Table 2.
Microbial functionalization of steroidal molecules by recombinant DNA technology approaches.
| Substrate | Main product | Microorganism | Genetic manipulation |
|---|---|---|---|
| AD | ADD | B. subtilis WB600 | Overexpression of the ksdD gene from A. simplex AS1.94 (Li et al., 2007) |
| AD | ADD | B. subtilis 168 | Overexpression of the ksdD gene from M. neoaurum JC-12 (Zhang W. et al., 2013) |
| AD | ADD | B. subtilis 168 | Hyperproduction of the KsdD protein from M. neoaurum JC-12 (gene codon optimization). Overexpression of the katA gene from Bacillus pumilus ML 413 encoding a catalase to reduce the endogenous levels of H2O2 (Shao et al., 2017) |
| AD | ADD | R. ruber str. Chol-4 | Multiple deletion of several kshA genes (ΔkshA123) or single deletion of kshB gene (ΔkshB) (Guevara et al., 2017b) |
| Cortisone acetate | Prednisone acetate | A. simplex 156 | Overexpression of the endogenous ksdD gene by integrating multiple gene copies under the control of a constitutive promoter (Zhang H. et al., 2013) |
| AD | 9OH-AD | E. coli BL21 | Overexpression of the kshA1 gene from M. smegmatis mc2155 (Andor et al., 2006) |
| AD | 9OH-AD | E. coli BL21 | Overexpression of the kshA and kshB genes from R. rhodochrous DSM 43269 (Petrusma et al., 2009) |
| AD | 9OH-AD | B. subtilis 168 | Overexpression of the kshA gene from M. neoaurum JC-12 and the endogenous gdh gene encoding a 1-dehydrogenase glucose to regenerate NADH (Zhang et al., 2016) |
| AD | 9OH-AD | R. ruber str. Chol-4 | Multiple deletion of several kstD genes (ΔkstD123) (Fernández de las Heras et al., 2012) |
| Progesterone | 9α-Hydroxy-progesterone | E. coli BL21 | Overexpression of the kshA1 gene from M smegmatis mc2155 (Arnell et al., 2007) |
| AD | Testosterone | M. smegmatis mc2155 | Overexpression of a gene encoding a 17b-HSDs from Comamonas testosteroni or Cochliobolus lunatus (Fernández-Cabezón et al., 2017a) |
| DHEA | 7α-Hydroxy-DHEA | S. cerevisiae | Overexpression of the gene encoding cytochrome CYP7B (Vico et al., 2002) |
| Progesterone | 11α-Hydroxy-progesterone | Schizosaccharomyces pombe 1445 | Hyperproduction of 11 α-hydroxylase from R. oryzae (co-expression of all constituents: cytochrome CYP509C12 and NAD(P)H reductase) (Petrič et al., 2010) |
| 11-Deoxycortisol | Hydrocortisone | S. pombe | Hyperproduction of the human 11β-hydroxylase (co-expression of all constituents: cytochrome CYP11B1, adrenoxin and adrenoxin reductase) (Hakki et al., 2008) |
| 11-Deoxycorticosterone | 15β-Hydroxy-deoxycorticosterone | E. coli | Hyperproduction of 15β-hydroxylase from B. megaterium (coexpression of all constituents: cytochrome P450, adrenoxin and adrenoxin reductase) (Hannemann et al., 2006) |
| Testosterone | 15β-Hydroxy-testosterone | P. putida S12 | Overexpression of the gene encoding cytochrome CYP106A2 from B. megaterium (Ruijssenaars et al., 2007) |
| Cyproterone acetate | 15β- Hydroxy-cyproterone acetate | B. megaterium ATCC 13368 | Overexpression of the endogenous gene encoding cytochrome CYP106A2 (15β-hydroxylase) (Kiss et al., 2015) |
| Progesterone | 17α-Hydroxy-progesterone | Pichia pastoris GS115 | Overexpression of the gene encoding human cytochrome P45017 (17α-hydroxylase) (Kolar et al., 2007) |
| (1) DHEA (2) PREG (3) C1 | (1) AD (2) PROG (3) C2 | C. glutamicum R31 | Overexpression of the 3β-hydroxysteroid dehydrogenase/ isomerase gene (MSMEG_5228) from M smegmatis mc2155 (García-Fernández et al., 2017) |
Several examples of recombinant strains designed to modify stereo- and regio-specifically steroidal molecules of pharmacological interest are shown. Main end products obtained at the bioconversions and not other by-products identified are indicated. ADD, 1,4-androstadiene-3,17-dione; AD, 4-androstene-3,17-dione; 9OH-AD, 9α-hydroxy-4-androstene-3,17-dione; DHEA, 3β-hydroxy-5-androstene-7-one; dehydroepiandrosterone; C1, 5-pregnen-16α,17α-epoxy-16β-methyl-3β-ol-20-one; epoxymethylpregnenolone; C2, 4-pregnen-16α,17α-epoxy-16β-methyl-3,20-dione; epoxymethylprogesterone.