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Abstract

Distant failure is the main cause for human cancer-related mortalities. To develop a model for 

predicting distant failure in non-small cell lung cancer (NSCLC) and cervix caner (CC) patients, a 

shell feature, consisting of outer voxels around the tumor boundary, was constructed using pre-

treatment positron emission tomography (PET) images from 48 NSCLC patients received 

stereotactic body radiation therapy (SBRT) and 52 CC patients underwent external beam radiation 

therapy and concurrent chemotherapy followed with high-dose-rate intracavitary brachytherapy. 

The hypothesis behind this feature is that non-invasive and invasive tumors may have different 

morphologic patterns in the tumor periphery, in turn reflecting the differences in radiological 

presentations in the PET images. The utility of the shell was evaluated by the support vector 

machine (SVM) classifier in comparison with intensity, geometry, gray level co-occurrence matrix 

(GLCM)-based texture, neighborhood gray tone difference matrix (NGTDM)-based texture, and a 

combination of these four features. The results were assessed in terms of accuracy, sensitivity, 

specificity, and AUC. Collectively, the shell feature showed better predictive performance than all 

the other features for distant failure prediction in both NSCLC and CC cohorts.
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1. Introduction

Distant failure, the spread of cancer cells from the primary tumor to any site of distant 

organs without loco-regional failure, occurs when malignant tumor cells metastasize to 

distant organs, causing up to 90% human cancers-associated deaths (Mehlen and Puisieux, 

2006). Stereotactic body radiation therapy (SBRT) is widely used in patients with early stage 

medically inoperable non-small cell lung cancer (NSCLC), achieving 85–95% local control 

rates (Chetty et al., 2013). Despite the high local control rates, distant failure is still 

common, with 3-year and 5-year distant relapse rates of 22% and 31%, respectively (Zhou et 
al., 2017; Timmerman et al., 2010). Similarly, in patients with locally advanced cervical 

cancer (CC), even receiving external beam radiation therapy (EBRT) with concurrent 

chemotherapy and intracavitary brachytherapy (ICBT) as the recommended therapy, at least 

20% of them still develop distant metastases (Whitney et al., 1999; Rose et al., 2007); and in 

the patients with positive para-aortic involvement, the rate is more than 40% (Schmid et al., 
2014). Therefore, predicting distant failure in high risk patients is essential to achieve better 

treatment outcomes with intensified treatment modalities.

Although many of the mechanisms that govern metastasis are still unclear, the tumor 

microenvironment is known to regulate tumor evolution toward metastasis (Quail and Joyce, 

2013), as shown for cervix (Braumann et al., 2005), lung (Wood et al., 2014), colon cancer 

among other cancer types (Koelzer et al., 2016; Koelzer and Lugli, 2014). A correlation was 

found between the microenvironment and distant failure (Valastyan and Weinberg, 2011), 

typically exemplified by the theory of epithelial-to-mesenchymal transition (EMT). In this 

process, a portion of cancer cells located at the tumor edges may acquire cancer stem cell 

(CSC)-like traits typical of metastasis, including self-renewal, tumor-originating, 

invasiveness, and elevated apoptosis resistance; these cancer cells depart from the main 

tumor and initiate metastasis, leading to junctional alterations and spatial heterogeneity 

(Chaffer and Weinberg, 2011; Plaks et al., 2013). This cellular invasion process was 

simulated by a hybrid multiscale mathematical model, showing that invasive tumor cells first 

developed within the tumor and later penetrated the tumor edge to form metastases 

(Robertsontessi et al., 2015).

In addition to EMT and CSCs, tumor budding is another factor contributing to invasion and 

correlating with worse outcomes in colon cancer (Lugli et al., 2017), lung cancer 

(Yamaguchi et al., 2010; Taira et al., 2012), cervix cancer among others (Huang et al., 2016; 

Alhadi et al., 2014). In tumor budding, isolated or clustered small malignant cells are close 

to the tumor edge. Literature reviews have reported that tumor buds can be a realization of 

CSC and an exhibition of the EMT process (Dan et al., 2016), suggesting tumor budding as 

an independent prognostic factor (Huang et al., 2016; Kadota et al., 2014).

Tumor islands were also observed on tumor edges. In lung cancer, tumor islands are large 

nests of malignant cells connected with one another and with primary tumors in alveolar 

spaces, slightly near the tumor border; they also have been associated with poor prognosis 

(Onozato et al., 2013). Studies were expanded by discovering spread through air space 

(STAS), a phenomenon of aggressive cells within air spaces closely beyond the edge of the 

tumor. STAS has been recognized an important pattern of invasion (Lu et al., 2017), and was 
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approved by the 2015 World Health Organization as an independent metastatic predictor of 

lung cancer within the lung classification system (Travis et al., 2015).

These findings suggest that the appearance of the interface between tumor and normal tissue 

may provide phenotypic information related to metastatic potential that would enable the 

development of prognostic and predictive models. This application is enabled by radiomics, 

which can extract quantitative radiologic imaging features related to the aforesaid cellular 

phenotype, i.e., EMT-induced CSC changes, tumor budding, tumor islands, and STAS. 

Furthermore, because of its potential correlation with pathologic morphology (Cook et al., 
2014; Baardwijk et al., 2008), positron emission tomography (PET) has been studied to 

predict the pathologic outcome of therapy in various cancers, including lung (Wu et al., 
2016; Tan et al., 2013), cervix (Kidd et al., 2010), and other cancers (Nogami et al., 2014). 

