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Abstract

Motivation: Genome-wide association study (GWAS) has been a great success in the past decade.

However, significant challenges still remain in both identifying new risk loci and interpreting re-

sults. Bonferroni-corrected significance level is known to be conservative, leading to insufficient

statistical power when the effect size is moderate at risk locus. Complex structure of linkage dis-

equilibrium also makes it challenging to separate causal variants from nonfunctional ones in large

haplotype blocks. Under such circumstances, a computational approach that may increase signal

replication rate and identify potential functional sites among correlated markers is urgently

needed.

Results: We describe GenoWAP, a GWAS signal prioritization method that integrates genomic

functional annotation and GWAS test statistics. The effectiveness of GenoWAP is demonstrated

through its applications to Crohn’s disease and schizophrenia using the largest studies available,

where highly ranked loci show substantially stronger signals in the whole dataset after prioritiza-

tion based on a subset of samples. At the single nucleotide polymorphism (SNP) level, top ranked

SNPs after prioritization have both higher replication rates and consistently stronger enrichment of

eQTLs. Within each risk locus, GenoWAP may be able to distinguish functional sites from groups

of correlated SNPs.

Availability and implementation: GenoWAP is freely available on the web at http://genocanyon.

med.yale.edu/GenoWAP

Contact: hongyu.zhao@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In the past ten years, genome-wide association studies (GWAS) have

been designed and applied to identify disease genes for almost all

complex diseases. As of January 15, 2015, 15 216 single nucleotide

polymorphisms (SNP) from over 2000 publications have been docu-

mented in the GWAS Catalog (Hindorff et al., 2009). Despite its

great success in identifying disease-associated loci, scientists have

noted several limitations of current GWAS approaches. First,

although linkage disequilibrium (LD) is the basis of GWAS, it also

hinders the interpretation of association results. Due to the complex

LD structure among SNPs, it is the disease-associated haplotype

blocks varying in size from a few kb to more than 100 kb (Wall and

Pritchard, 2003) that are identified in GWASs. Therefore, the reso-

lution of GWAS is not sufficient for distinguishing causal variants

from a large group of correlated SNPs, especially in non-coding re-

gions where the mechanism of genomic function is still largely
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unknown (Cooper and Shendure, 2011; Visscher et al., 2012; Ward

and Kellis, 2012). Second, although Bonferroni-corrected signifi-

cance threshold (i.e. 5� 10�8) is widely accepted as the standard

cutoff in GWAS analysis, it is well known that Bonferroni correc-

tion, as an approach that controls family-wise error rate, is conser-

vative when the number of hypotheses is large and there are many

weak to moderate signals (Efron, 2010). In fact, for most complex

diseases, numerous genomic loci are involved in disease etiology

while each locus only has a moderate effect size. Therefore, studies

based on high-throughput genomic scan may be underpowered if

the sample size is not large enough. This has led to so-called missing

heritability which refers to the gap between the narrow-sense herit-

ability estimated from twin/pedigree analysis and the proportion of

the variance explained by significant SNPs identified from GWAS,

that has been reported for many diseases (Manolio et al., 2009;

Witte et al., 2014). One explanation of missing heritability is the in-

sufficient statistical power to identify all the disease-associated SNPs

(Eichler et al., 2010).

Variant prioritization techniques are crucial for post-GWAS ana-

lysis on different scales. Locally, it may be able to reveal truly func-

tional sites within each significant locus. Globally, signals at some

loci can be enhanced if proper prior information is used. Many vari-

ant prioritization methods have been proposed (Hou and Zhao,

2013). Supervised-learning-based statistical tools for predicting dele-

terious variants are probably the richest among available

approaches. So far, most of the existing deleteriousness prediction

tools only focus on protein-coding genes in the human genome.

