0.25 �1.89
cQ–cV 0.03 �0.75 �0.71

These computational results may appear inconsistent with
the fact that the crystallographic B-factors run lower for the
proteins solved with the flexible ligands than with the con-
strained ones (Table II) since B-factors are interpretable, in
part, as indicators of atomic motion. However, our simula-
tions pertain to the protein-ligand complexes in solution, rather
than in their crystal forms, which introduce not only lattice
contacts but also very different solvent conditions, so it is
not clear how informative crystallographic B-factors are for
the conditions used in the ITC experiments. Moreover, the
B-factor differences here are not limited to the binding site
region, but instead are quite uniform across the entire pro-
tein, so another factor may be in play. We conjecture that
the B-factor differences result, at least in part, from differ-
ences in solvent content. It has previously been reported that
the mean B-factor of a protein crystal correlates with the
percent solvent content of the crystal, with a slope of about
1.35 Å2/percent solvent. This makes intuitive sense because
greater solvent content would presumably reduce the degree to
which the crystal lattice restrains the motions of protein atoms.
Here, the two crystal structures with the flexible ligands have
solvent contents about 10% greater, in absolute terms, than
those solved with the constrained ligands (Table II), and this
is the right order of magnitude to account for the observed
B-factor differences.

The computed changes in ligand torsional entropy on
binding also are more unfavorable for the constrained lig-
ands than for the corresponding flexible ones (Table III,
�T∆∆Sij,bind). This result is consistent with the prior com-
putational study of this system,50 which found that the flexible
ligands form internal nonbonded interactions which reduce
their conformational flexibility when free in solution; while
these interactions did not form in the constrained peptides. We
wished to compare the configurational entropies of the con-
strained and flexible ligands in solution, similarly, but a direct
comparison cannot be made between ligands with different
numbers of torsion angles. Therefore, we recomputed the con-
figurational entropies of free fQ and cQ, this time omitting
the χ2 and χ3 torsions of the glutamine, to generate entropy
estimates based on 17 torsions that chemically match the 17
torsions of fV and cV [Eq. (10)]. Consistent with the prior
study, we find that the constrained peptides have greater con-
figurational entropy in solution than the flexible ones, by about
1 kcal/mol (see the supplementary material for details). How-
ever, the constrained peptides have less configurational entropy
when they are in the binding site, by 0.6–1.5 kcal/mol (see the
supplementary material), even though they have fewer stable

native protein-ligand interactions than the flexible ligands (see
above).

C. Precision, convergence, and slow protein motions

The numerical precision of mean potential energies from
the simulations was examined by three different approaches:
evaluation of statistical inefficiency through the time autocor-
relation function of the potential energy;42 blocking analysis;43

and comparison of duplicate runs seeded with different ran-
dom number (i.e., Runs A and B). The results are detailed in
Subsections III C 1–III C 3.

1. Ligands free in solution

For the free ligands, both the autocorrelation and blocking
analyses yield SEM estimates of <0.1 kcal/mol (Table IV),
for both the individual and combined duplicate runs, A and
B. In addition, the blocking curves show appropriate plateaus
[panels (b) and (d) in Figs. 3 and 4], and the duplicate runs
provide mean energies that deviate from their combined mean
by 0.09 kcal/mol on average. (Mean potential energies and
blocking graphs for the combined A and B runs are provided
in the supplementary material.) Thus, the free ligand energies
are well-converged by all measures, even for the individual
20 µs simulations.

2. Protein-ligand complexes

The mean energies of the ligand-protein complexes con-
verge relatively slowly, even on the scale of the present sim-
ulation times of over 250 µs for each complex, as detailed in
Table IV. Thus, for the separate A and B runs, autocorrelation
analysis yields SEM estimates of 0.4–3.0 kcal/mol, and none
of the blocking curves of the individual runs show consistent
plateaus [panels (a) and (c) in Figs. 3 and 4]. Additionally, the
SEM estimates for the merged A and B runs range from 0.4
to 1.8 kcal/mol (Table 5 of the supplementary material), and
blocking analysis of the merged runs still do not show con-
sistent plateaus (Figs. 4 and 5 of the supplementary material).
The uncertainties of these mean energies are about an order of
magnitude greater than those for the free ligands, even though
the simulations are nearly ten-fold longer.