These studies have revealed PET as a promising quantitative reflection of the pathologic 

heterogeneity at the tumor edges.

In this pilot study, we developed the tumor shell, a radiomics feature that characterizes the 

tumor periphery and its correlation with distant failure. We demonstrated its ability in 

predicting treatment response for patients receiving SBRT for early stage NSCLC and for 

patients receiving EBRT and concurrent chemotherapy followed by high-dose-rate ICBT in 

stage IB-IVA CC.

2. Material and Method

2.1. Patients

Our study was conducted at our institution, on two cohorts of patients approved by 

Institutional Review Board: (1) 48 early stage IA and IB NSCLC patients treated with SBRT 

from 2006 to 2012 (28 males and 20 females; mean age, 70.58 ± 9.84 years; range, 54 to 90 

years); (2) 52 stage IB-IVA cervix cancer patients without para-aortic node involvement, 

treated with EBRT and concurrent chemotherapy followed by high-dose-rate ICBT from 

2009 to 2012 (mean age, 47.10 ± 11.82 years; range, 26 to 72 years). The gold standard of 

this study is the state whether the patient developed distant failure after the treatment, which 

is represented as a binary outcome: the number 0 denotes not having distant failure while 1 

denotes having distant failure. In the NSCLC dataset, the total number of PET slices for 

each patient varied from 274 to 355, with 2.00 to 5.00-mm slice thickness and 4.0×4.0-mm 

or 5.0×5.0-mm pixel spatial resolution. Spline-based interpolation has continuous first and 

second order derivatives and has been shown to generate more accurate and smooth results 

over several other methods for medical imaging (Meijering et al., 2001; Saha et al., 2015). 

Therefore, to achieve a consistent resolution, all slices were interpolated with the smallest 

slice thickness of 2.0 mm by spline interpolation along the axial dimension for 1D 

interpolation and spatial resolution of 4.0×4.0 mm by bicubic spline algorithm in the axial 

plane for 2D interpolation. Detailed information about the interpolation is described in the 

Appendix A. In the CC dataset, all slices were used directly without interpolation since they 

had the same 5.00-mm slice thickness and 4.0×4.0-mm pixel spatial resolution. Before 

tumor analysis, the raw PET data were converted to standard uptake values (SUV).
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2.2. Tumor Analysis

For each patient, slices containing primary tumors were selected for analysis. In the NSCLC 

cohort, tumors were segmented automatically, with the middle location slice segmented by 

the object information based interactive segmentation method (OIIS) (Zhou et al., 2013) and 

other slices segmented by the OTSU method. In the CC cohort, the region of interest that 

incorporated the entire tumor was delineated manually by a radiation oncologist with 4 

years’ experience and reviewed by another radiation oncologist with 19 years’ experience. In 

the NSCLC cohort, the number of selected slices originally ranged from 5 to 17, and zero 

padding was used for patients with slice numbers less than 17. Therefore, after interpolation 

to the smallest slice thickness of 2.0 mm, all patients had 42 slices. Meanwhile, because the 

greatest in-plane tumor diameter in all the patients’ slices was 13 pixels, a patch of 17 × 17 

pixels was cropped around the tumor center in each slice, resulting in a cube size of 17 × 17 

× 42 for each patient. A volume size of 29 × 29 × 40 was used for each patient in the CC 

cohort. All features were computed on cropped PET cubes.

2.3. Tumor Shell Feature Construction

The shell feature was extracted from the voxels around the tumor boundaries in a series of 

axial PET slices. The workflow of the shell feature construction is illustrated in Figure 1. 

The top row shows slices of the tumor (outlined in the red windows) in axial sequence 

(Figure 1(a)). First, as displayed in the second row (Figure 1(b)), the patches that include the 

delineated tumor were cropped from the corresponding slices above. The PET intensity 

values in the delineated tumor were remained while the pixels outside the tumor contour 

were set to be zero. Furthermore, binary mask images were obtained to represent the specific 

tumor region by setting inside tumor region as 1 and outside tumor region as 0. A number of 

grayscale sub-shells Ψ (t) (outlined in yellow, blue and green squares in Figure 1(c)) were 

derived by calculating the difference images between every two adjacent grayscale patches P 

(t) (outlined in yellow, blue and green rectangles in Figure 1(b)) and their corresponding 

binary masks M (t). As formulated in Equation (1), the sub-shell was then obtained by 

combining the two difference images together through the Hadamard product. As expected, 

the sub-shell image was generally the outer region of the tumor. Finally, by adding up the 

sub-shells Ψ (t) together shown in Equation (2), the shell S (k) (Figure 1(d)) was formed and 

used to represent the holistic heterogeneity of voxels in the boundary of the entire tumor 

volume.

