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Interpretable dimensionality reduction of single cell
transcriptome data with deep generative models
Jiarui Ding 1,2,3,4, Anne Condon 1 & Sohrab P. Shah 1,2,3,5

Single-cell RNA-sequencing has great potential to discover cell types, identify cell states,

trace development lineages, and reconstruct the spatial organization of cells. However,

dimension reduction to interpret structure in single-cell sequencing data remains a challenge.

Existing algorithms are either not able to uncover the clustering structures in the data or lose

global information such as groups of clusters that are close to each other. We present a

robust statistical model, scvis, to capture and visualize the low-dimensional structures in

single-cell gene expression data. Simulation results demonstrate that low-dimensional

representations learned by scvis preserve both the local and global neighbor structures in the

data. In addition, scvis is robust to the number of data points and learns a probabilistic

parametric mapping function to add new data points to an existing embedding. We then use

scvis to analyze four single-cell RNA-sequencing datasets, exemplifying interpretable two-

dimensional representations of the high-dimensional single-cell RNA-sequencing data.
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Categorizing cell types comprising a specific organ or dis-
ease tissue is critical for comprehensive study of tissue
development and function1. For example, in cancer,

identifying constituent cell types in the tumor microenvironment
together with malignant cell populations will improve under-
standing of cancer initialization, progression, and treatment
response2, 3. Technical developments have made it possible to
measure the DNA and/or RNA molecules in single cells by single-
cell sequencing4–15 or protein content by flow or mass
cytometry16, 17. The data generated by these technologies enable
us to quantify cell types, identify cell states, trace development
lineages, and reconstruct the spatial organization of cells18, 19. An
unsolved challenge is to develop robust computational methods
to analyze large-scale single-cell data measuring the expression of
dozens of protein markers to all the mRNA expression in tens of
thousands to millions of cells in order to distill single-cell biol-
ogy20–23.

Single-cell datasets are typically high dimensional in large
numbers of measured cells. For example, single-cell RNA-
sequencing (scRNA-seq)19, 24–26 can theoretically measure the
expression of all the genes in tens of thousands of cells in a single
experiment9, 10, 14, 15. For analysis, dimensionality reduction
projecting high-dimensional data into low-dimensional space
(typically two or three dimensions) to visualize the cluster
structures27–29 and development trajectories30–33 is commonly
used. Linear projection methods such as principal component
analysis (PCA) typically cannot represent the complex structures
of single-cell data in low dimensional spaces. Nonlinear dimen-
sion reduction, such as the t-distributed stochastic neighbor
embedding algorithm (t-SNE)34–39, has shown reasonable results
for many applications and has been widely used in single-cell data
processing1, 40, 41. However, t-SNE has several limitations42. First,
unlike PCA, it is a non-parametric method that does not learn a
parametric mapping. Therefore, it is not natural to add new data
to an existing t-SNE embedding. Instead, we typically need to
combine all the data together and rerun t-SNE. Second, as a non-
parametric method, the algorithm is sensitive to hyperparameter
settings. Third, t-SNE is not scalable to large datasets because it
has a time complexity of O(N2D) and space complexity of O(N2),
where N is the number of cells and D is the number of expressed
genes in the case of scRNA-seq data. Fourth, t-SNE only outputs
the low-dimensional coordinates but without any uncertainties of
the embedding. Finally, t-SNE typically preserves the local clus-
tering structures very well given proper hyperparameters, but
more global structures such as a group of subclusters that form a
big cluster are missed in the low-dimensional embedding.

In this paper, we introduce a robust latent variable model,
scvis, to capture underlying low-dimensional structures in
scRNA-seq data. As a probabilistic generative model, our method
learns a parametric mapping from the high-dimensional space to
a low-dimensional embedding. Therefore, new data points can be
directly added to an existing embedding by the mapping function.
Moreover, scvis estimates the uncertainty of mapping a high-
dimensional point to a low-dimensional space that adds rich
capacity to interpret results. We show that scvis has superior
distance preserving properties in its low-dimensional projections
leading to robust identification of cell types in the presence of
noise or ambiguous measurements. We extensively tested our
method on simulated data and several scRNA-seq datasets in
both normal and malignant tissues to demonstrate the robustness
of our method.

Results
Modeling and visualizing scRNA-seq data. Although scRNA-
seq datasets have high dimensionality, their intrinsic

dimensionalities are typically much lower. For example, factors
such as cell type and patient origin explain much of the variation
in a study of metastatic melanoma3. We therefore assume that for
a high-dimensional scRNA-seq dataset D ¼ xnf gNn¼1 with N cells,
where xn is the expression vector of cell n, the xn distribution is
governed by a latent low-dimensional random vector zn (Fig. 1a).
For visualization purposes, the dimensionality d of zn is typically
two or three. We assume that zn is distributed according to a
prior, with the joint distribution of the whole model as p(zn | θ)p
(xn | zn, θ). For simplicity, we can choose a factorized standard
normal distribution for the prior p(zn | θ)=

Qd
i¼1 N zn;ij0; I

� �
.

The distribution pðxnjθÞ=
R
pðznjθÞpðxnjzn; θÞdzn can be a

complex multimodal high-dimensional distribution. To represent
complex high-dimensional distributions, we assume that p(xn | zn,
θ) is a location-scale family distribution with location parameter
μθ(zn) and scale parameter σθ(zn); both are functions of zn
parameterized by a neural network with parameter θ. The
inference problem is to compute the posterior distribution p(zn |
xn, θ), which is however intractable to compute. We therefore use
a variational distribution q(zn | xn, ϕ) to approximate the pos-
terior (Fig. 1b). Here q(zn | xn, ϕ) is a multivariate normal dis-
tribution with mean μϕ(xn) and standard deviation σϕ(xn). Both
parameters are (continuous) functions of xn parameterized by a
neural network with parameter ϕ. To model the data distribution
well (with a high likelihood of

R
pðznjθÞpðxnjzn; θÞdzn), the model

tends to assign similar posterior distributions p(zn | xn, θ) to cells
with similar expression profiles. To explicitly encourage cells with
similar expression profiles to be proximal (and those with dis-
similar profiles to be distal) in the latent space, we add the t-SNE
objective function on the latent z distribution as a constraint.
More details about the model and the inference algorithms are
presented in the Methods section. The scvis model is imple-
mented in Python using Tensorflow43 with a command-line
interface and is freely available from https://bitbucket.org/jerry00/
scvis-dev.

Single-cell datasets. We analyzed four scRNA-seq datasets in this
study1, 3, 9, 44. Data were mostly downloaded from the single-cell
portal45. Two of these datasets were originally used to study
intratumor heterogeneity and the tumor microenvironment in
metastatic melanoma3 and oligodendroglioma44, respectively.
One dataset was used to categorize the mouse bipolar cell
populations of the retina1, and one dataset was used to categorize
all cell types in the mouse retina9. For all the scRNA-seq datasets,
we used PCA (as a noise-reduction preprocessing step1, 19) to
project the cells into a 100-dimensional space and used the
projected coordinates in the 100-dimensional spaces as inputs to
scvis. We also used two mass cytometry (CyTOF) datasets con-
sisting of bone marrow mononuclear cells from two healthy adult
donors H1 and H217. For CyTOF data, since their dimensionality
(32) is relatively low, we directly used these data as inputs to scvis.

