Table 4.
The estimates of the scaling exponentβfor the power-law model of the size of the clusters The p-value of the corresponding Kolmogorov-Smirnov goodness-of-fit statistic to test the hypothesis that the power-law model is feasible for the size of the clusters generated by all three clustering procedures with α = 0.70. If the p-value is greater than 0.1, we can infer that it is viable that the size of the clusters follows a power-law distribution.
| Subject | MCL |
IHC |
IPC |
GMM |
|---|---|---|---|---|
| (p-value) | (p-value) | (p-value) | (p-value) | |
| 1 | 1.64 (0.273) | 1.61 (0.980) | 1.58 (0.985) | 1.73 (0.591) |
| 5 | 1.76 (0.603) | 1.66 (0.199) | 1.59 (0.797) | 2.12 (0.882) |
| 6 | 1.50 (0.003) | 1.50 (0.513) | 1.50 (0.564) | 3.20 (0.977) |
| 7 | 1.50 (0.216) | 1.53 (0.827) | 1.50 (0.748) | 1.90 (0.774) |
| 8 | 1.64 (0.713) | 1.59 (0.625) | 1.51 (0.807) | 1.76 (0.938) |
| 10 | 1.65 (0.041) | 1.58 (0.485) | 1.56 (0.653) | 1.79 (0.981) |
| 12 | 1.61 (0.642) | 1.54 (0.219) | 1.56 (0.579) | 2.06 (0.727) |
| 13 | 1.78 (0.423) | 1.65 (0.724) | 1.53 (0.322) | 1.86 (0.781) |
| 15 | 1.79 (0.609) | 1.60 (0.859) | 1.61 (0.330) | 1.85 (0.256) |