The sub-shell sequence Ψ (t) in Figure 1(c) is defined as:

Ψ (t) M(t) − M(t − 1) ∘ P(t) − P(t − 1) , t ≥ 2
0, t = 1, (1)

where P(t) denotes a grayscale patch sequence shown in Figure 1(b) and M (t) is the 

matching binary mask image sequence that indicates the region of the tumor, the symbol ° 

indicates the Hadamard product and t is the patch (slice) number. When t = 1,Ψ(t) is a zero 

matrix 0. The element in Ψ(t) is either greater than (when corresponding elements in M(t) 
and M(t − 1) are 0, 1 or 1, 0) or equal to zero (when corresponding elements in M(t) and M(t 
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− 1) are 0, 0 or 1, 1). Thus, each sub-shell partially describes the heterogeneous architecture 

of the tumor edge in an image where the higher SUV value pixels appear brighter. Examples 

of sub-shells are presented in Figure 1.

To represent the heterogeneity of the whole tumor border, for each patient k the shell feature 

S(k) is constructed by successively accumulating sub-shells together and can be written as:

S(k) = ∑t = 2
n Ψ (t) . (2)

where n is the total slice amount with n = 42 in the NSCLC cohort and n = 40 in the CC 

cohort. The strength of the shell feature is the use of a compact, yet comprehensive 

description that captures a sequence of morphologic patterns across the tumor boundary, 

such as shape, size, SUV values, and heterogeneities in a simple 2D map (Figure 1, bottom 

row). It is noted that this 2D map as a whole is considered as a shell feature in this work. 

The vectorized shell (e.g., 1D vector converted from the 2D map) is then used as the input 

for a support vector machine (SVM) based classifier (Section 2.5). This approach is along 

the same line of voxel/pixel-based methods (Huang et al., 2017; Khamis et al., 2017; 

Zuluaga et al., 2015) without further explicit calculating handcrafted features as those in a 

typical radiomics-based method.

2.4. Handcrafted Feature

Our proposed shell feature was compared with the following five groups of handcrafted 

features extracted from the whole delineated tumor region: 9 intensity features, 8 geometry 

features, 12 second order gray level co-occurrence matrix (GLCM) features, 5 high order 

neighborhood gray tone difference matrix (NGTDM) texture features, and a combination of 

these four types, for a total of 34. The features are described in Table 1 and calculation 

functions are provided in the Appendix B.

2.5. Prediction Model Development

To develop our prediction model, a supervised learning method support vector machine 

(SVM) with Gaussian radial basis function (RBF) is employed to classify the patients with 

and without distant failure into two categories. SVM is a discriminative model that can 

classify data through a separating hyperplane representing the largest separation margin 

between two classes and having two parameters penalty factor C and gamma (Suykens and 

Vandewalle, 1999). We used the procedure in the LIBSVM toolbox (Chang and Lin, 2011) 

and conducted the grid search to find the best parameters by minimizing the classification 

error of SVM as illustrated in literature (Hsu, 2010). Before being fed to SVM, the 

vectorized shell was applied by principal component analysis (PCA) to reduce the feature 

dimension. The reduction process is described in the Appendix C. The predictive ability of 

the shell feature was compared with that of the other five features using ten random trails of 

5-fold cross validation on both NSCLC and CC cohorts. Meanwhile, to handle the class 

imbalance problem, the synthetic minority over-sampling technique (SMOTE) is applied to 

augment the minority (samples with distant failure) category by creating synthetic examples 

on the basis of minority class neighborhood distribution (Chawla et al., 2002). In this study, 
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24 (the difference between 12 distant failure positive and 36 distant failure negative) 

synthetic samples are generated in the NSCLC cohort and 24 (the difference between 14 

distant failure positive and 38 distant failure negative) new samples were created in the CC 

cohort. Accuracy, sensitivity, specificity, and area under the receiver operating characteristic 

curve (AUC) were used as evaluation metrics. The code was implemented in Matlab (version 

R2016a).

2.6. Statistical Analysis

The difference in AUC performance between the shell feature and the other features was 

assessed by the Student’s t-test. The difference was considered statistically significant with a 

P value less than 0.05. The receiver operating characteristic (ROC) curve with 95% 

confidence interval is presented in Figure 2. Statistical analysis was performed with the 

Matlab statistical toolbox (version R2016a).

3. Results

3.1. Clinical Characteristics

The demographic and clinical characteristics of patients in the NSCLC and CC cohorts are 

listed in Table 2. No significant difference in distant failure prevalence was observed 

between the two trials (P = 0.917). During follow-up time, distant metastases were observed 

in 25% (12 of 48) of patients in the NSCLC cohort and 26.9% (14 of 52) in the CC cohort 

after radiotherapy.

3.2. Comparison of Predictive Performance

The comparison between the shell feature and other features was performed on both NSCLC 

and CC cohorts through quantitative analysis (Table 3) and ROC graphing (Figure 2). AUC, 

sensitivity, specificity, and accuracy were the criteria used in the study. Definitions are given 

in the Appendix D.

The shell feature showed the highest accuracy in predicting distant failure (Table 3). In the 

NSCLC cohort, the shell feature achieved an AUC of 0.82 (95% CI, 0.6632 to 0.9247) with 

0.81 sensitivity, 0.80 specificity, and 0.81 accuracy. For the other five features, the best result 

was observed for the GLCM texture as shown by 0.76 AUC (95% CI, 0.5528 to 0.8905), 

0.75 sensitivity, 0.74 specificity, and 0.75 accuracy. Similarly, in the CC cohort the shell 

feature still achieved the best performance for all metrics, with 0.83 AUC (95% CI, 0.6559 

to 0.9212), 0.81 sensitivity, 0.80 specificity, and 0.80 accuracy. These results revealed that 

the shell feature had more discriminative capacity than the other features. Also, the 

difference in AUC performance between the shell feature and the other features was found to 

be significant (P < 0.005 for both features in both cohorts).