However, coding-region-based tools are not sufficient for GWAS

signal prioritization because nearly 90% of the significant SNPs

identified in GWAS are intronic or intergenic (Eicher et al., 2015;

Hindorff et al., 2009). A few tools targeting non-coding variants

have been proposed (Fu et al., 2014; Kircher et al., 2014; Ritchie

et al., 2014; Shihab et al., 2015). Detailed comparisons of these

methods were reviewed elsewhere (Cooper and Shendure, 2011;

Wang et al., 2015). Unlike the extensively studied protein-altering

variants, very few non-coding pathogenic variants have been re-

vealed so far (Ward and Kellis, 2012). Moreover, non-coding vari-

ants span a much wider functional spectrum. Varied and complex

mechanisms from cell-specific Transcription Factor Binding Sites

(TFBS), to enhancers, insulators, short and long range epigenetic

and structural effects on DNA, make it challenging to understand

non-coding variants in the human genome. Therefore, existing non-

coding variant prioritization tools based on supervised-learning may

suffer from the potentially biased training data. Their performance

in GWAS signal prioritization remains to be further investigated.

Finally, although deleteriousness of a single SNP is crucial for iden-

tifying causal variants, it does not provide all the information

needed in GWAS signal prioritization, where each SNP in GWAS

also carries information of nearby variants that are not genotyped.

A better-informed method should be able to measure the functional

potential for the surrounding region of each genotyped marker.

Recently, Lu et al. developed GenoCanyon, a statistical frame-

work to predict functional non-coding regions in the human genome

through integrated analysis of multiple biochemical signals and gen-

omic conservation measures (Lu et al., 2015). Its unsupervised-

learning framework makes GenoCanyon suffer less from our limited

knowledge of non-coding genome. Moreover, since the resolution of

its functional prediction is at the nucleotide level, it is possible to use

GenoCanyon scores to evaluate the surrounding region of each gen-

otyped SNP. In this paper, we propose Genome Wide Association

Prioritizer (GenoWAP), a GWAS signal prioritization approach that

integrates GenoCanyon functional prediction and GWAS P-values.

We apply the method on two smaller GWASs of Crohn’s disease

and schizophrenia, respectively, to prioritize SNPs. The performance

is evaluated using the results from large GWAS meta-analyses of

these two diseases. Compared to the top loci ranked on P-values

only, top ranked loci after prioritization tend to show substantially

stronger signals in large GWAS studies. Within each locus,

GenoWAP may be able to distinguish true signals among highly cor-

related SNPs. The method has the potential to reduce noises caused

by LD and rescue marginal signals in GWASs with insufficient sam-

ple sizes.

2 Methods

2.1 Statistical model
For each SNP, we define Z to be the indicator of general functional-

ity, and define ZD to be the indicator of disease-specific functional-

ity. More specifically, if a SNP or its surrounding region is active in

any genomic functional pathway, then Z equals to 1. If this SNP or

the surrounding region is involved in the disease pathway, then ZD

equals to 1. For each SNP, we use p to denote its P-value obtained

from the standard GWAS analysis.

The goal of GWAS signal prioritization is to assign each SNP a

new score that measures its importance. A reasonable quantity

would be the conditional probability of being disease-specific func-

tional given the P-value, i.e. PðZD ¼ 1jpÞ. Using Bayes formula, we

can rewrite the conditional probability as below.

PðZD ¼ 1jpÞ ¼ f ðpjZD ¼ 1Þ � PðZD ¼ 1Þ
f ðpjZD ¼ 1Þ � PðZD ¼ 1Þ þ f ðpjZD ¼ 0Þ � PðZD ¼ 0Þ

(1)

Based on the definitions of Z and ZD, SNPs satisfying ZD¼1 must

be a subset of the SNPs satisfying Z ¼ 1. This is because if a SNP is

disease-specific functional, it has to be functional in the general

sense as well. Therefore, we get the following formula.

PðZD ¼ 1Þ ¼ PðZ ¼ 1;ZD ¼ 1Þ

¼ PðZD ¼ 1jZ ¼ 1Þ � PðZ ¼ 1Þ
(2)

In order to calculate the conditional probability PðZD ¼ 1jpÞ for a

marker, we need its prior probability of being functional, i.e.

PðZ ¼ 1Þ, the P-value density for disease-specific functional

markers, i.e. f ðpjZD ¼ 1Þ, the P-value density for markers that are

not related to the disease, i.e. f ðpjZD ¼ 0Þ, and finally, the condi-

tional probability of being disease-specific functional given the

marker is functional in the general sense, i.e. PðZD ¼ 1jZ ¼ 1Þ.

