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A workflow for the integrative 
transcriptomic description of 
molecular pathology and the 
suggestion of normalizing 
compounds, exemplified by 
Parkinson’s disease
Mohamed Hamed1, Yvonne Gladbach1, Steffen Möller   1, Sarah Fischer1, Mathias Ernst1, 
Stephan Struckmann1, Alexander Storch2 & Georg Fuellen1

The volume of molecular observations on human diseases in public databases is continuously increasing 
at accelerating rates. A bottleneck is their computational integration into a coherent description, 
from which researchers may derive new well-founded hypotheses. Also, the need to integrate data 
from different technologies (genetics, coding and regulatory RNA, proteomics) emerged in order to 
identify biomarkers for early diagnosis and prognosis of complex diseases and therefore facilitating 
the development of novel treatment approaches. We propose here a workflow for the integrative 
transcriptomic description of the molecular pathology in Parkinsons’s Disease (PD), including 
suggestions of compounds normalizing disease-induced transcriptional changes as a paradigmatic 
example. We integrated gene expression profiles, miRNA signatures, and publicly available regulatory 
databases to specify a partial model of the molecular pathophysiology of PD. Six genetic driver 
elements (2 genes and 4 miRNAs) and several functional network modules that are associated with PD 
were identified. Functional modules were assessed for their statistical significance, cellular functional 
homogeneity, literature evidence, and normalizing small molecules. In summary, our workflow for the 
joint regulatory analysis of coding and non-coding RNA, has the potential to yield clinically as well as 
biologically relevant information, as demonstrated here on PD data.

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects several regions of the brain, 
particularly the substania nigra (SN) dopamine neurons controlling balance and movements1,2. It is considered 
to be the second most frequent neurodegenerative disorder after Alzheimer’s disease with a prevalence of approx-
imately 180 per 100,000 inhabitants leading to ≈1,260,000 affected individuals in the European population3,4. 
Since both the incidence and prevalence of PD is increasing with age as for all neurodegenerative diseases3, the 
frequency of PD is continuously increasing in ageing societies, and thus PD and other neurodegenerative diseases 
become more and more important for their health care systems. The current treatment strategies only include 
symptomatic therapies using dopamine replacement by levodopa or dopamine agonist administration, antiglu-
tamatergic or anticholinergic strategies or deep brain stimulation, but no causative therapeutic approaches have 
been identified. To identify biomarkers for early diagnosis and prognosis and to develop innovative causative 
treatments, detailed knowledge of the genetic causes and major determinants and regulators driving the under-
lying neurodegenerative process is an obligate prerequisite. However, due to the complex and heterogenic nature 
of the disease5–7, many of the cellular pathways and molecular regulators underlying PD pathology have not been 
unraveled so far.
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Among the molecular regulators, transcription factors (TFs) and microRNAs (miRNAs) are key players for 
regulating gene expression8. Together they play crucial roles in regulating cellular processes9, and their malfunc-
tion can cause genetic disorders as well as complex diseases such as PD2,10,11. More specifically, TFs and miRNAs 
frequently form Feed Forward Loops (FFLs) and other network motifs to regulate cellular transcription in a 
connective manner10,12,13. Therefore, utilizing the combined regulatory information on TFs/genes and miRNAs 
as well as their target genes can shed light on key driver genes/TFs and miRNAs in human diseases and, in turn, 
suggest novel therapeutic strategies14.

Recent advances in molecular genetics revealed several factors implicated in the etiology of PD, such as inher-
ited genetic predispositions and environmental factors that lead to acquired alterations15,16. For instance, it was 
demonstrated that SN neurons of PD patients show aberrant gene expression patterns that affect critical signaling 
pathways2,17,18. Moreover, miRNA expression analysis of human SN neurons showed distinct profiles that are 
dysregulated in PD patients2,19,20 and hence suggested critical functional roles of miRNAs in SN neurons as well 
as in PD pathogenesis as proposed in21,22.