The slow convergence of the ligand-protein systems can-
not be attributed simply to their size (∼20 000 atoms) because

TABLE IV. Mean potential energies 〈U〉 and their SEMs (σ) (kcal/mol).
Simulation duration t given in µs. SEM values are estimated based on
statistical inefficiency.

Complex Free ligand

Ligand Run t 〈UPL〉 SEM σ t 〈UL〉 SEM σ

fV A 166 �64 126.7 0.87 20 �61 938.3 0.06
B 169 �64 131.4 3.03 20 �61 938.5 0.06

cV A 128 �64 155.7 0.78 20 �61 971.9 0.06
B 141 �64 158.4 1.49 20 �61 971.8 0.06

fQ A 127 �64 178.7 0.54 20 �61 986.0 0.06
B 127 �64 176.7 0.43 20 �61 985.6 0.06

cQ A 133 �64 207.4 1.08 20 �62 019.2 0.06
B 133 �64 212.1 1.62 20 �62 019.2 0.06

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-009899
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-009899
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FIG. 3. SEM blocking curves for fV
and cV total potential energies. (a) fV,
complex; (b) fV, free ligand; (c) cV,
complex; and (d) cV, free ligand.

the free ligand systems (above) have a similar number of atoms
(∼18 000), yet converge far more rapidly. We conjectured that
slow motions of the protein in the complexes delay conver-
gence by generating long correlation times not present in the
free ligand simulations; we used principal component analy-
sis (PCA) to test for such slow motions. For each complex and

free ligand system, we combined the two replicate trajecto-
ries (runs A and B), computed the covariance matrix for the
combined trajectory, and then projected each individual trajec-
tory onto the combined trajectory’s first principal component
(PC). This is the PC with the largest eigenvalue, which means
that captures the greatest structural variance. Graphs of the

FIG. 4. SEM blocking curves for fQ
and cQ total potential energies. (a) fQ,
complex; (b) fQ, free ligand; (c) cQ,
complex; and (d) cQ, free ligand.
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resulting projections over time, and normalized histograms of
these projections, are shown in Figs. 5 and 6.

The histograms for the complex simulations (the right
column of Fig. 5) show that the two matched runs, A and
B, sampled the leading PC differently. This result points to
large-scale, slow motions as a possible factor in the slow con-
vergence of the mean potential energies of the protein-ligand
complexes. For the free ligands, by contrast, the Run A and
Run B histograms overlap well (the right column of Fig. 6),
indicating that the sampling along their leading PCs is similar
between these two independent simulations. This result is con-
sistent with the relatively facile convergence of the free ligand
potential energies.

To better understand the slow motions of the protein in
these complexes, we examined the structures at several time
points of the simulations and observed that the conformation
of the C-terminal loops and helix changes significantly dur-
ing the simulations. An example is provided in Fig. 7, which
depicts snapshots at 40 µs intervals [Figs. 7(a)–7(e)] during
run A of the fV complex. This corresponds to the leftmost
chart in Fig. 5(a). It is evident that the C-terminus gradually
reconfigures from its initial, crystallographic conformation to a
new conformation, in which the helix has rotated by about 90◦.
Despite this rearrangement of the C-terminal components of
the protein, the rest of the protein, including the binding site
region, maintains a stable structure. This may be seen more

FIG. 5. First PC projection for complex
simulations. (a) fV, complex; (b) cV,
complex; (c) fQ, complex; and (d) cQ,
complex.
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FIG. 6. First PC projection for free lig-
and simulations. (a) fV, ligand; (b) cV,
ligand; (c) fQ, ligand; and (d) cQ, ligand.

clearly in Fig. 7(f), which is an overlay of the structures of
Figs. 7(a)–7(e), rotated so the binding site faces the viewer.

3. Component energies

We also examined the convergence of the mean potential
energies of components of the simulated systems. For each
complex simulation, we computed the mean internal energy
of ligand i (Li), selected residues lining the binding site (B),
and the combination of the ligand and the binding-site residues
(BLi). For each free ligand simulation, we computed the mean
internal energy of just the ligand (L). The uncertainties of these
means, estimated by the same methods applied to the whole
simulations (Table IV), are reported in Table V.