The ROC curves for different feature sets are illustrated in Figure 2. Similar results were 

obtained for NSCLC (Figure 2(a)) and CC (Figure 2(b)). The proposed shell feature, 

represented by the upper blue curve, is located close to the top left corner of the chart, 

indicating on average a greater discriminative ability than the other methods.
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The discriminative ability is indicated by representative 2D shell maps (Figure 3(a) and 

3(b)). The top row shows tumors without distant failure (Figure 3(a)) and the bottom row 

reports those with distant failure (Figure 3(b)). Pixels with higher SUV values are indicated 

in brighter colors, while lower values are shown in darker colors. As evident from the shell 

maps, distant failure-positive tumors show more heterogeneous boundary expression than 

the distant failure-negative ones. This finding may be attributed to the more active, varied, 

and potentially invasive cellular behavior of the tumor in the barrier microenvironment.

The overall capability of the shell’s classification for the NSCLC and CC cohorts is further 

illustrated in Figure 3(c) and 3(d), where the rows in the matrices are the vectorized shell’s 

sparse coefficients learned by the dictionary learning method (Gu et al., 2014). Given the 

matrix X (each column is a vectorized shell and the number of the rows is the length of the 

shell) with class label Y (the binary outcome 0/1 of distant failure state), the task of 

dictionary learning under the framework of sparse representation is to solve the optimization 

problem {D∗, Q∗} = arg min
D, Q

| | X − DQX | |F
2 + φ(D, Q, X, Y), where φ(D, Q, X, Y) is a 

discrimination function, D is the synthesis dictionary utilized to reconstruct X, Q is the 

analysis dictionary applied to encode X. Using the solved D and Q, the sparse coefficient 

matrix can be obtained by W = QX with each column being a sparse coefficient 

corresponding to its vectored shell of a patient, which is a projection of the original training 

data (the input vectorized shell) to the learned dictionary that includes the discriminative 

information. Clustering characteristics can be seen on both cohorts, with features of the 

same class showing similar representation and features of different classes displaying 

distinct representations. In the horizon row of Figures 3(c) and 3(d), the sparse coefficients 

in DF-negative has higher values in the first half and lower values in the second half, while 

the sparse coefficients in DF-positive has lower values in the first half and higher values in 

the second half.

3.3. Independent validation on NSCLC patients

To further evaluate the shell’s predictive ability, another cohort of 23 early stage IA and IB 

NSCLC inoperable patients underwent SBRT from 2012 to 2016 (12 males and 11 females; 

mean age, 73.30 ± 9.58 years; range, 55 to 91 years) in our institution was used for an 

independent validation. The distant metastasis was observed in 30.4% (7 of 23) of patients. 

The demographic and clinical characteristics of patients are listed in Table 4. There are no 

significant differences between the validation and primary cohorts (the cohort of 48 patients) 

in the characteristics (P = 0.320), either within the distant failure positive cohort (P = 0.336) 

or in the distant failure negative cohort (P = 0.792), which justified its use as a validation 

cohort. The primary cohort of 48 NSCLC patients with 5-fold cross validation were used for 

training and the trained model was then applied on the validation cohort.

The performance of shell feature in the validation set was also compared with other features. 

The experiment results are shown in Table 5. The shell feature still outperformed the other 

features for distant failure prediction in the validation cohort. The AUC achieved by the shell 

feature was 0.79 (95% CI, 0.6559 to 0.9212) with 0.71 sensitivity, 0.87 specificity, and 0.83 

accuracy, while the highest AUC achieved by the other features was 0.70 (95% CI, 0.4079 to 

0.8442) with 0.71 sensitivity, 0.62 specificity, and 0.65 accuracy, respectively.
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4. Discussion and Conclusion

The potential of tumor boundary as a predictive factor for distant failure was evaluated by 

the tumor shell, a PET-derived feature that allows us to detect its associations with 

metastasis within the microenvironment. The shell feature can be used to predict the 

outcome of SBRT for NSCLC patients and EBRT and concurrent chemotherapy followed 

with high-dose-rate ICBT for CC patients.

The tumor-host interface has been associated with metastasis because interactions between 

tumor cells and their microenvironment play an active part in tumor invasion and metastasis. 

However, to the best of our knowledge, few studies have targeted tumor boundaries in 

medical imaging for constructing risk models of metastasis (Mezheyeuski et al., 2016; 

Lennon et al., 2015). A recent study linked the morphology at the tumor-stroma interface to 

a multifractal metric, which derived from tumor outlines (excluding tumor internal tissue) on 

pathological images. The outline-based metric was found to be associated significantly (P < 

0.001) with metastasis-related features, such as tumor border configuration and tumor 

budding grade, thereby verifying its prognostic and predictive efficacy for treatment 

response in colon cancer (Mezheyeuski et al., 2016). Similarly, in a lung cancer review, a 

fractal dimension of the tumor-stroma interface was used to measure tumor progression 

(Mezheyeuski et al., 2016). The study highlighted the use of radiological imaging, and found 

that the derived metric correlated with tumor growth and predicted treatment response 

(Lennon et al., 2015). Notably, the predictors in these studies were scores calculated from 

the contour lines of the tumor edge, whereas our method used the areas of the tumor 

boundary, where more minable information may be included. Besides, the calculation of the 

scores is a handcrafted processing, which is subject to human inconsistency and operator 

dependence.