Despite these important findings based on separate analyses of gene and miRNA expression, there is a lack 
of studies of the associated miRNA-mRNA interactome as well as of their co-regulation mechanisms, and of 
their collaborative functional roles in the underlying pathogenesis of PD. For instance, Chandrasekaran and 
co-workers 2013 analyzed several microarray gene expression datasets and biomolecular networks to identify 
novel genes and miRNAs of relevance to PD23. Also Dong et al. 2016 predicted ten potential therapeutic tar-
gets by studying the overlap between the differentially expressed genes and the target genes of the differentially 
expressed miRNAs in PD samples24. In the context of neurodegenerative diseases in general, we recently estab-
lished a consensus-based strategy to integrate miRNA and gene expression data in multiple sclerosis to unravel 
the unknown cellular roles of miRNAs in this neuroimmune disease25.

As of today, the community has not yet agreed on best practices for such a joint analysis. A particular difficulty 
lies in the identification of gene-regulatory players and processes, especially since the control units of miRNA 
expression levels and the miRNAs they control were often found on different chromosomes26. This is a distinct 
difference with respect to coding RNA, which more frequently features cis-acting control27. An effective joint 
analysis will hence require the integration of a series of tools with tailored parameters for the interpretation of 
each dataset to reveal the regulatory mechanisms of disease pathogenesis.

To this end, we propose a comprehensive workflow for integrating miRNA expression profiles, gene expression 
profiles, and publicly available regulatory databases, in order to gain a deeper understanding of the co-regulation 
mechanisms and the collaborative functional role of miRNAs and genes in driving disease processes (see Fig. 1). 
The present study applied the workflow to PD as a paradigmatic example and by doing this yielded 19 dysreg-
ulated miRNAs and 116 dysregulated genes that may contribute to the molecular alterations behind PD. Out 
of these dysregulated genes and miRNAs, 24 genes and 3 miRNAs were found to be well known biomarkers 

Figure 1.  A schematic diagram for the integrative transcriptomic workflow. The sketch describes data 
processing and integration of two different transcriptomic datasets to detect major determinants and functional 
modules controlling PD.
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in PD. Furthermore, we constructed a combinatorial gene regulatory network and highlighted six central hub 
nodes (two dysregulated genes and four dysregulated miRNAs) that could act as PD drivers; further experimental 
research is warranted to confirm these findings. Next, we identified recurring network motifs (functional mod-
ules) of dysregulated genes/TFs and miRNAs and co-targeted genes and we validated the cooperative functional 
role of their elements in the regulatory activities during PD pathogenesis in terms of statistical significance and 
biological relevance. Finally, we characterized small compounds and neuroprotective drugs that may normalize 
the regulatory activity of these functional modules.

Results and Discussion
Workflow description.  We developed and applied an integrative bioinformatics workflow to conduct an 
integrative analysis with the aim of identifying the major genetic drivers and co-operative functional network 
modules that describe the molecular pathology of the disease and hence suggest disease-modulating drug com-
pounds (Fig. 1). The workflow starts out with the separate analyses of expression data of mRNAs and miRNAs, 
including tests for differential expression. The differential expression data are then subject to combinatorial net-
work analysis for the identification of hub nodes (i.e. candidate mRNAs/miRNAs that may drive the disease) 
as well as important functional network modules. The descriptive transcriptomics part concludes with a list-
ing of these candidate genes and functional modules in the context of the current insights of the studied dis-
ease. We extended the workflow for an automated selection of drugs from LINCS28 and the Connectivity Map 
(CMap)29 with predicted normalizing effects on the dysregulated functional modules which may drive the dis-
ease. Formerly, we successfully confirmed the usefulness of multiple components of the workflow by applying it to 
a large number of breast cancer samples derived by different expression technologies to unravel the complex reg-
ulatory architecture of breast invasive carcinoma13. Apart from disease pathogenesis but in the context of cellular 
processes, we utilized the workflow in part to explain how imprinted genes contribute to cellular differentiation 
processes and to developmental stages of hematopoiesis30. Here we demonstrate the efficacy of the workflow in 
describing the molecular pathology of Parkinson’s disease, a disease with a limited number of biological samples.