For the free ligand simulations, the uncertainties in the
isolated ligand energies, 〈uLi〉Li , tend to be larger than those
for the total potential energies of the corresponding full sys-
tems (Table IV), which also include the waters, ions, and
buffer molecules. Consistent with these results, the curves
from reblocking analysis (see the supplementary material)
show no plateaus, except for the free cQ ligand, which also
has low SEMs in Table V. Thus, the ligands’ internal energies
converge more slowly than do the energies of the full ligand-
solvent systems, even though the ligands represent only a tiny
part of each full 18 000 atom system. Put differently, the vari-
ance of the ligand alone is greater than that of the full system
energy. This implies that the ligand internal energy anticorre-
lates strongly with other energy components of the full system.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-009899
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FIG. 7. Snapshots of Grb2-SH2 complexed with the fV
ligand, from the Run A simulation. (a) Crystal structure,
(b) 40 µs, (c) 80 µs, (d) 120 µs, (e) 160 µs, and (f) overlay
(binding site).

TABLE V. Mean potential energies 〈u〉 and SEM σ for component structures (kcal/mol). BLi corresponds to the
combination of the selected binding site residues and the bound ligand in complex, while B refers to the binding
site residues alone and Li refers to the ligand alone. SEM values are based on statistical inefficiency for component
energies.

From complex simulations From free ligand simulations

Ligand Run 〈uBLi 〉PLi σ 〈uB〉PLi σ 〈uL,i〉PL,i σ 〈uL,i〉L,i σ

fV A �407.2 5.54 170.9 0.74 �54.7 0.45 �61.7 1.09
B �393.3 4.01 174.1 1.57 �56.5 1.06 �61.4 0.59

cV A �390.4 5.54 186.4 2.94 �93.6 0.60 �93.7 0.11
B �413.6 5.68 179.0 2.78 �92.0 0.50 �94.0 0.16

fQ A �431.3 3.10 173.6 1.33 �92.5 0.65 �95.3 1.31
B �446.4 0.77 168.8 0.87 �95.0 0.28 �93.0 0.53

cQ A �444.7 4.60 178.9 2.68 �123.9 0.74 �125.7 0.05
B �442.5 3.16 171.8 1.92 �125.5 2.93 �125.7 0.05
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Such anticorrelation is physically plausible; for example, if
the ligand’s internal energy falls when the ligand makes an
intramolecular H-bond, the ligand-solvent interaction energy
will rise, due to the resulting loss of a ligand-solvent H-bond.

For the complex simulations, a similar pattern is seen for
the mean energy of the combined binding site and ligand,
〈uBLi〉PLi , and of the binding site alone, 〈uB〉PLi , as these have
larger SEMs in general than those of the full simulated sys-
tems (Table IV). Again, this points to anticorrelation of these
energy components with other energy components present in
the full systems. However, the mean energies of the isolated
ligands (〈uLi〉PLi , 〈uLi〉Li ) appear better converged. It is of inter-
est that the uncertainties of the binding site and ligand together
(〈uBLi〉PLi ) are greater than those of the binding site and ligand
separately (〈uB〉PLi , 〈uLi〉PLi ). The difference likely traces to
large fluctuations in the ligand-binding site interaction ener-
gies, ∆uinter,i, which are not present in the internal energies of
the separate binding site and ligand. Inspection of the trajecto-
ries shows that parts of the ligands sometimes detach from the
binding site, and then reattach. Such motions would indeed
lead to large changes in the ligand-binding site interaction
energies, along with anticorrelated changes in the ligand’s and
binding site’s interactions with the solvent.

IV. DISCUSSION

The present paper describes molecular dynamics simula-
tions of an experimentally characterized system that probes
the effects of ligand preorganization on ligand-protein bind-
ing thermodynamics.11 Subsections IV A–IV C consider the
relationship of the calculations to the experimental data; the
physical picture of binding thermodynamics afforded by the
simulations; and the strengths, weaknesses, and prospects of
this and other computational approaches to computing binding
enthalpies.