Experimental setting and implementation. The variational
approximation neural network has three hidden layers (l1, l2, and
l3) with 128, 64, and 32 hidden units each, and the model neural
network has five hidden layers l′1; l

′
2; l

′
3; l

′
4; and l

′
5

� �
with 32, 32, 32,

64, and 128 units each. We use the exponential linear unit acti-
vation function as it has been shown to speed up the convergence
of optimization46 and the Adam stochastic optimization algo-
rithm with a learning rate of 0.0147. Details about the influence of
these hyperparameters on results are presented in the Methods
section. The time complexity to compute the t-SNE loss is
quadratic in terms of the number of data points. Consequently,
we use mini-batch optimization and set the mini-batch size to 512
(cells). We expect that a large batch of data could be better in
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estimating the high-dimensional data manifold, however we
found that 512 cells work accurately and efficiently in practice.
We run the Adam stochastic gradient descent algorithm for 500
epochs for each dataset with at least 3000 iterations by default.
For large datasets, running 500 epochs is computationally
expensive, we therefore run the Adam algorithm for a maximum
of 30,000 iteration or two epochs (which ever is larger). We use
an L2 regularizer of 0.001 on the weights of the neural networks
to prevent overfitting.

Benchmarking scvis against t-SNE on simulated data. To
demonstrate that scvis can robustly learn a low-dimensional
representation of the input data, we first simulated data in a two-
dimensional space (for easy visualization) as in Fig. 2a. The big
cluster on the left consisted of 1000 points and the five small
clusters on the right each had 200 points. The five small clusters
were very close to each other and could roughly be considered as
a single big cluster. There were 200 uniformly distributed
outliers around these six clusters. For each two-dimensional
data point with coordinates (x, y), we then mapped it into a
nine-dimensional space by the transformation (x+y, x−y, xy, x2,

y2, x2y, xy2, x3, y3). Each of the nine features was then divided by
its corresponding maximum absolute value.

Although t-SNE (with default parameter setting, we used the
efficient Barnes-Hut t-SNE34 R wrapper package48) uncovered
the six clusters in this dataset, it was still challenging to infer the
overall layout of the six clusters (Fig. 2b). t-SNE by design
preserves local structure of the high-dimensional data, but the
“global” structure is not reliable. Moreover, for the uniformly
distributed outliers, t-SNE put them into several compact clusters,
which were adjacent to other genuine clusters.

The scvis results, on the other hand, better preserved the
overall structure of the original data (Fig. 2c): (1) The five small
clusters were on one side, and the big cluster was on the other
side. The relative positions of the clusters were also preserved. (2)
Outliers were scattered around the genuine clusters as in the
original data. In addition, as a probabilistic generative model,
scvis not only learned a low-dimensional representation of the
input data but also provided a way to quantify the uncertainty of
the low-dimensional mapping of each input data point by its log-
likelihood. We colored the low-dimensional embedding of each
data point by its log-likelihood (Fig. 2d). We can see that
generally scvis put most of its modeling power to model the five
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Fig. 1 Overview of the scvis method. a scvis model assumptions: given a low-dimensional point drawn from a simple distribution, e.g., a two-dimensional
standard normal distribution, a high-dimensional gene expression vector of a cell can be generated by drawing a sample from the distribution p(x | z, θ).
The heatmap represents a cell–gene expression matrix, where each row is a cell and each column is a gene. Color encodes the expression levels of genes in
cells. The data-point-specific parameters θ are determined by a model neural network. The model neural network (a feedforward neural network) consists
of an input layer, several hidden layers, and an output layer. The output layer outputs the parameters θ of p(x | z, θ). b scvis inference: given a high-
dimensional gene expression vector of a cell (a row of the heatmap), scvis obtains its low-dimensional representation by sampling from the conditional
distribution q(z | x, ϕ). The data-point-specific parameters ϕ are determined by a variational inference neural network. The inference neural network is also
a feedforward neural network and its output layer outputs the parameters ϕ of q(z | x, ϕ). Again, the heatmap represents a cell–gene expression matrix.
The scatter plot shows samples drawn from the variational posterior distributions q(z | x, ϕ)
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compact clusters, while the outliers far from the five compact
clusters tended to have lower log-likelihoods. Thus, by combining
the log-likelihoods and the low-dimensional density information
(Fig. 2e), we can better interpret the structure in the original data
and uncertainty over the projection.

The low-dimensional representation may change for different
runs because the scvis objective function can have different local
maxima. To test the stability of the low-dimensional representa-
tions, we ran scvis ten times. Generally, the two-dimensional
representations from the ten runs (Supplementary Fig. 1a–j)
showed similar patterns as in Fig. 2c. As a comparison, we also
ran t-SNE ten times, and the results (Supplementary Fig. 1k–t)
showed that the layouts of the clusters were less preserved, e.g.,
the relative positions of the clusters changed from run to run. To
quantitatively compare scvis and t-SNE results, we computed the
average K-nearest neighbor (Knn) preservations across runs for
K∈ {10, 30, 50, 100, 150}. Specifically, for the low-dimensional
representation from each run, we constructed Knn graphs for
different Ks. We then computed the Knn graph from the high-
dimensional data for a specific K. Finally, we compared the
average overlap of the Knn graphs from the low-dimensional
representations with the Knn graph from the high-dimensional
data for a specific K. For scvis, the median Knn preservations
monotonically increased from 86.7% for K= 10, to 90.9% for K
= 150 (Fig. 2f). For t-SNE, the median Knn preservations first
decreased from 82.7% for K= 10 to 82.1% for K= 50 (consistent
with t-SNE preserving local structures) and then increased to
84.0% for K= 150. Thus scvis preserved Knn more effectively
than t-SNE.

To test how scvis performs on smaller datasets, we subsampled
the nine-dimensional synthetic dataset. Specifically, we sub-
sampled 100, 200, 300, 500, 700, 1000, 1500, and 2000 points
from the original dataset and ran scvis 11 times on each
subsampled dataset. We then computed the Knn preservations
(K= 10) and found that the Knn preservations from the scvis
results were significantly higher than those from t-SNE results
(false discovery rate (FDR) <0.01 for all the subsampled datasets,
one-sided Welch’s t-test, Fig. 2g). scvis performs very well on all
the subsampled datasets (Supplementary Fig. 2a–h). Even with
just 100 data points, the two-dimensional representation
(Supplementary Fig. 2a) preserved much of the structure in the
data. The log-likelihoods estimated from the subsampled data
also recapitulated the log-likelihoods from the original 2200 data
points (Supplementary Fig. 3a–h). The t-SNE results on the
subsampled datasets (Supplementary Fig. 2i–p) generally revealed
the clustering structures. However, the relative positions of the
five clusters and the big cluster were largely inaccurate.