Differential analysis and enrichment analysis.  We processed gene and miRNA expression datasets 
for 10 early-onset PD samples and 9 control samples of healthy tissues from previous PD studies (see Methods). 
These studies adopted separate gene or miRNA expression analyses and provided evidence for correlations of 
genes or miRNAs with signaling pathways relevant to PD pathogenesis2,19. Here we were concerned with the 
integrative analysis of both miRNA and gene expression datasets. PCA analysis of the normalized gene expression 
data clustered the analyzed samples into the corresponding groups (PD/Control) with only one exception per 
group (see Fig. 2). These two samples may be mislabeled. Nevertheless, they had only negligible impact on the 
results, as demonstrated when excluding them.

The differential expression analysis of the gene and miRNA expression data resulted in 116 dysregulated genes 
and 19 dysregulated miRNAs, respectively. Figure 2a shows the heatmaps for the relative expressions values of 
the dysregulated genes between the early-onset PD samples and the control samples. Interestingly, among these 
dysregulated genes and miRNAs, the genes: PARK7, SNCA, VPS35, CHCHD2, UBB, NEFL, SOD1, KCNJ4, RPL14, 
RPL6, NDUFA4, NDUFB4, NDUFB8, NDUFA6, NDUFAB1, NDUFB2, COX7C, COX6C, NDUFS6, UQCR10, 
ATP5A1, UQCRB, DNAJC6, DRD3, and the miRNAs: hsa-mir-433, hsa-mir-205, hsa-mir-29b were found to be 
strongly associated with PD pathways as annotated in DisGeNET31, OMIM32, HMDD33, or KEGG34 databases, 
and the list of genes is congruent with the list of genes described in35. All these genes and miRNAs were markedly 
downregulated in the PD samples except for the DRD3 gene, which was upregulated, see Fig. 2c. The heatmap vis-
ualization of the dysregulated miRNAs and the PCA clustering for the miRNA samples are depicted in Figure S1.

The postulated functional roles of the dysregulated genes and miRNAs were backed up by inspecting the 
associated GO terms and KEGG pathways via overrepresentation analysis (ORA). We identified the most signif-
icant functional categories and processes that were enriched in the dysregulated miRNA and gene sets, demon-
strating relevance to the etiology of PD, see Tables 1 and S1, respectively. Notably, neurological GO terms and 
pathways were among the top over-represented entries. For instance, the dysregulated genes were enriched with 
the functional terms GO:0006119 “oxidative phosphorylation” (p = 1.08E−5), GO:0001963 “synaptic transmission, 
dopaminergic” (p = 0.001), GO:0048699 “Generation of neurons” (p = 0.002), and the signaling pathways of each 
of Parkinson’s disease (p = 2.09E−6), Huntington’s disease (p = 1.62E−8), and Alzheimer disease (p = 4.22E−8). 
Similarly, the dysregulated miRNAs were found to be enriched with cell death function (p = 0.005), neurode-
generative diseases (p = 0.019), and Parkinson’s disease (p = 0.04), indicating  the cellular functional roles of the 
identified dysregulated genes and miRNAs in PD SA neurons.

Construction of TF-miRNA mediated regulatory network.  Next we constructed a GRN network 
(PD-GRN) that combines transcriptional and post-transcriptional regulatory interactions between the dysreg-
ulated genes and miRNAs (see Methods). The GRN network contains three different types of interactions: dys-
regulated gene/TF regulating a dysregulated gene (TF → mRNA), dysregulated miRNA regulating a dysregulated 
gene (miRNA → mRNA), and dysregulated gene/TF regulating a dysregulated miRNA (TF → miRNA), describ-
ing how miRNAs are an essential part of a complex regulation system in PD pathology. In order to characterize 
the central hub nodes that contribute a large amount of the overall regulation, we computed the node degree 
centrality parameters and ranked the nodes according to their degrees. We identified 4 central hub miRNAs 
(hsa-mir-130b, hsa-mir-636, hsa-mir-383, hsa-mir-129-5p) and 2 hub genes (CEBPB, and FEZ1) (Fig. 3). These 
hub nodes correspond to highly central nodes in the PD-GRN and play a critical role in maintaining the interac-
tions between these genes and their neighborhood genes. Hence, they are candidates for master regulatory genes 
or for essential genetic drivers, and potential targets for new drugs and treatment of PD. Remarkably, the gene 
CEBPB was previously identified as a critical central hub node in a protein-protein interaction network related 
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to neuron function activity in PD patients36. CEBPB is also early regulated by CREB37, which is one of the key 
transcription factors mediating adaptive responses of neurons to bioenergetics challenges38. Many studies have 
also reported the aberrant expression patterns of the FEZ1 gene and its role in the regulation of the neuronal 
microenvironment during the progression of PD39,40. Also, expression disruption of the identified key miRNAs 
hsa-mir-130b, and hsa-mir-636 has been connected to pathogenesis in neuropsychiatric and other neurodegen-
erative disorders41–44.