2.2 Estimation
Recently, Lu et al. developed GenoCanyon, a statistical framework

predicting functional genomic regions (Lu et al., 2015). Through

integrating diverse types of annotation data, including genomic con-

servation measures, DNase hypersensitivity, FAIRE, histone modifi-

cations and transcription factor binding activities using

unsupervised learning techniques, GenoCanyon measures the func-

tional potential for each nucleotide in the human genome. For each

SNP in a GWAS dataset, the mean GenoCanyon functional score of

its surrounding 10 000 base pairs is used as the prior probability

PðZ ¼ 1Þ. Different from using variant-based annotation tools as

the prior knowledge, this prior information not only measures the

importance of the genotyped marker, but also evaluates its sur-

rounding region where ungenotyped causal variants may reside.

Next, we partition all the SNPs into functional (Z¼1) and non-

functional (Z¼0) subgroups based on the calculated mean
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GenoCanyon scores with cutoff 0.1. Since GenoCanyon functional

score has a bimodal pattern, this partition is not sensitive to the cut-

off choice. The partition step is necessary because of two major rea-

sons. First, the signal pattern in the functional subgroup is amplified

after noise reduction (Fig. 1). The increase in the proportion of dis-

ease-related markers in the functional subgroup leads to more stable

estimates in the following steps. Second, the P-value density for non-

functional markers, i.e. f ðpjZ ¼ 0Þ, can now be estimated empiric-

ally. Since the P-values are acquired from a disease-specific study,

we assume that the P-values for markers not related to the disease

behave just like the P-values for markers that are not functional en-

tirely. Mathematically, this assumption is characterized as the equa-

tion below.

f ðpjZD ¼ 0Þ ¼ f ðpjZ ¼ 0Þ (3)

Based on this assumption, we can estimate f ðpjZD ¼ 0Þ using the

P-values for SNPs in the non-functional subgroup. Notably, it may

seem natural to assume ðpjZD ¼ 0Þ follows a uniform distribution.

However, the P-value of a marker with ZD¼0 can actually be

driven by a nearby disease-related marker due to LD. The empiric-

ally estimated density can capture a certain amount of LD informa-

tion, which is complex and non-trivial to model. Moreover, it is

common to see some variants with low minor allele frequencies in

GWAS samples. The P-values for these markers will form a spike

near 1 in the P-value density. The empirically estimated density is

also able to account for this artifact. We propose to use histogram

for density estimation, because it has stable performance near the

boundary. In fact, the P-value boundary near 0 is where the real sig-

nals reside, and the boundary near 1 occasionally has the artifact

issue caused by rare variants. Histogram is able to capture both

issues. Moreover, the sample size in this empirical Bayes framework

is the total number of markers, which is usually large in GWAS.

Therefore, histogram is a reasonable choice for density estimation.

The number of bins can be chosen based on cross-validation.

It still remains to estimate the P-value density for disease-related

markers f ðpjZD ¼ 1Þ, and the conditional probability

PðZD ¼ 1jZ ¼ 1Þ. Now, we partition the functional subgroup

(Z¼1) into finer subgroups. First, based on Eq. (3), it is straightfor-

ward to show that

f ðpjZ ¼ 1; ZD ¼ 0Þ ¼ f ðpjZD ¼ 0Þ ¼ f ðpjZ ¼ 0Þ (4)

Therefore, the P-value density for functional markers is the follow-

ing mixture.

f ðpjZ ¼ 1Þ ¼ PðZD ¼ 1jZ ¼ 1Þ � f ðpjZ ¼ 1;ZD ¼ 1Þ

þPðZD ¼ 0jZ ¼ 1Þ � f ðpjZ ¼ 1;ZD ¼ 0Þ

¼ PðZD ¼ 1jZ ¼ 1Þ � f ðpjZD ¼ 1Þ

þPðZD ¼ 0jZ ¼ 1Þ � f ðpj ZD ¼ 0Þ

(5)

In formula (5), f ðpjZD ¼ 0Þ has already been estimated in previous

steps. We further assume a parametric form of f ðpjZD ¼ 1Þ. In a re-

cent work of Chung et al. (2014), they showed that beta distribution

is a robust approximation of P-value distribution under some

general assumptions of SNP effect size. We adopt the same

assumption.