To test the performance of scvis when adding new data to an
existing embedding, we increased by tenfold the number of points
in each cluster and the number of outliers (for a total of 22,000
points) using a different random seed. The embedding (Fig. 3a, b)
was very similar to that of the 2200 training data points in Fig. 2c,
d. We trained Knn classifiers on the embedding of the 2200
training data for K∈ {5, 9, 17, 33, 65} and used the trained
classifiers to classify the embedding of the 22,000 points,
repeating 11 times. Median accuracy (the proportion of points
correctly assigned to their corresponding clusters) was 98.1% for
K= 5 and 94.8% for K= 65. The performance decreased mainly
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because, for a larger K, the outliers were wrongly assigned to the
six genuine clusters.

We then benchmarked scvis against Gaussian process latent
variate model49 (GPLVM, implemented in the GPy50 package),
parametric t-SNE51 (pt-SNE), and PCA on embedding the 22,000
out-of-sample data points. We used the 11 scvis models trained
on the small nine-dimensional synthetic dataset with 2200 data
points to embed the larger nine-dimensional synthetic data with
22,000 data points. Similarly, we trained 11 GPLVM models and
pt-SNE models on the small nine-dimensional synthetic dataset
and applied these models to the bigger synthetic dataset. To
compare the abilities of the trained models to embed unseen data,
we trained Knn classifiers on the two-dimensional representations
(of the small 2200 data points) outputted from different
algorithms. These Knn classifiers were used to classify the two-
dimensional coordinates of the 22,000 data points outputted from
different algorithms. scvis was significantly better than GPLVM
and pt-SNE for different Ks (Fig. 3c, two runs of GPLVM
produced bad results and were not plotted in the figure, FDR <
0.05, one-sided Mann–Whitney U-test). For PCA, because the
model is unique for a given dataset, we generated unique two-
dimensional coordinates for the 22,000 out-of-sample data points.
The Knn classifiers trained on the PCA coordinates were worse

than those from scvis, GPLVM, and pt-SNE in terms of the mean
classification accuracies for different Ks.

As a non-parametric dimension reduction method, t-SNE was
sensitive to hyperparameter setting, especially the perplexity
parameter (the effective number of neighbors, see the Methods
section for details). The optimal perplexity parameter increased as
the total number of data points increased. In contrast, as we
adopted mini-batch for training scvis by subsampling, e.g., 512
cells each time, scvis was less sensitive to the perplexity parameter
as we increase the total number of training data points because
the number of cell is fixed at 512 at each training step. Therefore,
scvis performed well on approximately an order of magnitude
larger dataset (Fig. 3d, e), without changing the perplexity
parameter for scvis. For this larger dataset, the t-SNE results
(Fig. 3f) were difficult to interpret without the ground-truth
cluster information, because it was already
difficult to see how many clusters in this dataset, not to mention
to uncover the overall structure of the data. Although by
increasing the perplexity parameter, the performance of t-SNE
became better (Supplementary Fig. 4), the outliers still formed
distinct clusters, and it remains difficult to set this parameter in
practice.
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Learning a parametric mapping for a single-cell dataset. We
next analyzed the scvis learned probabilistic mapping from a
training single-cell dataset and tested how it performed on unseen
data. We first trained a model on the mouse bipolar cell of the
retina dataset1 and then used the learned model to map the
independently generated mouse retina dataset9. The two-
dimensional coordinates from the bipolar dataset captured
much information in this dataset (Fig. 4a). For example, non-
bipolar cells such as amacrine cells, Mueller glia, and photo-
receptors were at the bottom, the rod bipolar cells were in the
middle, and the cone bipolar cells were on the top left around the
rod bipolar cells. Moreover, the “OFF” cone bipolar cells (BC1A,
BC1B, BC2, BC3A, BC3B, BC4) were on the left and close to each
other, and the “ON” cone bipolar cells (BC5A-D, BC6, BC7, BC8/
9) were at the top. Cell doublets and contaminants (accounting
for 2.43% of the cells comprised eight clusters1, with distinct color
and symbol combinations in Fig. 4a but not labeled) were rare in
the bipolar datasets, and they were mapped to low-density regions
in the low-dimensional plots (Fig. 4a).

Consistent with the synthetic data (Fig. 2), t-SNE put the
“outlier” cell doublets and contaminants into very distinct
compact clusters (Supplementary Fig. 5a, t-SNE coordinates

from Shekhar et al.1). In addition, although t-SNE mapped cells
from different cell populations into distinct regions, more global
organizations of clusters of cells were missed in the t-SNE
embedding. The “ON” cone bipolar cell clusters, the “OFF” cone
bipolar cell clusters, and other non-bipolar cell clusters were
mixed together in the t-SNE results.

The bipolar cells tended to have higher log-likelihoods than
non-bipolar cells such as amacrine cells, Mueller glia, and
photoreceptors (Fig. 4b), suggesting that the model used most of
its power to model the bipolar cells, while other cell types were
not modeled as well. The embedded figure at the top right corner
shows the histogram of the log-likelihoods. The majority of the
points exhibited high log-likelihoods (with a median of 292.4).
The bipolar cells had significantly higher log-likelihoods (median
log-likelihood of 298.4) relative to non-bipolar cells (including
amacrine cells, Mueller glia, rod and cone photoreceptors)
(median log-likelihood of 223.6; one-sided Mann–Whitney U-
test FDR < 0.001; Supplementary Fig. 5b). The amacrine cells had
the lowest median log-likelihood (median log-likelihood for
amacrine cells, Mueller glia, rod and cone photoreceptors were
226.4, 187.3, 222.7, and 205.4, respectively; Supplementary
Fig. 5b).
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Fig. 4 Learning a probabilistic mapping function from the bipolar data and applying the function to the independently generated mouse retina dataset. a
scvis learned two-dimensional representations of the bipolar dataset, b coloring each point by the estimated log-likelihood, c the whole mouse retina
dataset was directly projected to a two-dimensional space by the probabilistic mapping function learned from the bipolar data, and d coloring each point
from the retina dataset by the estimated log-likelihood
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We benchmarked scvis against GPLVM, pt-SNE, and PCA on
embedding out-of-sample scRNA-seq data, performing a five-fold
cross-validation analysis on the bipolar dataset. Specifically, we
partitioned the bipolar dataset into five roughly equal size
subsamples and held out one subsample as out-of-sample
evaluation data, using the remaining four subsamples as training
data to learn different models. We then trained Knn classifiers on
the two-dimensional representations of the training data and then
used the Knn classifiers to classify the two-dimensional
representations of the out-of-sample evaluation data. The process
was repeated five times with each of the five subsamples used
exactly once as the out-of-sample validation data. scvis was
significantly better than pt-SNE, GPLVM, and PCA on embed-
ding the out-of-samples (Supplementary Fig. 6a, b, FDR < 0.05,
one-sided Welch’s t-test).

We used the learned probabilistic mapping from the bipolar
cells to map the independent whole-retina dataset9. We first
projected the retina dataset to the subspace spanned by the first
100 principal direction vectors of the bipolar dataset and then
mapped each 100-dimensional vector to a two-dimensional space
based on the learned scvis model from the bipolar dataset. The
bipolar cell clusters in the retina dataset identified in the original
study9 (clusters 26–33) tended to be mapped to the correspond-
ing bipolar cell subtype regions discovered in the study1 (Fig. 4c).
Although Macosko et al.9 only identified eight subtypes of bipolar
cells, all the recently identified 14 subtypes of bipolar cells1 were
possibly present in the retina dataset as can be seen from Fig. 4c,
i.e., cluster 27 (BC3B and BC4), cluster 28 (BC2 and BC3A),
cluster 29 (BC1A and BC1B), cluster 30 (BC5A and BC5D),
cluster 31 (BC5B and BC5C), and cluster 33 (BC6 and BC8/9).