Subsequently, an enrichment analysis on all nodes of the PD-GRN network using DAVID was performed. 
We discovered a total of 64 enriched GO terms (adjusted p-value < 0.05) that are mostly neurology-related (see 
Table S2). Guided by the PD GO annotation project (a comprehensive resource providing GO annotation to 
PD-relevant human gene products)45, we found five important PD-related GO terms that are closely  related to 
PD, in our enrichment list (Fig. 4). We further inspected the association of miRNAs in the PD-GRN to these five 
GO terms in order to associate specific miRNAs to possible dysregulated pathways in PD. Therefore, for each 
of the five PD-related functional terms, we created a subnetwork module using the genes associated with these 
enriched terms as well as their neighboring nodes (Fig. 4). For example, the cell death subnetwork is created from 
the genes belonging to the enriched GO terms “cell death” and “regulation of cell death”, and their direct miRNA 
neighbors. There are eight miRNAs in this subnetwork and they regulate both the genes belonging to the enriched 
GO terms as well as other neighboring nodes. This functional subnetwork therefore provides us with dysregulated 
pathways concerning cell death in PD. From Fig. 4, we observe that SOD1, CEBPB, and SCNA are annotated with 
four out of the five GO terms, suggesting that these genes are apparently implicated in various dysregulated path-
ways in PD. These findings are also supported by recent studies showing the potential roles of SCNA46,47, SOD148, 
and CEBPB2,36 in the neuronal loss in the PD brain and in PD development. Additionally, the miRNAs mir-130, 
mir-636, and mir-744 are involved in subnetworks created from enriched GO terms corresponding to abnormal 
adult neurogenesis, apoptosis, and cell death. This hints at the role of these miRNAs in PD pathogenesis by mod-
ulating cell death as well as inhibiting the creation of new functional neuron cells.

Figure 2.  Differential analysis of gene expression and sample clustering. (a) The heatmap of the expression 
patterns of the 116 identified dysregulated genes between the PD and the control cohorts. Blue spots represent 
down-regulation whereas red-yellow spots denote up-regulation patterns. The dendrograms on the upper and 
left sides show the hierarchical clustering tree of genes or samples. (b) The PCA clustering for the normalized 
gene expression samples. The two highlighted PD and control samples are incorrectly clustered to the 
corresponding cohort, however they had almost no impact on the analysis results when we excluded them. (c) 
The Log fold change (LFC) of the 24 dysregulated genes and the 3 dysregulated miRNAs, which are known to 
be highly associated with PD progression and pathways. Each colour refers to a different gene or miRNA. The 
heatmap and PCA clustering for miRNA samples are shown in Figure S1.
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Identification of TF-miRNA co-regulatory motifs and statistical validation.  Transcriptional gene 
regulatory networks often contain functional recurring patterns known as network co-regulatory motifs49 that 
control multiple features of normal cell function and that may trigger genetic disorders50,51. Here, our workflow 
checks for the presence of 3-node motifs involving the dysregulated genes and the dysregulated miRNAs in the 
PD-GRN network (see Methods). We also considered the motif types that were previously described in52. We 
unveiled a total of 11 cascaded-miRNA-mediated motifs comprising distinct combinations of a TF, a miRNA, a 
target gene, and co-regulated genes (Table S3). The statistical significance of the motifs was tested by comparing 
their counts in the network under investigation to their counts in randomized variants of these networks pre-
serving the same node degrees (p-value = 0.03). Interestingly, the 11 motifs included mainly the TF CEBPB (see 
above) as a main regulator and varied between the two miRNAs hsa-mir-130b and hsa-mir-636 as well as various 
target genes (Table S3). Therefore, we reduced the 11 motifs to two major motifs (Motif A and Motif B) as shown 
in Fig. 5.