Since the shell is built from the periphery pixels around tumor edge and the shell feature is 

constructed by simply vectorization of the pixel intensity values of PET at the shell region, 

the shell feature is fixed once the PET image is reconstructed. Compared to handcrafted 

feature based methods that require further feature extraction/calculation from reconstructed 

PET, the shell feature may be less dependent on voxel related factors as it considers the 

whole vectorized shell as a feature directly. On the other hand, the noise level and image 

resolution of reconstructed PET are affected by reconstruction algorithms as well as 

parameters selected during reconstruction. In this preliminary study, PET images were 

reconstructed at different resolutions, where spline based interpolation was employed to 

overcome inhomogeneous resolutions of PET images due to its superior performance. As 

shown in Appendix A, different interpolation schemes will generate different interpolated 

results. Thus the reconstruction parameters may still affect the performance of the shell 

feature. Due to relatively small samples we currently have, we are not able to quantify the 

influence of PET reconstruction parameters to the performance of the shell feature by further 

grouping patients according to reconstruction parameters. If the reconstruction parameters 

are harmonized, the performance of the shell feature could be further improved.

The correlation between distant failure and radiomics features of the tumor edge is based on 

known biological processes that are associated with metastatic potential such as EMT and 
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tumor budding. On the assumption that these findings are located at the tumor boundary, the 

shell feature was proposed to describe spatial morphology of the tumor periphery in relation 

to the likelihood of metastasis. Moreover, to the extent that these processes are present in 

other tumor types, it is likely that the shell feature may be used to predict the outcomes for 

other cancers.

Our study presents a few limitations, including the use of a small patient. Also, 

accumulating a serial of sub-shells (3D) into a 2D shell feature may lead to a loss of spatial 

complexity in the axial perspective. We only used vectorized shell as the input as we mainly 

aim to assess the shell’s ability for predicting distant failure. When combining with other 

features such as intensity, geometry and texture features, shell needs additional process to 

have a more concise and effective description, which could lead to better predictive power. 

Finally, the influence of tumor boundary extension is not investigated in this paper.

In conclusion, the PET-derived shell feature revealed a relationship between tumor edge and 

distant failure, and could be used to facilitate early prediction of the radiotherapeutic 

response in NSCLC and CC patients.
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APPENDIX

Appendix A: Interpolation methods comparison

We used the spline interpolation along the axial dimension for 1D interpolation and bicubic 

spline algorithm in the axial plane for 2D interpolation due to the spline-based 

interpolation’s superior performance over other methods.

For the axial dimension, five commonly used 1-D interpolation methods, nearest, linear, 

pchip, spline and lagrange polynomial were employed for comparison in two experiments. 

As shown in Figure 1(a) and Figure 2(a), nearest interpolation takes the value of nearest 

neighboring pixel as those of the new data points, introducing piecewise constant 

interpolated result and sharp discontinuities between each piece. Linear interpolation in 

Figure 1(b) and Figure 2(b) uses linear polynomials to construct interpolated data within the 

range of sampled data points and is piecewise linear, but still exhibits sharp discontinuity in 

the intersections of pieces. Pchip interpolation demonstrated in Figure 1(c) and Figure 2(c) 

uses piecewise cubic hermite interpolating polynomial and can obtain more favorable 

interpolations than nearest and linear methods. Spline interpolation in Figure 1(d) and Figure 

2(d) is implemented by piecewise polynomial called spline and guarantees the continuity of 

the first and second function derivative, thus yields the smoothest interpolant compared with 

the previous three methods. In Figure 1(e), lagrange polynomial also achieved a smooth 

fitting curve as spline method but in Figure 1(e) oscillation can been seen at the two ends of 

the concerned points. While spline interpolation avoids the problem of Runge's 

phenomenon, in which oscillation can occur between points when interpolating using high 
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degree polynomials. In addition, if considering the computational cost, spline interpolation 

can make theinterpolated data converge most rapidly to the original sample since it has the 

highest order of approximation, which makes the spline interpolation a good choice.

Figure 1. 
1-D interplolation along the axial dimension (example 1)
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Figure 2. 
1-D interplolation along the axial dimension (example 2)

For the axial plane image, i.e., the 2-D slice, three generally used 2-D interpolation methods, 

nearest, bilinear and bicubic interpolation are utilized for comparison. To demonstrate the 

interpolation performance, the original slice (in Figure 3(a)) was down sampled to the half-

sized image in each direction (Figure 3(b)) and then interpolated with nearest, bilinear and 

bicubic methods. The results were shown in Figure 3(c) and (d), Figure 3(e) and (f), Figure 

3(g) and (h) respectively. Nearest interpolation in Figure 3(c) introduce aliasing artifact due 

to the neighboring interpolated pixels sharing same value as the sample data. Figure 3(d) is 

the pixel intensity values of the blue horizon line in Figure 3(c), with blue and green curve 

representing the values in original image and interpolated image by nearest method 

respectively. As shown in Figure 3(c), the interpolated curve is constant over small intervals 

and poorly continuous. The bilinear interpolation is an implementation of linear 

interpolation on a rectilinear 2D grid, but as a whole is not linear but rather quadratic in the 

sample location. In this method, output pixel value is a weighted average of pixels in the 

nearest 2 × 2 neighborhood and can produces much smoother interpolated image in Figure 