Interestingly, there was a cluster just above the rod photo-
receptors (Fig. 4c) consisting of different subtypes of bipolar cells.
In the bipolar dataset, cell doublets or contaminants were mapped
to this region (Fig. 4a). We used densitycut52 to cluster the two-
dimensional mapping of all the bipolar cells from the retina
dataset to detect this mixture of bipolar cell cluster (Supplemen-
tary Fig. 5c, where the 1535 high-density points in this cluster
were labeled with red circles). To test whether this mixture cell
population was an artifact of the projection, we randomly drew
the same number of data points from each bipolar subtype as in
the mixture cluster and computed the Knns of each data point
(here K was set to log2(1535)= 11). We found that the 11 nearest
neighbors of the points from the mixture clusters were also
mostly from the mixture cluster (median of 11 and mean of 10.8),
while for the randomly selected points from the bipolar cells, a
relatively small number of points of their 11 nearest neighbors
(median of 0 and mean of 0.2) were from the mixture cluster. The
results suggest that the bipolar cells in the mixture cluster were
substantially different from other bipolar cells. Finally, this
mixture of bipolar cells had significantly lower log-likelihoods
compared with other bipolar cells (one-sided Mann–Whitney U-
test p-value <0.001, Supplementary Fig. 5d).

Non-bipolar cells, especially Mueller glia cells, were mapped to
the corresponding regions as in the bipolar dataset (Fig. 4c).
Photoreceptors (rod and cone photoreceptors accounting for 65.6
and 4.2% of all the cells from the retina9) were also mapped to
their corresponding regions as in the bipolar dataset (Supple-
mentary Fig. 5e). The amacrine cells (consisting of 21 clusters)
together with horizontal cells and retinal ganglion cells were
mapped to the bottom right region (Supplementary Fig. 5f); all
the amacrine cells were assigned the same label and the same
color.

As in the training bipolar data, the bipolar cells in the retina
dataset also tended to have high log-likelihoods, and other cells
tended to have relatively lower log-likelihoods (Fig. 4d). The
embedded plot on the top right corner shows a bimodal

distribution of the log-likelihoods. The “Other” cells types
(horizontal cells, retina ganglion cells, microglia cells, etc) that
were only in the retina dataset had the lowest log-likelihoods
(median log-likelihoods of 181.7, Supplementary Fig. 5d).

It is straightforward to project scRNA-seq to a higher than
two-dimensional space. To evaluate how scvis performs on
higher-dimensional maps, we projected the bipolar data to a
three-dimensional space. We obtained better average log-
likelihood per data point, i.e., 255.1 versus 253.3 (from the last
100 iterations) by projecting the data to a three-dimensional
space compared to projecting the data to a two-dimensional space
(Supplementary Fig. 7). In addition, the average KL divergence
was smaller (2.7 versus 4.1 from the last 100 iterations) by
projecting the data to a three-dimensional space.

Finally, to demonstrate that scvis can be used for other types of
single-cell data, we learned a parametric mapping from the
CyTOF data H2 and then directly used the mapping to project the
CyTOF data H1 to a two-dimensional space. As can be seen from
Supplementary Fig. 8a, all the 14 cell types were separated
(although CD16+ and CD16− NK cells have some overlaps), and
CD4 T cells and CD8 T cells clusters are adjacent to each other.
Moreover, the high quality of the mapping carried over to the
CyTOF data H1 (72,463 cells, Supplementary Fig. 8a, b).

Tumor microenvironments and intratumor heterogeneity. We
next used scvis to analyze tumor microenvironments and intra-
tumor heterogeneity. The oligodendroglioma dataset consists of
mostly malignant cells (Supplementary Fig. 9a). We used densi-
tycut52 to cluster the two-dimensional coordinates to produce 15
clusters (Supplementary Fig. 9b). The non-malignant cells
(microglia/macrophage and oligodendrocytes) formed two small
clusters on the left and each consisted of cells from different
patients. We therefore computed the entropy of each cluster
based on the cells of origin (enclosed bar plot). As expected, the
non-malignant clusters (cluster one and cluster five) had high
entropies. Cluster 12 (cells mostly from MGH53 and MGH54)
and cluster 14 (cells from MGH93 and MGH94) also had high
entropies (Fig. 5a). The cells in these two clusters consisted of
mostly astrocytes (Fig. 5b; the oligodendroglioma cells could
roughly be classified as oligodendrocyte, astrocyte, or stem-like
cells.) Interestingly, cluster 15 had the highest entropy, and these
cells had significant higher stem-like scores (one-sided Welch’s t-
test p-value <10−12). We also colored cells by the cell-cycle scores
(G1/S scores, Supplementary Fig. 9c; G2/M scores, Supplemen-
tary Fig. 9d) and found that these cells also had significantly
higher G1/S scores (one-sided Welch’s t-test p-value <10−12) and
G2/M scores (one-sided Welch’s t-test p-value <10−9). Therefore,
cluster 15 cells consisted of mostly stem-like cells, and these cells
were cycling.

Malignant cells formed distinct clusters even if they were from
the same patient (Fig. 5a). We next colored each malignant cell by
its lineage score44 (Fig. 5b). The cells in some clusters highly
expressed the astrocyte gene markers or the oligodendrocyte gene
markers. The stem-like cells tended to be rare and they could link
“outliers” connecting oligodendrocyte and astrocyte cells in the
two-dimensional scatter plots (Fig. 5b). In addition, some clusters
of cells consisted of mixtures of cells (e.g., both oligodendrocyte
and stem-like cells), suggesting that other factors such as genetic
mutations and epigenetic measurements would be required to
fully interpret the clustering structures in the dataset.

For the melanoma dataset, the authors profiled both malignant
cells and non-malignant cells3. The malignant cells originated
from different patients were mapped to the bottom left region
(Fig. 5c). These malignant cells were further subdivided by the
patients of origin (Fig. 5d). Similar to the oligodendroglioma
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dataset, non-malignant immune cells such as T cells, B cells, and
macrophages, even from different patients, tended to be grouped
together by cell types instead of patients of origin of the cells
(Fig. 5c, d), although for some patients (e.g., 75, 58, and 67,
Fig. 5d), their immune cells showed patient-specific bias. We did
a differential expression analysis of patient 75 T cells and other
patient T cells using limma53. Most of the top 100 differently
expressed genes were ribosome genes (Supplementary Fig. 10a),
suggesting that batch effects could be detectable between patient
75 T cells and other patient T cells.

Interestingly, as non-malignant cells, cancer-associated fibro-
blasts (CAFs) were mapped to the region adjacent to the
malignant cells. The endothelial cells were just above the CAFs
(Fig. 5d). To test whether these cells were truly more similar with
the malignant cells than with immune cells, we first computed the
average principal component values in each type of cells and did a
hierarchical clustering analysis (Supplementary Fig. 10b). Gen-
erally, there were two clusters: one cluster consisted of the
immune cells and the “Unsolved normal” cells, while the other
cluster consisted of CAFs, endothelial cells, malignant cells, and
the “Unsolved” cells, indicating CAFs and endothelial cells were
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more similar to malignant cells (they had high PC1 values) than
to the immune cells.