Specifically, motif A, which involves the TF CEBPB, the miRNA hsa-mir-130 and various target genes, is 
an example of how co-regulatory network motifs may help to better understand the pathogenicity of PD. 
Intriguingly, the CEBPB gene is involved in PD-related regulatory interactions via binding to the proximal pro-
moter of the ATXN gene (which is the spinocerebellar Ataxia protein associated with the phenotypic variability 
of neurodegenerative diseases53) and thereby up-regulating its expression in neuroblastoma cells54. The ATXN 
transcript did not show dysregulation. However, Lee and colleagues 2008 demonstrated that hsa-mir-130 regulates 
ATXN protein levels in human cells and its inhibition enhances the cytotoxicity caused by the ATXN protein55,56. 
This sheds light on the potential collaborative role between the hub gene CEBPB and the hub miRNA hsa-mir-130 
and their co-regulated genes/miRNAs in regulating ATXN. This strongly confirms our findings and implies that 
the identified motifs represent functional network modules that might be therapeutic targets for PD.

Category Term Count adj p.value miRNAs

Function Epithelial-mesenchymal transition 4 0.0399 hsa-let-7b,hsa-mir-370,hsa-mir-382,hsa-mir-205

Function Cell death 6 0.0059 hsa-let-7b,hsa-mir-130b,hsa-mir-129-5p,hsa-mir-205,hsa-mir-885-5p,hsa-mir-212

Disease Heart Failure 9 0.0027 hsa-let-7b,hsa-mir-520d-5p,hsa-mir-129-5p,hsa-mir-139-3p,hsa-mir-382,hsa-mir-
205,hsa-mir-130b,hsa-mir-212,hsa-mir-29b

Disease Leukemia Myeloid Acute 5 0.0064 hsa-let-7b,hsa-mir-323-3p,hsa-mir-382,hsa-mir-29b,hsa-mir-370

Disease Neurodegenerative Diseases 2 0.0199 hsa-let-7b,hsa-mir-139-3p

Disease Parkinson’s Disease 2 0.0481 hsa-mir-433,hsa-mir-29b

Disease Stomach Neoplasms 5 0.0297 hsa-mir-129-5p,hsa-mir-139-3p,hsa-mir-212,hsa-mir-433,hsa-mir-130b

TissueSpecific Adrenal 2 0.0145 hsa-mir-370,hsa-mir-485-5p

TissueSpecific Brain 4 0.0007 hsa-mir-323-3p,hsa-mir-383,hsa-mir-433,hsa-mir-129-5p

Table 1.  Enrichment of functional terms, diseases, and tissue specificity within the dysregulated miRNAs.

Figure 3.  The PD gene regulatory network (PD-GRN) constructed from the dysregulated genes and miRNAs. 
Large nodes represent key driver genes and miRNAs. Square orange nodes denote the miRNAs, whereas the 
circular grey nodes represent genes. The network was visualized using the Cytoscape tool.
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Semantic assessment: functional homogeneity within the motif nodes.  Next, the biological evi-
dence for the two co-regulatory motifs A and B is evaluated in more depth to better assess their cooperative 
functional roles during the etiology of early-onset PD. We measured the functional homogeneity within each 
motif by calculating the functional similarity scores between all gene pairs and comparing the resulting distri-
bution to the similarity score distribution of randomly selected gene pairs from the network (p-values < 1.6E-4, 
Kolmogorov-Smirnov test), see Fig. 5. Intriguingly, the motif genes have significantly more cellular functional 
homogeneity than randomly selected ones. Therefore, these motifs could highlight new insights into TF-miRNA 
network modules in PD development, by demonstrating the cooperative functional role between the TFs/genes 
and their potential miRNA partners, yielding a better understanding of the dysregulation mechanisms involving 
PD pathways.

Finally, we merged the two main motifs A and B to obtain a consolidated functional network module with 
their co-regulated genes that are enriched in the PD-GRN, see Figure S2.