3(e). In contrast to bilinear method, bicubic interpolation consider the nearest 4 × 4 

neighborhood of sample pixel values surrounding the unknown pixel and take a weighted 

average of these 4 pixels to yield the interpolated value, thus has smoother surface and fewer 

interpolation artifacts in Figure 3(g). Comparing Figure 3(f) with Figure 3(h), the value 

difference along the blue horizon line between original image and interpolated image by 

bilinear interpolation is larger than by bicubic spline interpolation, especially in the peaks 
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and troughs illustrated in red circles. The bicubic spline interpolation can achieve a more 

accurate fitting with the original one. In addition to the visual comparison, performance was 

quantitatively evaluated by metrics in terms of mean square error (MSE), peak signal to 

noise ratio (PSNR) and Structural Similarity Index (SSIM). In Table 1, the bicubic spline 

interpolation achieved the lowest error with the smallest MSE of 1.8820 and highest 

interpolation accuracy with the highest PSNR of 41.7600 and the premier similarity with the 

original image with the top SSIM of 0.9895.

Figure 3. 
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2-D image interpolation

Table 1

Prediction performance of features with respect to distant failure

Interpolation method MSE PSNR SSIM

nearest 3.1935 39.4635 0.9829

bilinear 2.0177 41.4576 0.9885

bicubic 1.8820 41.7600 0.9895

Appendix B: Handcrafted feature calculation

In this work, four types of handcrafted features extracted from the whole tumor, i.e., 9 

intensity features, 8 geometry features, 12 GLCM (second order) texture features and 5 

NGTDM (high order) texture features, as well as a combination of the four type features, 34 

in total, were used for comparison with the proposed shell feature. The calculations of these 

handcrafted features were as follows.

1. Intensity features

Intensity features were calculated on the intensity histogram of SUV value and include 9 

features:

1. Minimum;

2. Maximum;

3. Mean;

4. Stand deviation;

5. Sum;

6. Median;

7. Skewness describes the degree of distribution asymmetry around its mean:

Skewness = E X − μ
σ

3
, (1)

Where X denotes SUV value, μ is the mean and σ is the stand deviation.

8. Kurtosis describes the flatness or the spikiness of the signal:

Kurtosis = E X − μ
σ

4
. (2)

Where X denotes SUV value, μ is the mean and σ is the stand deviation.

Hao et al. Page 13

Phys Med Biol. Author manuscript; available in PMC 2019 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9. Variance;

2. Geometry features

Geometry features describe the shape, size, or relative position of the tumor. The major 

diameter is defined as the major axis length or longest diameter, while the minor diameter is 

the shortest diameter. Eccentricity is the aspect ratio, defined as the ratio of the length 

between the major and the minor axis. These features are calculated by the regionprops 

function in Matlab.

1. Volume;

2. Major diameter is the major axis length or longest diameter;

3. Minor diameter the shortest diameter;

4. Eccentricity is the ratio of the length between the major and the minor axis;

5. Elongation;

6. Orientation the angle between the x-axis and the major axis of the ellipse that 

has the same second moments as the region;

7. Bounding Box Volume the smallest rectangle containing the region;

8. Perimeter the distance around the boundary of the region;

3. GLCM texture feature

The gray level co-occurrence matrix (GLCM) is a square matrix with the number of rows 

and columns equaling the quantized gray level denoted by Ng. Each element p(i,j) in GLCM 

represents the number of times a pixel of gray level i occurs with a neighbor pixel of gray 

level j in the image at a particular displacement distance and angle. We used histograms with 

64 bins and constructed GLCM using 3D analysis of the tumor region with 26 neighboring 

voxels and 13 directions of the 3D space.

1. Energy describes image homogeneity and a higher energy value indicates a more 

homogeneous image,

Energy = ∑i = 0
Ng − 1

∑ j = 0
Ng − 1

p(i, j)2, (3)

2. Entropy describes the randomness of the image intensity distribution,

Entropy = − ∑i = 0
Ng − 1

∑ j = 0
Ng − 1

p(i, j)log p(i, j) (4)

3. Correlation measures the linear dependency of gray levels on those of either 

neighboring voxels or specified points,
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Correlation =
∑i = 0

Ng − 1
∑ j = 0

Ng − 1
(i j) ⋅ p(i, j) − μxμy

σxσy
, (5)

4. Contrast is the local variations within an image,

Contrast = ∑k = 0
Ng − 1

k2 ∑i = 0
Ng − 1

∑ j = 0
Ng − 1

p(i, j) i − j = k , (6)

5. Texture Variance the variation around the mean value,

Variance = ∑i = 0
Ng − 1

∑ j = 0
Ng − 1

(i − ux)
2 ⋅ p(i, j) + ∑i = 0

Ng − 1
∑ j = 0

Ng − 1
(i − uy)

2 ⋅ p(i, j),

(7)

6. Sum-Mean is defined as,

Sum − Mean = ∑i = 0
Ng − 1

∑ j = 0
Ng − 1

(i + j) ⋅ p(i, j), (8)