Discussion
We have developed a novel method, scvis, for modeling and
reducing dimensionality of single-cell gene expression data. We
demonstrated that scvis can robustly preserve the structures in
high-dimensional datasets, including in datasets with small
numbers of data points.

Our contribution has several important implications
for the field. As a probabilistic generative model, scvis provides
not only the low-dimensional coordinate for a given
data point but also the log-likelihood as a measure of the quality
of the embedding. The log-likelihoods could potentially be used
for outlier detection, e.g., for the bipolar cells in Fig. 4b,
the log-likelihood histogram shows a long tail of data points with
relatively low log-likelihoods, suggesting some outliers in this
dataset (the non-bipolar cells). The log-likelihoods could
also be useful in mapping new data. For example, although
horizontal cells and retinal ganglion cells were mapped
to the region adjacent to/overlap the region occupied by amacrine
cells, these cells exhibited low log-likelihoods, suggesting that
further analyses were required to elucidate these cell types/
subtypes.

scvis preserves the “global” structure in a dataset, greatly
enhancing interpretation of projected structures in scRNA-seq
data. For example, in the bipolar dataset, the “ON” bipolar cells
were close to each other in the two-dimensional representation in
Fig. 4a, and similarly, the “OFF” bipolar cells were close to each
other. For the oligodendroglioma dataset, the cells can be first
divided into normal cells and malignant cells. The normal cells
formed two clusters, with each cluster of cells consisting of cells
from multiple patients. The malignant cells, although from the
same patient, formed multiple clusters with cell clusters from the
same patient adjacent to each other. Adjacent malignant cell
clusters from different patients tended to selectively express the
oligodendrocyte marker genes or the astrocyte marker genes. For
the metastatic melanoma dataset, malignant cells from different
patients, although mapped to the same region, formed clusters
based on the patient origin of the cells, while immune cells from
different patients tended to be clustered together by cell types.
From the low-dimensional representations, we can hypothesize
that the CAFs were more “similar” to the malignant cells than to
the immune cells.

Other methods, e.g., the SIMLR algorithm, improve the t-SNE
algorithm54 by learning a similarity matrix between cells, and the
similarity matrix is used as the input of t-SNE for dimension
reduction. However, SIMLR is computationally expensive because
its objective function involves large matrix multiplications (an
N ×N kernel matrix multiplying an N ×N similarity matrix,
where N is the number of cells). In addition, although the learned
similarity matrix could help clustering analyses, it may distort the
manifold structure as demonstrated in the t-SNE plots on the
learned similarity matrix54 because the SIMLR objective function
encourages forming clusters. The DeepCyTOF55 framework has a
component that uses a denoising autoencoder (trained on the
cells with few or without zeros events) to filter CyTOF data to
minimize the influence of dropout noises in single-cell data. The
purpose of DeepCyTOF is quite different from that of scvis to
model and visualize the low-dimensional structures in high-
dimensional single-cell data. The most similar approach for scvis
may be the parametric t-SNE algorithm51, which uses a neural
network to learn a parametric mapping from the high-
dimensional space to a low dimension. However, parametric t-
SNE is not a probabilistic model, the learned low-dimensional

embedding is difficult to interpret, and there are no likelihoods to
quantify the uncertainty of each mapping.

In conclusion, the scvis algorithm provides a computational
framework to compute low-dimensional embeddings of scRNA-
seq data while preserving global structure of the high-dimensional
measurements. We expect scvis to model and visualize structures
in scRNA-seq data while providing new means to biologically
interpretable results. As technical advances to profile the tran-
scriptomes of large numbers of single cells further mature, we
envisage that scvis will be of great value for routine analysis of
large-scale, high-resolution mapping of cell populations.

Methods
A latent variable model of single-cell data. We assume that the gene expression
vector xn of cell n is a random vector and is governed by a low-dimensional latent
vector zn. The graphical model representation of this latent variable model (with N
cells) is shown in Fig. 6a. The xn distribution could be a complex high-dimensional
distribution. We assume that it follows a Student’s t-distribution given zn:

pðxnjzn; θÞ ¼ T ðxnjμθðznÞ; σθðznÞ; νÞ ð1Þ

where both μθ(·) and σθ(·) are functions of z given by a neural network with
parameter θ and ν is the degree of freedom parameter and learned from data. The
marginal distribution pðxnjθÞ=

R
pðxnjzn; θÞpðznjθÞdzn can model a complex high-

dimensional distribution.
We are interested in the posterior distribution of the low-dimensional latent

variable given data: p(zn | xn, θ), which is intractable to compute. To approximate
the posterior, we use the variational distribution q(zn | xn, ϕ)=N μϕðxnÞ

�
, diag

(σϕ(xn))) (Fig. 6b). Both μϕ(·) and σϕ(·) are functions of x through a neural network
with parameter ϕ. Although the number of latent variables grows with the number
of cells, these latent variables are governed by a neural network with a fixed set of
parameters ϕ. Therefore, even for datasets with large number of cells, we still can
efficiently infer the posterior distributions of latent variables. The model coupled
with the variational inference is called the variational autoencoder56, 57.

Now the problem is to find the variational parameter ϕ such that the
approximation q(zn | xn, ϕ) is as close as possible to the true posterior distribution p
(zn | xn, θ). The quality of the approximation is measured by the Kullback–Leibler (

a
��

Zn Xn

b

� Zn Xn N

N

Fig. 6 The scvis directed probabilistic graphical model and the variational
approximation of its posterior. Circles represent random variables. Squares
represent deterministic parameters. Shaded nodes are observed, and
unshaded nodes are hidden. Here we use the plate notation, i.e., nodes
inside each box will get repeated when the node is unpacked (the number
of repeats is on the bottom right corner of each box). Each node and its
parents constitute a family. Given the parents, a random variable is
independent of the ancestors. Therefore, the joint distribution of all the
random variables is the product of the family conditional distributions. a
The generative model to generate data xn, and b the variational
approximation q(zn | xn, ϕ) to the posterior p(zn | xn, θ)
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KL) divergence58

KL qðznjxn;ϕÞjjpðznjxn; θÞð Þ
¼
R
qðznjxn;ϕÞlog

qðzn jxn ;ϕÞ
pðzn jxn ;θÞ

dzn

¼
R
qðznjxn;ϕÞlog

qðzn jxn ;ϕÞpðxn jθÞ
pðzn ;xn jθÞ

dzn

¼ Eqðzn jxn ;ϕÞ logqðznjxn;ϕÞ½ �
�Eqðzn jxn ;ϕÞ logpðzn; xnjθÞ½ � þ logpðxnjθÞ

ð2Þ

¼ KL½qðznjxn;ϕÞjjpðznjθÞ�
�Eqðzn jxn ;ϕÞ logpðxnjzn; θÞ½ � þ logpðxnjθÞ

ð3Þ

The term Eqðzn jxn ;φÞ logpðzn; xnjθÞ½ �− Eqðzjxn ;φÞ logqðznjxn;ϕÞ½ � in Eq. (2) is the
evidence lower bound (ELBO) because it is a lower bound of logp(xn | θ) as the KL
divergence on the left hand side is non-negative. We therefore can do maximum-
likelihood estimation of both θ and ϕ by maximizing the ELBO. Notice that in the
Bayesian setting, the ELBO is a lower bound of the evidence log p(xn) as the
parameters θ are also latent random variables.