A. Calculation versus experiment

According to the simulations, the flexible phosphopep-
tides have more favorable binding enthalpies than their less
flexible, constrained analogs, in contrast to the experimental
data. Although even longer simulations could be useful to fur-
ther reduce numerical uncertainty, the convergence achieved
here is good enough that the discrepancy relative to experi-
ment appears to be robust. Assuming that setup issues, such as
protonation states, have been correctly handled, this result sug-
gests that replicating experimental results will require a more
accurate force field. It is thus of interest that prior simula-
tions of constrained and flexible phosphopeptides drawn from
the same experimental study,11 but using the more detailed
AMOEBA force field,51 successfully replicated the experi-
mental trend that the constrained peptides bind with more
favorable enthalpies than the flexible ones.50 Nonetheless,
the prior AMOEBA results are not more accurate in abso-
lute terms: the absolute deviations of the AMOEBA results
from experiment, 7.8 and 2.1 kcal/mol for cpYVN-fpYVN
and cpYIN-fpYIN, respectively, are essentially the same as
those observed here for cpYVN-fpYVN and cpYQN-fpYQN,
7.9 and 2.4 kcal/mol, respectively. As a consequence, it is not
clear that this comparison with experiment can be interpreted

as supporting the accuracy of simulations with AMOEBA over
the simpler force field used here. Another related set of prior
studies examined analogous constrained vs flexible phospho-
peptides, but focusing on the Src SH2 domain instead of Grb2
SH2, yielded results exactly opposite to ours. Thus, enthalpy
calculations with the CHARMM27 force field,52 and using
simulations shorter than those reported here, suggested that
the flexible peptide had less favorable binding enthalpies,28

whereas the converse was observed experimentally.53

The challenge of getting the relative binding enthalpies
right may stem in part from the fact that these quantities are a
balance of large, opposing contributions from different struc-
tural components, such as the ligand-binding site interactions
and the internal binding site energies, much as previously noted
in the context of host-guest binding.22 Thus, the net, relative
binding enthalpies may be sensitive to small shifts in these
large, opposing energy components. That binding is a small
balance of large components may be understood by recogniz-
ing that binding of a ligand leads to the formation of strong
new ligand-protein interactions, as well as new solvent-solvent
interactions made by displaced water molecules. These neg-
ative energy changes are at least partly balanced by positive
contributions from the loss of favorable ligand-solvent and
protein-solvent interactions. A related observation is that the
variances of the overall energies are smaller than those of the
component energies, even though the latter derive from far
fewer atoms. This means that the energy fluctuations of the var-
ious components are strongly anticorrelated with each other,
a phenomenon which may be understood based on similar
reasoning.

Prior studies have examined the sensitivity of binding
enthalpies to the choice of force field parameters.25,54 Inter-
estingly, enthalpies seem to be more sensitive to force field
details than are binding free energies. For example, binding
free energy calculations for ∼40 cyclodextrin-guest systems,
with 10 different force field and water model choices, yielded
a range of root-mean-square error (RMSE) values, relative to
experiment, of 0.85–1.80 kcal/mol, whereas the correspond-
ing range of RMSE values for the binding enthalpies was
0.92–4.0 kcal/mol.25 We have also observed surprisingly
strong sensitivity of host-guest binding enthalpies to the choice
of water model.24 If it is in general true, as we suspect, that
enthalpies are more sensitive to force field parameters than are
free energies, this would represent a purely in silico case of
entropy-enthalpy compensation.

B. Ligand flexibility, binding enthalpy,
and configurational entropy

According to the simulations, the flexible ligands make
much more energetically favorable interactions with the bind-
ing site than do the constrained ligands, by on the order of 20
kcal/mol. In addition, the binding site residues are predicted
to adopt conformations with a lower mean internal energy in
the presence of the flexible ligands than with the constrained
ones, by 4-10 kcal/mol. The experimental measurements can-
not, of course, provide this level of granular detail. However,
it is plausible on physical grounds that more flexible ligands
should conform better to the binding site, and also allow the
binding site residues to spend more time in their own preferred
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conformations. Thus, one may speculate that these trends in
the component energies are at least qualitatively valid, and
that the deviation of the overall relative enthalpies from exper-
iment stems from an imbalance of these contributions with
the counterbalancing contributions from solvent and the rest
of the protein, as suggested above. Unfortunately, there is no
possibility to compare the component terms with results from
the prior simulation study of these systems50 because it used a
method which did not allow the enthalpy changes to be broken
down by structural component.