ðpjZD ¼ 1Þ � Betaða; 1Þ; 0 < a < 1 (6)

The constraint 0 < a < 1 guarantees that a smaller P-value is more

likely to occur than a larger P-value. Then, we apply the EM algo-

rithm on all the P-values in the functional subgroup. One advantage

of beta distribution assumption is that a closed-form expression is

available at each iteration in the EM algorithm. In this way, the esti-

mates for both PðZD ¼ 1jZ ¼ 1Þ and PðpjZD ¼ 1Þ can be acquired.

Finally, since all missing pieces in formula (1) have been estimated,

we calculate the conditional probability PðZD ¼ 1jpÞ for all the

SNPs. This quantity is referred to as the posterior score in this

paper.

2.3 Data resource and preprocessing
Test statistics of the NIDDK study (Rioux et al., 2007) were down-

loaded from dbGap (Supplementary Table S1). Among the 298 391

SNPs, 70 were deleted due to unavailable hg19 genomic locations.

We calculated the posterior scores for the remaining 298 321 SNPs

(Supplementary Fig. S1). Test statistics of the IIBDGC meta-analysis

(Franke et al., 2010) were downloaded from the IIBDGC website

(http://www.ibdgenetics.org). The dataset contains 953 241 SNPs,

including 262 621 SNPs overlapping with the NIDDK dataset.

Test statistics for studies of schizophrenia (Ripke et al., 2011,

2014) were downloaded from the PGC website (Supplementary

Table S2). Coordinates were converted to hg19 using UCSC liftover

tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver). Among the

1 252 901 SNPs in PGC2011 study, 264 were removed due to un-

available hg19 locations. Posterior scores were calculated for all the

remaining 1 252 637 SNPs (Supplementary Fig. S2). PGC2014 study

contains 9 444 230 SNPs, including 1 179 913 SNPs overlapping

with the PGC2011 dataset.

Finally, eQTL data used in the enrichment analysis include sin-

gle-tissue eQTLs from GTEx Analysis Release V4 (Ardlie et al.,

2015), cis and trans eQTLs downloaded from Blood eQTL Browser

(Westra et al., 2013), and quantitative trait loci for DNA methyla-

tion and gene expression in human brain (Gibbs et al., 2010) down-

loaded from NCBI eQTL Browser (http://www.ncbi.nlm.nih.gov/

projects/gap/eqtl/index.cgi).

Fig. 1. P-value densities of different subgroups of SNPs. (A) P-value histo-

gram of non-functional SNPs (Z¼ 0), P-value histogram of functional SNPs

(Z¼1), and estimated P-value density of disease-specific functional SNPs

(ZD¼1) in the NIDDK GWAS of Crohn’s disease. (B) P-value histogram of

non-functional SNPs (Z¼ 0), P-value histogram of functional SNPs (Z¼1) and

estimated P-value density of disease-specific functional SNPs (ZD¼1) in the

PGC2011 GWAS of schizophrenia
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3 Results

3.1 Application to Crohn’s disease
Several GWASs of different scales have been performed for Crohn’s

disease. The largest GWAS meta-analysis, which identified 71 dis-

ease-associated loci, is among the studies identifying most significant

hits to date (Franke et al., 2010). We applied GenoWAP on a

smaller Crohn’s disease GWAS conducted by the North American

National Institute of Diabetes and Digestive and Kidney Diseases

(NIDDK) IBD Genetics Consortium, and tested the results using the

large meta-analysis done by the International Inflammatory Bowel

Disease Genetics Consortium (IIBDGC). Cohort information is

listed in Supplementary Table S1. Details of both studies have been

reported previously (Franke et al., 2010; Rioux et al., 2007). It is

worth noting that the samples in these two studies overlap with each

other. However, the goal for this paper is not to replicate the de-

tected signals in an independent cohort. Instead, we seek to better

prioritize signals using only a small sample size. In order to test the

performance, the results from the largest study available are used as

the gold standard.