Both the prior p(zn | θ) and the variational distribution q(zn | xn, ϕ) in the ELBO
of the form in Eq. (3) are distributions of zn. In our case, we can compute the KL
term analytically because the prior is a multivariate normal distribution, and the
variational distribution is also a multivariate normal distribution given xn.
However, typically there is no closed-form expression for the integration Eqðzn jxn ;ϕÞ
[log p(xn | zn, θ)] because we should integrate out zn and the parameters of the
model μθ(zn) and diag(σθ(zn)) are functions of zn. Instead, we can use Monte Carlo
integration and obtain the estimated evidence lower bound for the nth cell:

ELBOn ¼ �KL qðznjxn;ϕÞjjpðznjθÞð Þ þ 1
L

XL
l¼1

logpðxnjzn;l; θÞ ð4Þ

where zn,l is sampled from q(zn | xn, ϕ) and L is the number of samples. We want to
take the partial derivatives of the ELBO w.r.t. the variational parameter ϕ and the
generative model parameter θ to find a local maximum of the ELBO. However, if we
directly sample points from q(zn | xn, ϕ), it is impossible to use the chain rule to take
the partial derivative of the second term of Eq. (4) w.r.t ϕ because zn,l is a number.
To use gradient-based methods for optimization, we indirectly sample data from q
(zn | xn, ϕ) using the “reparameterization trick”56, 57. Specifically, we first sample εl
from a easy to sample distribution ϵl � pðϵjαÞ, e.g., a standard multivariate
Gaussian distribution for our case. Next we pass ϵl through a continuous function
gϕ (ϵ, xn) to get a sample from q(zn | xn, ϕ). For our case, if q(zn | xn, ϕ)=
N μφðxnÞ
�

, diag (σϕ (xn))), then gϕðϵ; xnÞ ¼ μϕðxnÞ þ diag σϕ xnð Þ
� �

´ ϵ.

Adding regularizers on the latent variables. Given i.i.d data D ¼ xnf gNn¼1, by
maximizing the

P
n ELBON

n¼1, we can do maximum-likelihood estimation of the
model parameters θ and the variational distribution parameters ϕ. Although p(zn |
θ)p(xn | zn, θ) may model the data distribution very well, the variational dis-
tribution q(zn | xn, ϕ) is not necessarily good for visualization purposes. Specifically,
it is possible that there are no very clear gaps among the points from different
clusters. In fact, to model the data distribution well, the low-dimensional z space
tends to be filled such that all the z space is used in modeling the data distribution.
To better visualize the manifold structure of a dataset, we need to add regularizers
to the objective function in Eq. (4) to encourage forming gaps between clusters and
at the same time keeping nearby points in the high-dimensional space nearby in
the low-dimensional space. Here we use the non-symmetrized t-SNE34–39 objective
function.

The t-SNE algorithm preserves the local structure in the high-dimensional
space after dimension reduction. To measure the “localness” of a pairwise distance,
for a data point i in the high-dimensional space, the pairwise distance between i
and another data point j is transformed to a conditional distribution by centering
an isotropic univariate Gaussian distribution at i

pjji ¼
exp �xi � x2j =2σ

2
i

� �
P
k≠i

exp �xi � x2k=2σ
2
i

� � ð5Þ

The point-specific standard deviation σi is a parameter that is computed

automatically in such a way that the perplexity (2
�
P

j
pjji log2pjji ) of the conditional

distribution pj|i equals a user defined hyperparameter (e.g., typically 3048). We set
pi|i= 0 because only pairwise similarities are of interest.

In the low-dimensional space, the conditional distribution qj|i is defined
similarly and qi|i is set to 0. The only difference is that an unscaled univariate
Student’s t-distribution is used instead of an isotropic univariate Gaussian
distribution as in the high-dimensional space. Because in the high-dimensional
space more points can be close to each other than in the low-dimensional space
(e.g., only two points can be mutually equidistant in a line, three points in a two-
dimensional plane, and four points in a three-dimensional space), it is impossible
to faithfully preserve the high-dimensional pairwise distance information in the
low-dimensional space if the intrinsic dimensionality of the data is bigger than that

of the low-dimensional space. A heavy tailed Student’s t-distribution allows
moderate distances in the high-dimensional space to be modeled by much larger
distances in the low-dimensional space to prevent crushing different clusters
together in the low-dimensional space34.

The low-dimensional embedding coordinates zif gNi¼1 are obtained by
minimizing the KL divergence between the sum of conditional distributions:

P
i
KL p�jijjq�ji
� �

¼
PN
i¼1

PN
j¼1;j≠i

pjji log
pjji
qjji

¼
PN
i¼1

PN
j¼1;j≠i

pjji logpjji �
PN
i¼1

PN
j¼1;j≠i

pjji logqjji

/ �
PN
i¼1

PN
j¼1;j≠i

pjji log
1þ zi�zjk k2

=ν
� ��νþ1

2P
k;k≠i

1þ zi�zkk k2=νð Þ�
νþ1
2

/ �
PN
i¼1

PN
j¼1;j≠i

pjji log 1þ zi � zj

��� ���2=ν� ��νþ1
2

þ
PN
i¼1

PN
j¼1;j≠i

pjji log
P
k;k≠i

1þ zi � zkk k2=ν
� ��νþ1

2

/ �
PN
i¼1

PN
j¼1;j≠i

pjji log 1þ zi � zj

��� ���2=ν� ��νþ1
2

ð6Þ

þ
XN
i¼1

log
X
k;k≠i

1þ zi � z2k=ν
� ��νþ1

2 ð7Þ

Here ν is the degree of freedom of the Student’s t-distribution, which is typically set
to one (the standard Cauchy distribution) or learned from data. Equation (6) is a
data-dependent term (depending on the high-dimensional data) that keeps nearby
data points in the high-dimensional data nearby in the low-dimensional space37.
Equation (7) is a data-independent term that pushes data points in the low-
dimensional space apart from each other. Notice that the t-SNE objection
function34 minimizes the KL divergence of the joint distribution defined as the
symmetrized condition distributions pi,j= (pi|j+ pj|i)/(2 ×N) and qi,j= (qi|j+ qj|i)/
(2 ×N). t-SNE has shown excellent results on many visualization tasks such as
visualizing scRNA-seq data and CyTOF data40.

The final objective function is a weighted combination of the ELBO of the latent
variable model and the above asymmetric t-SNE objective function:

argmin
θ;ϕ

�
XN
n¼1

ELBOn þ α
XN
n¼1

KL p�jnjjq�jn
� � !

ð8Þ

The parameter α is set to the dimensionality of the input high-dimensional data
because the magnitude of the log-likelihood term in the ELBO scales with the
dimensionality of the input data. The perplexity parameter is set to ten for scvis.