Figure 4.  Enrichment analysis of the PD-GRN genes and visualization of five network modules corresponding 
to PD-related GO terms. Five GO terms are often affected in PD cases. The total list of the enriched GO terms is 
found in Table S2. The central scatter plot shows the visualization of the top enriched generic GO terms of the 
PD-GRN in a two dimensional space based on the GO semantic similarities. GO term node colours indicate 
the p-values for the enrichment of the GO terms. These generic GO terms represent implicitly their subterms, 
which are not visualized in the plot. The scatter plot was generated using the web tool REVIGO79. All five 
network modules include both miRNAs and genes. The main TF CEBPB is highlighted by a cyan triangle while 
the miRNAs are represented by orange squares. The genes co-targeted by TFs and/or miRNAs are depicted in 
larger pink circles. The regulated genes, regulated by a TF or by a miRNA, are coloured in grey. The network 
modules were visualized using the Cytoscape tool.
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Identification of normalizing small molecules and drugs.  Our workflow concludes by proposing 
small molecule interventions that possibly normalize the expression signatures of the merged functional mod-
ule (Figure S2) using the library of integrated network-based cellular signatures (LINCS) L1000 data set28,57, 
by identifying (based on the complete extrapolated set of genes, not the landmark genes only) small molecules 
causing transcriptional changes inversely correlating with our expression signatures. We used an optimized 
PD signature (the merged functional network module) instead of using all differentially expressed genes or 
a whole genome expression profile as a signature for the LINCS query with the aim of obtaining superior 
performance for compound prioritization and assessing the biological relevance of the identified functional 
modules. Interestingly, LINCS identified known neuroprotective agents (e.g., Staurosporine and Brivanib) and 
signaling pathway inhibitors (e.g., GDC-0068 and Torin-2), which work on the central nervous system to pre-
vent neuron degradation58 and to delay progression of PD59 and Alzheimer60 in animal models, see Table S4. 
This supports the hypothesis that the identified functional network modules are relevant for PD, and may open 
up new avenues for therapy.

Subsequent to the LINCS methodology, observed changes in gene expression were compared against the drug 
effects described by the CMap29 to identify the drugs that may reverse the whole genome expression profile of 
PD cases. For each of the 3203 gene expression profiles in the CMap, we generated Rank-rank hypergeometric 
overlap (RRHO) maps61, showing the extent and pattern of its global similarity to our inverted PD gene expres-
sion profile, see Figure S3. We were interested especially in CMap profiles that feature upregulation of genes that 
are downregulated in the PD profile (i.e. at the top of the list in the inverted PD profile). In a RRHO map such 
behavior would materialize as a region of high intensity (reflecting low overlap p-values; red color) in the lower 
left corner of the map, with lower intensities elsewhere. Thus, we computed for each of the 3203 RRHO maps the 
degree of similarity (distance) to an artificially constructed reference map showing that intensity distribution and 
ranked the list of RRHO maps accordingly. Figure S3 depicts a panel of 16 maps from the top of that list, i.e. drugs 
from the CMap whose upregulated genes show considerable overlap with genes downregulated in PD. Among 
those are hesperetin and valproic acid which were found to have neuroprotective effects by attenuating behavioral 
abnormality in hemiparkinsonian rats62, and by reversing the alpha-synuclein alterations in a rotenone rat model 
of PD63, respectively.

Figure 5.  The reduced visualization of the detected motifs in the PD-GRN network. Motifs A and B and 
associated functional homogeneity plots depicting the cumulative distribution of GO functional semantic 
scores of gene pairs of co-regulated genes in the examined motif (red) versus randomly selected genes (black). 
The p-value was calculated using the Kolmogorov-Smirnov test. The network motifs were visualized using the 
Cytoscape tool.
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Comparison to similar workflows/approaches.  Several approaches have been implemented to facili-
tate the integrative analysis of gene and miRNA expression profiles. For instance, the MMIA web tool integrates 
miRNA and mRNA expression data using straightforward inverse correlation between the mis-regulated genes 
and miRNAs as well as gene set enrichment analysis to characterize diseases and pathways related to miRNAs64. 
The MAGIA65 pipeline provides a higher diversity by allowing the combination of miRNA-target gene predic-
tions for either matched or un-matched miRNA–gene expression profiles using different relatedness measures 
to end up with a regulatory network for associated phenotypes. Also miRTrail66 performs ORA and Gene Set 
Enrichment analyses of interactions of genes and miRNAs based on expression profiles. However, it explores 
only miRNA → gene interactions. DisTMGneT67 was developed for obtaining a cancer-specific network based 
on expression profiles of dysregulated genes and miRNAs. However, it is limited to a predefined set of miRNAs 
and genes as well as cancer. Compared to the aforementioned approaches, our workflow has distinctive features 
of downstream analysis such as identification of driver genes/miRNAs, detecting effective functional network 
modules, small molecule predictions, and a variety of validation methods. Table S5 summarizes the comparison 
between our approach and the aforementioned approaches/tools.