A total of 71 loci passed genome-wide significance level in the val-

idation stage of IIBDGC meta-analysis, including 32 previously re-

ported risk loci and 39 newly confirmed risk loci (Franke et al.,

2010). We ranked the 298 321 SNPs in the NIDDK study based on

their P-values and posterior scores, respectively. Then, within each of

the 71 loci, we compared the rank of the lowest P-value to the rank of

the largest posterior score. 56 out of 71 loci (79%) had an improved

rank, 3 loci (4%) had an equal rank, while only 12 loci (17%) had a

reduced rank (Supplementary Table S3). The probability of having an

increased rank is significantly higher than that of having a decreased

rank (P-value¼3:11� 10�8, one-sided binomial test).

Next, we compared the top 20 loci with the smallest P-values to

the top 20 loci with the largest posterior scores in the NIDDK study.

The locus information and the lowest meta-analysis P-value at each

locus are listed in Supplementary Table S4. 14 out of 20 loci are

shared between the two lists. Interestingly, the posterior-specific

loci, i.e. the loci that show up only in the list based on posterior

score, showed substantially stronger signals in the IIBDGC meta-

analysis compared to the P-value-specific loci (Supplementary Table

S4, Fig. 2A). For example, the risk locus on chromosome 10q22 was

a genome-wide significant locus in the meta-analysis (rs1250550,

Pmeta ¼ 2:00� 10�10). Although the same SNP, rs1250550, had the

lowest P-value at this locus in the NIDDK dataset (PNIDDK ¼
5:95� 10�5), the signal was not strong enough to make this locus

surpass other loci such as the one on chromosome 2q24 (rs6733000,

PNIDDK ¼ 2:01� 10�5). However, with posterior scores, locus

10q22 was ranked as the 17th top locus, while the highest posterior

score at locus 2q24 was only 0.0142, which agrees with its weak sig-

nal in the meta-analysis result (Pmeta ¼ 0:019). Overall, two poster-

ior-specific loci were genome-wide significant in the meta-analysis,

while the lowest Pmeta among the six P-value-specific loci was only

1:10� 10�4. These results show that our method can effectively re-

duce noises likely due to LD and chance and enhance true signals at

disease risk loci.

Next, we check if SNPs with high posterior scores are more en-

riched of eQTLs. The top 1000 SNPs based on P-values are moder-

ately enriched for GTEx whole-blood eQTLs (P-value¼0.013;

hypergeometric test; fold enrichment¼1.60), while the enrichment

for the top 1000 SNPs based on the posterior scores is highly signifi-

cant (P-value¼8:58� 10�7; fold enrichment¼2.47). The difference

becomes even more drastic when using the top 2000 SNPs, with

P-values 0.001 and 9:25� 10�15 (fold enrichment 1.60 and 2.73),

respectively. When the number of top SNPs increases, the posterior-

based approach dominates the P-value-based approach in both en-

richment P-value and fold change (Fig. 2B, C). The same enrichment

pattern can be observed when using blood eQTLs from (Westra

et al., 2013; Supplementary Fig. S3).

In order to show how our method performs locally, we chose two

genome-wide significant loci from the IIBDGC meta-analysis. First,

within the risk locus on chromosome 1q23, two SNPs had substan-

tially stronger signals than others, i.e. rs2274910 (PNIDDK ¼
4:40� 10�4) and rs955371 (PNIDDK ¼ 4:84� 10�4). According to

the P-values, these two SNPs are indistinguishable, because the signal

at rs2274910 is only slightly stronger. However, the results from the

meta-analysis clearly show the existence of two SNP clusters with

strong signals at this locus (Fig. 3A). The cluster closer to gene

CD244, in which rs955371 resides, actually has stronger signals than

the cluster where rs2274910 is located. Interestingly, the posterior

scores capture this difference between two SNPs very well. In fact, the

posterior scores for rs955371 and rs2274910 are 0.272 and 0.208,

suggesting rs955371 is more likely to be functional even though its P-

value is larger. The second example is the risk locus on chromosome

14q35, which is one of the 12 loci with a reduced rank under the pos-

terior scores (Supplementary Table S3). Signals at this locus were not

strong in the NIDDK study, with the smallest P-value only at 4:70

�10�3 (rs1959715). Moreover, the signal peak in the NIDDK study

(near 88.2M) was quite far from that in the meta-analysis, which res-

ides in genes GALC and GPR65 (Fig. 3B). However, the posterior

scores once again capture the signal pattern in the meta-analysis.