Sensitivity of scvis on cell numbers. To test the performance of scvis on scRNA-
seq datasets with small numbers of cells, we ran scvis on subsampled data from the
bipolar dataset. The bipolar dataset consists of six batches of datasets. We only used
the cells from batch six (6221 cells in total after removing cell doublets and con-
taminants) to remove batch effects. Specifically, we subsampled 1, 2, 3, 5, 10, 20, 30,
and 50% of the bipolar dataset from batch six (62, 124, 187, 311, 622, 1244, 1866,
and 3110 cells, respectively). Then we computed the principal components from
the subsampled data, and ran scvis using the top 100 PCs (for the cases with M <
100 cells, we used the top M PCs). For each subsampled dataset, we ran scvis ten
times with different seeds. We used exactly the same parameter setting for all the
datasets. Therefore, except for the models trained on the cases with <100 cells, all
other models have the same number of parameters.

When the number of training data is small (e.g., 62 cells, 124 cells, or 187 cells),
only the large clusters such as cluster one and cluster two are distinct from the rest
(Supplementary Figs. 11 and 12). As we increased the number of subsampled data
points, some small clusters of cells can be recovered. At 622 cells, many cell clusters
can be recovered. The Knn classification accuracies in Supplementary Fig. 13
(trained on the two-dimensional representations of the subsampled data and tested
on the two-dimensional representations of the remaining cells from batch six)
shows relatively high mean accuracies of 84.4, 84.5, 84.1, and 81.2% for K equals to
5, 9, 17, and 33. When we subsampled 622 cells as in Supplementary Fig. 11e, the
cells in cluster 22 were not present in the 622 cells. However, when we used the
model trained on these 622 cells to embed the remaining 5599 cells (6221–622),
cluster 22 cells were mapped to the “correct” region that was adjacent to cluster 20
cells and bridged cluster 20 and other clusters as in Supplementary Fig. 11d, f–h.
Interestingly, with smaller numbers of cells (cell numbers ≤622), Knn classifiers
trained on the two-dimensional scvis coordinates were better than those trained
using the 100 principal components (one-sample t-test FDR < 0.05; Supplementary
Fig. 12, the red color triangles represent the Knn accuracy by using the original 100
PCs).
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It seems that there is no noticeable overfitting even with small numbers of cells
as can be seen from the two-dimensional plots from Supplementary Figs. 11 and 12
and the Knn classification accuracies in Supplementary Fig. 13. To decrease the
possibility of overfitting, we used Student’s t-distributions instead of Gaussian
distributions for the model neural networks. In addition, we used relatively small
neural networks (a three-layer inference network with 128, 64, and 32 units and a
five-layer model network with 32, 32, 32, 64, and 128 units), which may decrease
the chances of overfitting.

Sensitivity of scvis on hyperparameters. scvis has several hyperparameters such
as the number of layers in the variational inference and the model neural networks,
the layer sizes (the number of units in each layer), and the α parameters in Eq. (8).
We established that scvis is typically robust to these hyperparameters. We first
tested the influence of the number of layers using batch six of the bipolar dataset.
We learned scvis models with different layers from the 3110 subsampled data
points from the batch six bipolar dataset. Specifically, we tested these variational
influence neural networks and the model neural
network layer combinations (the first number is the number of layers in the var-
iational influence neural network, and the second number is the number
of layers in the model neural network): (10, 1), (10, 3), (10, 5), (10, 7), (10, 10), (7,
10), (5, 10), (3, 10), and (1, 10). These models performed reasonably well such that
the cells from the same cluster are close to each other in the two-dimensional
spaces (Supplementary Fig. 14). When the number of layers in the variational
inference neural network was fixed to ten, for some types of cells, their two-
dimensional embeddings were close to each other and formed curve-like
structures as can be seen from Supplementary Fig. 14e. The reason for this phe-
nomenon could be that the variational influence network underestimated the
variances of the latent z posterior distributions or the optimization was
not converged. On the contrary, when the influence networks have smaller
number of layers (<10), we did not see these curve structures (Supplementary
Fig. 14f–i). The out-of-sample mapping results in Supplementary Fig. 15 show
similar results.

We computed the Knn classification accuracies of the out-of-samples. As
before, the Knn classifiers were trained on the two-dimensional coordinates of the
training subsampled data, and the classifiers were used to classify the two-
dimensional coordinates of the out-of-sample data. The parameter setting did
influence scvis performance, i.e., for each K∈ {5,9,17,33,65,129,257}, the trained
scvis models did significantly different (Supplementary Fig. 16, FDR < 0.05, one-
way analysis of variance (ANOVA) test). To find out which parameter
combinations led to inferior or superior performance, we then compared the
classification accuracies of each model with the most complex model with both ten
layers of variational influence neural networks and ten layers of model networks.
The FDR (two-sided Welch’s t-test) at the top of each subfigure of Supplementary
Fig. 16 shows that, except for K= 257, all the models with one layer of variational
influence neural networks did significantly worse than those from the most
complex model (FDR < 0.05, two-sided Welch’s t-test). Similarly, the models with
three layers of variational influence neural networks did significantly worse than
those from the most complex model when K ∈ {5, 9, 17, 33, 65}. While for other
models, their performances were not statistically different from those of the most
complex models.

We next examined the influence of the layer sizes of the neural networks. The
number of layers was fixed at ten for both the variational influence neural networks
and the model neural networks; the number of units in each layer was set to 8, 16,
32, 64, and 128. All layers of the inference and the model neural networks had the
same size. All models successfully embedded both the training data and the out-of-
sample test data (Supplementary Fig. 17). However, the layer size parameter did
influence scvis performance, i.e., the Knn classifiers on the out-of-sample data did
significantly different (Supplementary Fig. 18, FDR < 0.05, one-way ANOVA test).
The FDR (two-sided Mann–Whitney U-test) at the top of each subfigure of
Supplementary Fig. 18 shows that all models with layer size of eight did
significantly worse than those from the most complex model using 128 units (FDR
< 0.05). Similarly, the models with layer size of 16 did significantly worse than those
from the most complex model when K∈ {5, 9, 17, 33, 65, 129} (FDR < 0.05). While
for other models, their performances were not statistically different from those
from the most complex models. Notice that, at layer size of 64, the mapping
functions from one run were worse than others in embedding the out-of-sample
data. However, there was no significant difference in the log-likelihoods from the
repeated ten runs (Supplementary Fig. 19, one-way ANOVA p-value= 0.741).

For the α weight parameter in Eq. (8), we set α relative to the dimensionality of
the input data. We set α= 0, 0.5, 1.0, 1.5, 2.0, 10.0, inf times of the dimensionality
of the input data. When α= inf, the trained models did significantly worse than the
models trained with the default α equals to the dimensionality of the input data for
K∈ {5, 9, 17, 33, 65} (FDR ≤ 0.05, two-sided Welch’s t-test, Supplementary Figs. 20,
21 and 22). Also, when α= 0, the trained models were significantly worse than the
models trained with the default α equaling to the dimensionality of the input data
for all Ks (FDR ≤ 0.05, two-sided Welch’s t-test, Supplementary Fig. 22). For α= 0,
we performed an extra comparison by using the synthetic nine-dimensional data,
showing that when K was large (≥65), setting α= 9 (the dimensionality of the input
data) did significantly better than letting α= 0 (Supplementary Fig. 23, FDR ≤ 0.05,
one-sided Welch’s t-test).