Calorimetry studies of the present systems showed that
preorganizing the ligands with a conformational constraint led
to less favorable binding entropies.11 This result was char-
acterized as paradoxical because preorganization is typically
expected to reduce the entropic penalty for immobilizing a
ligand in the binding site.11,49 The authors of the experimen-
tal paper noted that this paradox would be resolved if the
constrained ligands reduced the motions of the binding site
residues more than did the flexible ligands. The prior sim-
ulation study did not examine this hypothesis, but provided
intriguing evidence for another explanation, namely, that the
flexible ligands actually are more conformationally restricted
in solution than the constrained ones, due to the formation of
stabilizing nonbonded interactions that the constrained ligands
do not access.50 The present results are consistent with both
of these suggestions, as we observe a greater loss of config-
urational entropy in the binding site for the constrained than
the flexible ligands, and we also see that the flexible ligands
are less conformationally mobile when free in solution. How-
ever, it is the binding site differences that dominate here, with
configurational entropy differences of about 5-5.5 kcal/mol,
compared with 1.5-3.3 kcal/mol for the ligands. It should be
kept in mind that both the prior and the present studies used
approximate methods to estimate changes in configurational
entropy and that neither study includes contributions from
water nor the bulk of the protein. This is, to our knowledge,
the first computational study to address the influence of lig-
and flexibility on the configurational entropy of the binding
site.

C. Computational methodology

In the present study, we used the direct approach to com-
puting relative binding enthalpies. This involves simply taking
differences between the average energies of free and bound
states of the systems.21,22,28 A number of other approaches
to computing binding enthalpies have been described,55–57 of
which perhaps the most common is to compute binding free
energies at several different temperatures, and then use in effect
the van’t Hoff equation to extract the binding enthalpy at a
temperature of interest. The potential benefit of the van’t Hoff
approach is that, because the binding free energy is largely
determined by the parts of the simulation system that inter-
act at short range with the ligand, it may scale better with
system size than the direct method, which requires converg-
ing the energy of the entire system, with all of its complex
interactions. On the other hand, it is not trivial to obtain
temperature-dependent binding free energies that are numer-
ically precise enough to yield numerically precise binding
enthalpies, and in fact, the direct approach was found to be

considerably more efficient for host-guest binding systems.22

Another advantage of the direct approach is that, unlike the
van’t Hoff approach, it allows an informative decomposition
of the computed binding enthalpy by system components, as
done here, and by energy terms, as done previously.22 It is
also simpler to set up and run a direct enthalpy calculation
than a series of binding free energy calculations at multiple
temperatures.

Although we did not compare the direct and van’t Hoff
approaches for the present systems, it is clear that the direct
calculations were slow to converge by current standards, as
simulations of over 250 µs duration still left us with uncertain-
ties of 2-3 kcal/mol. Interestingly, though, the uncertainties
were only this large for the protein-ligand systems. For the
ligands alone, the convergence was excellent, even though the
number of atoms in the free ligand systems was about the
same as that in the protein-ligand systems. Thus, the problem
was not the size of the protein-ligand systems, but the occur-
rence of slow conformational changes, involving drift of the
C-terminal part of the protein away from its crystallographic
conformation. This drift away from the crystal structure might
reflect a problem with the force field. However, examination of
the crystal structures reveals another possible explanation, the
existence of crystal contacts that involve the C-terminus and
that might have stabilized a crystallographic conformation that
becomes unstable in solution. There may well be other pro-
teins of similar size, or even larger, where such slow motions
away from the crystal structure do not occur, and for which
convergence of the direct method would, as a consequence,
be substantially faster. Continued increases in computational
speed, afforded by coprocessors like GPUs,58 and specialized
computers like Anton 2,59 may well allow calculations like
these to be converged to within 1 kcal/mol uncertainty within
the next few years.

SUPPLEMENTARY MATERIAL

See supplementary material for 1—ionization states of
HEPES buffer in the simulations; 2—list of peptide and
binding-site torsion angles used in the entropy calcula-
tions; 3—graphs showing convergence of entropy estimates
with simulation length; 4—details of ligand configuration
entropies; 5—mean potential energies and uncertainties of Run
A and Run B for each system; 6—blocking analysis graphs for
concatenations of Run A and Run B for each simulation; and
7—mean potential energies and uncertainties of system com-
ponents (e.g., ligand, binding site) for concatenated Runs A
and B.
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