Conclusions
We propose a workflow for the joint analysis of coding and non-coding RNA taken from the same samples. It 
has the potential to yield clinically as well as biologically relevant information, as demonstrated here on PD data, 
with a very limited number of samples and previously on breast cancer data with a large number of samples. 
Furthermore, it offers descriptions of distinct molecular processes that are associated with the disease, provides 
consistent enrichments of Gene Ontology terms and of disease pathways, and identifies cooperative functional 
modules. For each functional module a network of interacting coding and non-coding transcripts is offered. The 
resulting data are also subjected to a comparison with drug effect databases to give researchers the opportunity to 
identify hypotheses for curative effectors. We consider that this workflow nicely links clinical studies (from which 
the expression data may be derived) back to preclinical research. The presented workflow represents an effective 
model for the integrative analysis of multiple molecular datasets from different experimental assays. Further 
work to increase the modularity of this workflow is warranted to ease the exchange of tools for the generation of 
networks and to foster reusability.

Methods
Material collections and experimental procedures.  Genetic material collection, DNA preparation, 
and microarray experimental procedures for gene and miRNA expression in midbrain dopamine neurons were 
previously described in the two reference publications for the data we utilized2,19. These authors obtained frozen 
tissue blocks from the Harvard Brain Tissue Resource Center, containing SN from 9 control subjects and 10 idio-
pathic PD samples, which were cut using a Microm HM 560 CryoStar cryostat (8 μm), mounted on LEICA Frame 
Slides with a PET-membrane (1.4 μm), dehydrated, subjected for RNA extraction, followed by hybridization to 
the HU-133A arrays (Affymetrix, Santa Clara, CA). From these 19 samples, 8 control and 8 PD samples were also 
used for miRNA profiling using the Human MicroRNA TaqMan qRT-PCR Arrays A v1 or 2.0 (Life Technologies, 
Foster City, CA, USA).

Pre-processing and differential analysis.  The raw expression datasets were normalized using quantile 
normalization and log2 transformed. The differential expression analysis was performed as previously described68 
using three methods: (1) ANOVA test69, (2) moderated t-test70, (3) area under the curve of the receiver operator 
characteristics (AUC ROC)70. P-values were adjusted using the Benjamini-Hochberg71 procedure to limit the 
false discovery rate to 5%. Genes/miRNAs that were classified as differentially expressed by at least two of the 
three methods were included in the list of differentially expressed genes/miRNAs. Raw and preprocessed data are 
provided as a supplementary file.

Construction of the PD-GRN network and the co-regulatory motifs.  The regulatory inter-
actions between the differentially expressed (DE) genes and the DE miRNAs, which were identified in this 
work, were collected from the TFmiR regulatory databases13. We considered all interactions that are sup-
ported by experimental and/or by predicted evidence in this analysis. Driver genes/miRNAs (hub nodes) 
were identified by determining the highly central nodes in the constructed PD-GRN network. For this, we 
calculated the degree centrality measure for the PD-GRN network using the R package igraph72 and we 
selected the top 10% (of all genes and miRNAs) only to foster the consistency in their association to GO 
biological processes73. Functional network modules (three-node TF-miRNA co-regulatory network motifs 
consisting of a miRNA, a TF, and a joint target gene) were characterized using the computational procedure 
described in the TFmiR web server publication13. Cytoscape V3.374 was used to visualize the PD-GRN net-
work and the identified network motifs.