7. Inertia measures the local variation between a voxel and its neighbors,

Inertia = ∑i = 0
Ng − 1

∑ j = 0
Ng − 1

(i − j)2 ⋅ p(i, j), (9)

8. Cluster Shade measures matrix skewness,

Cluster Shade = ∑i = 0
Ng − 1

∑ j = 0
Ng − 1

(i + j − ux − uy)
3p(i, j), (10)

9. Cluster tendency describes asymmetry,

Cluster Tendency = ∑i = 0
Ng − 1

∑ j = 0
Ng − 1

(i + j − ux − uy)
4p(i, j), (11)

10. Homogeneity describes closeness of the elements in p(i,j) to the diagonal,

Homogeneity = ∑i = 0
Ng − 1

∑ j = 0
Ng − 1 p(i, j)

1 + i − j ′ (12)

11. Max-Probability is defined as,
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Max − Probability = maxi, j p(i, j), (13)

12. Inverse Variance is defined as,

Inverse Variance = ∑i = 0
Ng − 1

∑ j = 0
Ng − 1 p(i, j)

1 + (i − j)2 . (14)

4. NGTDM texture feature

The neighborhood gray tone difference matrix (NGTDM) is a high order texture and which 

related to human perception. It represents a difference in grayscale between pixels with a 

certain gray scale and the neighboring pixels. Let P(i) represents the summation of the gray-

level differences between all voxels with gray level i and the average gray level of their 26 

neighbors in 3D space. Ng represents the quantized gray level in V, and (Ng)eff is the 

effective number of gray-level in V.

1. Coarseness is defined as,

coarseness = ∑i = 0
Ng − 1

niP(i), (15)

Where ni =
Ni
N , Ni is the number of voxels with gray level i in V and N is the total 

number of voxels in V.

2. Contrast is defined as,

contrast = 1
Ng(Ng − 1)∑i = 0

Ng − 1
∑0

Ng − 1
nin j(i − j)2][ 1

N ∑i = 0
Ng − 1

P(i) , (16)

Where ni =
Ni
N , n j =

N j
N , Ni, Nj are the number of voxels with gray level i and j in 

V and N is the total number of voxels in V.

3. Busyness is defined as,

busyness =
∑i = 0

Ng − 1
niP(i)

∑i = 0
Ng − 1

∑0
Ng − 1

(ini − jn j)]
, (17)

4. Complexity is defined as,
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complexity = ∑i = 0
Ng − 1

∑i = 0
Ng − 1 i − j [niP(i) + n jP( j)]

N(ni + n j)
(18)

5. Texture Strength is defined as,

strength =
∑i = 0

Ng − 1
∑0

Ng − 1
(ni + n j)(i − j)2]

∑i = 0
Ng − 1

P(i)
. (19)

Appendix C: PCA dimension reduction

The image size of shell feature for each patient in non-small cell lung cancer (NSCLC) and 

cervix cancer (CC) cohorts were 17×17 and 29×29, resulting vectors of 289 and 841 lengths, 

respectively. Before inputting them to support vector machine (SVM), principal component 

analysis (PCA) was performed to reduce the dimensionality. The component number was 

chosen as the number of components account for 95% of the variance. Accordingly, the 

chosen component number for NSCLC and CC were 23 and 17, as shown in Figure 4 (a) and 

(b).
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Figure 4. 
Component number chosen for each cohort. (a) NSCLC cohort; (b) CC cohort.

Appendix D: Performance criteria

Assume TP and TN denote the number of true positives and true negatives; FP and FN 

indicate the number of false positives and false negatives. The criteria used in this work are 

as follows:

1. Accuracy = (TP + TN)/(TP + FN + FP + TN) is an common metric used for 

classification performance over all classes;

2. Sensitivity = TP/(TP + FN) represents true positive rate and is the percentage of 

positives correctly classified;

3. Specificity = TN⁄(TN + FP) corresponds to true negative rate and is the 

percentage of negatives correctly classified;
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4. AUC is a single measure derived from the area under the ROC curve and a trade-

off between sensitivity and specificity, thus an average evaluation for features’ 

performance.
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Figure 1. 
Shell feature extraction workflow. (a) Series of axial PET slices of one patient, (b) Series of 

patches (red windows in (a)) including tumors are cropped from each slice in (a), (c) Series 

of sub-shells derived from adjacent two patches in (b), (d) Shell feature, with grayscale 

image left and Heatmap image right.
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Figure 2. 
Receiver operating characteristic (ROC) curves of shell feature and other five groups of 

handcrafted features. (a) NSCLC cohort. (b) CC cohort. ROC curves depict the classification 

ability of the binary SVM model in terms of predictive feature and observed outcome of 

distant failure under varied discrimination threshold. The x-axis represents the false positive 

rate and is calculated as (1-specificity). The y-axis represents the true positive rate by 

sensitivity. A larger area under the curve indicates better prediction.
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Figure 3. 
The shell feature has the discriminative ability to detect distant failure (DF)-negative and -

positive tumors. (a) (b) are representative examples of 2D shell in terms of structure 

heterogeneity. (a) NSCLC cases. (b) CC cases. In each cohort, the shell feature (third 

column) is computed from a series of slices (second column) in the tumor volume (first 

column), with the top row showing tumors without distant failure and the bottom row 

showing tumors with distant failure. As shown, tumors with distant failure present more 

complicated morphologic patterns. (c) (d) are feature matrices of the whole patients, where 

each row refers to sparse coefficient of the vectorized shell from one patient, and each 

column corresponds to an element of the feature. (c) NSCLC cases. (d) CC cases. These 

features are sparse coefficients learned from the original vectorized shells by dictionary 

learning method. These feature matrices exhibit clustering characteristics for (DF)-positive 

and -negative tumors.
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Table 1