Computational complexity analysis. The scvis objective function involves the
asymmetrical t-SNE objective function. The most time-consuming part is to
compute the pairwise distances between two cells in a mini-batch that takes O
(TN2D+ TN2d) time, where N is the mini-batch size (we use N= 512 in this
study), D is the dimensionality of the input data, d is the dimensionality of the low-
dimensional latent variables (e.g., d= 2 for most cases), and T is the number of
iterations. For our case, we first use PCA to project the scRNA-seq data to a 100-
dimensional space, so D= 100. For a feedforward neural network with L hidden
layers, and the number of neurons in layer l is nl, the time complexity to train the
neural network is O NT

PL
i¼0 nlþ1 � nl

� �
, where n0=D and nL+1 is the size of the

output layer. For the model neural network, we use a five hidden layer (with layer
size 32, 32, 32, 64, and 128) feedforward neural network. The input layer size is d
and the output layer size is D. For the variational inference network, we use a three
hidden layer (with layer size 128, 64, and 32) feedforward neural network. The size
of the input layer is D and the size of the output layer is d. For space complexity, we
need to save the weights and bias of each neuron O

PL
i¼0 nlþ1 � nl

� �
. We also need

to save the O(N2) pairwise distances and the data of size O(ND) in a mini-batch.
The original t-SNE algorithm is not scalable to large datasets (with tens of

thousands of cells to millions of cells) because it needs to compute the pairwise
distances between any two cells (taking O(M2D+M2T) time and O(M2) space,
where M is the total number of cells and T is the number of iterations).
Approximate t-SNE algorithms are typically more scalable in both time and space.
For example, BH t-SNE only computes the distance between a cell and its Knns.
Therefore, BH t-SNE takes O(M log(M)) time and O(M log(M)) space, where we
assume K is in the order of O(log(M)).

We next experimentally compare the scalability of scvis and BH t-SNE (the
widely used Rtsne package48) by using the 1.3 million cells from 10X genomics59.
However, BH t-SNE did not finish in 24 h and we terminated it. On the contrary,
scvis produced visually reasonable results in <33 min (after 3000 mini-batch
training, Supplementary Fig. 24a). Therefore, scvis can be much more scalable than
BH t-SNE for very large datasets. As we increased the number of training batches,
we can see slightly better separations in clusters as in Supplementary Fig. 24b–f.
The time used to train scvis increased linearly in the number of training mini-
batches (Supplementary Fig. 24h). However, for small datasets, BH t-SNE can be
more efficient than scvis. For example, for the melanoma dataset with only 4645
cells, scvis still took 24 min to run 3000 mini-batches, while BH t-SNE finished in
only 28.9 s. All the experiments were conducted using a Mac computer with 32 GB
of RAM, 4.2 GHz four-core Intel i7 processor with 8 MB cache.

Finally, when the mapping function is trained, mapping new cells takes only
O M

PL
l¼0 nlþ1 � nl

� �
time, where M is the number of input cells. Also, because

each data point can be mapped independently, the space complexity could be only
O
PLþ1

l¼0 nlþ1 � nl
� �

. As an example, it took only 1.5 s for a trained scvis model to
map the entire 1.3 million cells from 10X genomics.

Datasets. The oligodendroglioma dataset measures the expression of 23,686 genes
in 4347 cells from six IDH1 or IDH2 mutant human oligodendrolioma patients44.
The expression of each gene is quantified as log2 (TPM/10+1), where “TPM”
standards for “transcripts per million”60. Through copy number estimations from
these scRNA-seq measurements, 303 cells without detectable copy number
alterations were classified as normal cells. These normal cells can be further
grouped into microglia and oligodendrocyte based on a set of marker genes they
expressed. Two patients show subclonal copy number alterations.

The melanoma dataset is from sequencing 4645 cells isolated from 19 metastatic
melanoma patients3. The cDNAs from each cell were sequenced by an Illumina
NextSeq 500 instrument to 30 bp pair-end reads with a median of ~150,000 reads
per cell. The expression of each gene (23,686 genes in total) is quantified by log2
(TPM/10+1). In addition to malignant cells, the authors also profiled immune
cells, stromal cells, and endothelial cells to study the whole-tumor multi-cellular
ecosystem.

The bipolar dataset consists of low-coverage (median depth of 8200 mapped
reads per cell) Drop-seq sequencing9 of 27,499 mouse retinal bipolar neural cells
from a transgenic mouse1. In total, 26 putative cells types were identified by
clustering the first 37 principal components of all the 27,499 cells. Fourteen clusters
can be assigned to bipolar cells, and another major cluster is composed of Mueller
glia cells. These 15 clusters account for about 96% of all the 27,499 cells. The
remaining 11 clusters (comprising of only 1060 cells) include rod photoreceptors,
cone photoreceptors, amacrine cells, and cell doublets and contaminants1.

The retina dataset consists of low-coverage Drop-seq sequencing9 of 44,808
cells from the retinas of 14-day-old mice. By clustering the two-dimensional t-SNE
embedding using DBSCAN61—a density-based clustering algorithm, the authors
identified 39 clusters after merging the clusters without enough differentially
expressed genes between any two clusters.

The 10X Genomics neural cell dataset consist of 1,306,127 cells from cortex,
hippocampus, and subventricular zones of two E18 C57BL/6 mice. The cells were
sequenced on 11 Illumina Hiseq 4000 machines to produce 98 bp reads59.

For the mass cytometry dataset H117, manual gating assigned 72,463 cells to 14
cell types based on 32 measured surface protein markers. Manual gating assigned
31,721 cells to the same 14 cell populations from H2 based on the same 32 surface
protein markers.
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Statistical analysis. All statistical analyses were performed using the R statistical
software package, version 3.4.3. Boxplots denote the medians and the interquartile
ranges (IQRs). The whiskers of a boxplot are the lowest datum still within 1.5 IQR of
the lower quartile and the highest datum still within 1.5 IQR of the upper quartile.
The full datasets were superimposed to boxplots. For datasets with non-normal
distribution (e.g., outliers), non-parametric tests were used. To account for unequal
variances, Welch’s t-test was used for pairwise data comparison. Adjusted p-values
<0.05 (FDR, the Benjamini–Hochberg procedure62) were considered to be significant.

Code availability. The scvis v0.1.0 Python package is available freely from bit-
bucket: https://bitbucket.org/jerry00/scvis-dev.

Data availability. The scRNA-seq data that support the findings of this study are
available in Gene Expression Omnibus with the identifiers (bipolar: GSE81905,
retina: GSE63473, oligodendroglioma: GSE70630, metastatic melanoma:
GSE72056, E18 mouse neural cells: GSE93421). The E18 mouse neural cells are
freely available from 10X Genomics59. The other scRNA-seq data are publicly
available from the single-cell portal45. The mass cytometric data can be down-
loaded from cytoback63. The synthetic data used in this study are available from
bitbucket repo: https://bitbucket.org/jerry00/scvis-dev.
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