Assessment of driver genes and functional network modules.  The following 4-step procedures were 
used to assess and validate our results:

Significance of the identified network motifs (Statistical validation).  To assess the significance of each motif type, 
we used the same procedure that we previously developed in13. Briefly, we compared the motif occurrences in 
the real network to their occurrences in randomized ensembles of these networks with preserved node degrees 
(number of permutations = 100). Only motifs having p-value < 0.05 were considered for further analysis.
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Functional homogeneity within the motif genes (Semantic validation).  We used the GoSemSim R package75 to 
estimate semantic similarity scores according to the Gene Ontology (GO) annotations. Statistical significance 
was performed by comparing the similarity scores of the motif genes to the similarity scores of randomly selected 
genes (with the same number of the motif genes). The permutation procedure was repeated 100 times. Then, the 
Kolmogorov-Smirnov test was adopted to check whether the similarity scores of motif gene pairs were statistically 
higher than the scores of randomly selected pairs.

Over-representation analysis for genes and miRNAs.  Over-representation analysis (ORA) of the miRNA sets was 
performed using TAM web service76 which identifies the functional classes and disease terms that are enriched in 
a miRNA set. For the gene sets, the DAVID77 tool was utilized to identify the GO terms which are annotated to at 
least two genes and are statistically overrepresented in the DE genes as previously shown in reference78. For both 
genes and miRNA enrichment analysis, Fisher’s Exact test was performed followed by the Benjamini–Hochberg71 
adjustment for controlling the false discovery rate (FDR), with a cutoff value of 0.05.

Identifying inhibiting small molecules and drugs. 

	(a)	 For each functional module expression profile
We downloaded the complete version of the library of integrated network-based cellular signatures 
(LINCS) L1000 data set28,57 on level 3 from the GEO repository (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE70138) and computed the log2 fold change (LFC) of all L1000 genes. The PD-related LFC 
of the genes involved in the functional network modules was subtracted from the same genes in the pro-
cessed LINCS data and then summed across all genes in the module to end up with a representative score 
for each drug. Low-scoring drugs feature a maximum desired expression change on the entire gene set of 
the functional network module. The drug scores are sorted ascendingly and the first ten drugs were consid-
ered to provide biologists/clinicians with a limited but potentially worthwhile set of drug predictions.

	(b)	 For the whole genome PD expression profile
The genes in the PD gene expression profile were ranked based on the LFC, from the most downregulated 
gene to the most upregulated one (inverted profile). We also ranked the genes in each of the 3203 drug 
gene expression profiles from the ConnectivityMap (CMap)29 based on the log2 fold change from the most 
upregulated gene to the most downregulated one. For every pair of a PD profile and a CMap profile we 
computed a rank-rank hypergeometric overlap (RRHO) map61. A desirable match between the PD profile 
and a given CMap profile would result in a RRHO map with a characteristic intensity distribution. We 
constructed an artificial map depicting such an intensity distribution as a positive reference and compared 
the list of RRHO maps with it. All maps were normalized, serialized into a vector and column-wise assem-
bled into a matrix. We performed Principal Component Analysis (PCA) using the rows of that matrix as 
features and determined the number of principal components (PCs) needed to account for 90% of the total 
variance. Using those PCs, we calculated a weighted Euclidean distance for each map to the reference map, 
with the weight reflecting the amount of explained variance for each PC. Finally, we ranked the RRHO 
maps by their distance to the reference map.

Workflow reusability.  This integrative workflow can be classified into two main software modules:

	 1.	 the differential analysis, concerning the identification of the differentially expressed genes/miRNAs. This 
module was developed as an R script and can be downloaded from the Bitbucket repository (https://
hamed20@bitbucket.org/hamed20/differential-analysis.git). The outputs are tab-delimited files of differen-
tially expressed genes/miRNAs, which can be used as input to the next module.

	 2.	 the combinatorial analysis, including the other workflow components. This analysis is accessible using our 
public webservice TFmiR: http://service.bioinformatik.uni-saarland.de/tfmir. The user guides are included 
in the corresponding software modules.

Availability Data and Materials.  Raw and pre-processed data are available as supplementary.
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