Types of handcrafted features

Histogram based image intensity Geometry GLCM based texture NGTDM based texture

Minimum Volume Energy Coarseness

Maximum Major diameter Entropy Contrast*

Mean Minor diameter Correlation Busyness

Stand deviation Eccentricity Contrast* Complexity

Sum Elongation Texture Variance Texture Strength

Median Orientation Sum-Mean

Skewness Bounding Box Volume Inertia

Kurtosis Perimeter Cluster Shade

Variance Cluster tendency

Homogeneity

Max-Probability

Inverse Variance

NOTE.

*
Contrast: Different calculation methods were employed in GLCM and NGTDM, though the same names are indicated.

Abbreviations: GLCM, Gray level co-occurrence matrix; NGTDM, Neighborhood gray tone difference matrix.
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Table 2

Characteristics of two cohorts of patients

Characteristics
NSCLC Cohort CC Cohort

Distant failure (+) Distant failure (−) Distant failure (+) Distant failure (−)

Age, years

 mean ± SD 69.9 ± 9.2 70.2 ± 10.2 41.6 ± 11.7 49.1 ± 11.3

 Median (range) 69.0 (57.0–89.0) 71.0 (54.0–90.0) 38.0 (29.0–70.0) 49.0 (26.0–72)

Ethnicity, No. (%)

 Caucasian   9 (75.0) 27 (75.0)   6 (42.9) 12 (31.6)

 Hispanic   0 (0)   1 (1.3)   2 (14.3) 15 (39.5)

 African American   3 (25.0)   7 (19.4)   5 (35.7) 10 (26.3)

 Asian   0 (0)   1 (1.3)   1 (7.1)   0 (0)

 Other   0 (0)   0 (0)   0 (0)   1 (2.6)

Clinical tumor size, mm, No. (%)

 ≤ 10   1 (8.3)   0 (0)   0 (0)   1 (2.6)

 11-30   6 (50.0) 26 (72.2)   2 (14.3)   4 (10.6)

 31-50   5 (41.7)   9 (25.0)   9 (64.3) 20 (52.6)

 51-70   0 (0)   1 (1.3)   2 (14.3)   9 (23.6)

 > 71   0 (0)   0 (0)   1 (7.1)   4 (10.6)

Histology, No. (%)

 Adenocarcinoma   6 (50.0) 17 (47.3)   1 (7.1)   4 (10.6)

 Squamous cell carcinoma   5 (41.7) 12 (33.3) 11 (78.6) 33 (86.8)

 Other   1 (8.3)   7 (19.4)   2 (14.3)   1 (2.6)

Stage, No. (%)

 IA   5 (41.7) 30 (83.3)   0 (0)   0 (0)

 IB   7 (58.3)   6 (16.7)   4 (28.6) 12 (31.6)

 IIA   0 (0)   0 (0)   1 (7.1)   3 (7.9)

 IIB   0 (0)   0 (0)   7 (50.0) 15 (39.5)

 IIIB   0 (0)   0 (0)   0 (0)   6 (15.8)

 IVA   0 (0)   0 (0)   2 (14.3)   2 (5.2)

NOTE. Stages in NSCLC and CC are determined by the TNM and Federation of Gynecology and Obstetrics (FIGO) staging system, respectively.

Abbreviations: NSCLC, non-small cell lung cancer; CC: cervix cancer; SD: standard deviation.
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Table 4

Characteristics of patients in the validation cohort

Characteristics
Validation NSCLC Cohort

Distant failure (+) Distant failure (−)

Age, years

 mean ± SD 70.9 ± 9.4 75.4 ± 10.0

 Median (range) 74.0 (55.0–85.0) 74.0 (64.0–91.0)

Ethnicity, No. (%)

 Caucasian 10 (62.5)   6 (85.8)

 Hispanic   0 (0)   1 (14.2)

 African American   6 (37.5)   0 (0)

 Asian   0 (0)   0 (0)

 Other   0 (0)   0 (0)

Clinical tumor size, mm, No. (%)

 ≤ 10   0 (0)   0 (0)

 11–30 13 (81.2)   5 (71.6)

 31–50   3 (18.8)   1 (14.2)

 51–70   0 (0)   1 (14.2)

 > 71   0 (0)   0 (0)

Histology, No. (%)

 Adenocarcinoma   9 (56.2)   4 (57.1)

 Squamous cell carcinoma   6 (37.5)   3 (42.9)

 Other   1 (6.3)   0 (0)

Stage, No. (%)

 IA 15 (93.7)   7 (100.0)

 IB   1 (6.3)   0 (0)

 IIA   0 (0)   0 (0)

 IIB   0 (0)   0 (0)

 IIIB   0 (0)   0 (0)

 IVA   0 (0)   0 (0)

NOTE. Stage in NSCLC is determined by the TNM.

Abbreviations: NSCLC, non-small cell lung cancer; SD: standard deviation.
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