Signals near 88.2M on chromosome 14 are shrunk substantially,

while the SNPs in GALC and GPR65 are pushed up as the strongest

signal (rs4904410). Since these SNPs have very weak signals in their

P-values, the posterior score is still low (see Section 2). This explains

Fig. 2. Global performance in studies of Crohn’s disease. (A) Signals at

P-value-specific, overlapped, and posterior-specific loci in the IIBDGC meta-

analysis. The top 20 loci based on P-values in the NIDDK study are compared

with the top 20 loci based on posterior scores. Each locus is evaluated using

the maximum regional signal strength in the IIBDGC meta-analysis. Darker

color indicates stronger signals in the meta-analysis. (B) Enrichment of

whole-blood eQTLs in the top SNPs selected based on P-value and posterior

score. The vertical axis shows the transformed P-value of hypergeometric

test. (C) Fold enrichment of whole-blood eQTLs in the top SNPs selected

based on P-value and posterior score. The vertical axis shows the ratio of

observed and expected overlaps between eQTLs and highly ranked SNPs
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the reduced rank, because the P-value-based rank of rs1959715 was

compared with the posterior-based rank of rs4904410. It is worth

noting that the SNPs with the strongest signals in the meta-analysis,

e.g. rs8005161, were either not genotyped or dropped in the quality

control steps in the NIDDK study. It is reasonable to believe that the

posterior scores would have had an even better performance if imput-

ations had been done for the NIDDK dataset.

3.2 Application to Schizophrenia
In addition to Crohn’s disease, we also applied GenoWAP to schizo-

phrenia, a major psychiatric disorder. Psychiatric Genomics

Consortium (PGC), the largest international consortium in psych-

iatry, focuses on genetic studies of many psychiatric disorders

including schizophrenia. Two large-scale GWAS mega-analyses of

schizophrenia have been published. We applied GenoWAP to the

earlier and smaller PGC2011 study (Ripke et al., 2011), and eval-

uated the performance using results from the larger mega-analysis

published in 2014 (Ripke et al., 2014).

PGC2014 study identified 108 schizophrenia-associated loci,

from which we removed three loci on chromosome X because the

PGC2011 dataset did not contain any SNP on sex chromosomes.

We ranked the 1 252 637 SNPs in PGC2011 study based on their P-

values and posterior scores, respectively. Within each locus, the

rank of the lowest P-value was compared to the rank of the largest

posterior score. Across the 105 loci, 68 (65%) had an improved

rank, 1 locus (1%) had an equal rank, and the other 36 loci (34%)

had a reduced rank (Supplementary Table S5). The probability of

having an increased rank is significantly higher than that of having a

reduced rank (P-value¼0.001, one-sided binomial test).

Interestingly, among the 10 loci with the strongest signals in the

PGC2014 study, 8 had an increased rank (80%). The proportion of

increased or equal ranks gradually drops when more top loci in the

PGC2014 study were considered, showing less confidence in weaker

signals (Supplementary Fig. S4).

Next, we compared the top 20 loci with the smallest P-values to

the top 20 loci with the largest posterior scores in the PGC2011

study. In order to identify 20 independent loci, 582 SNPs were

needed when using P-value as the criterion. When posterior scores

were used to choose top signals, 548 SNPs were sufficient to identify

20 loci, showing better efficiency (Fig. 4A). A total of 14 loci could

be identified using both P-values and posterior scores. As for the

comparisons between the 6 posterior-specific loci and the 6 P-value-

specific loci, the posterior-specific loci showed better signals than

the P-value-specific loci (Supplementary Table S6, Fig. 4B) in the

PGC2014 study. Four of the 6 posterior-specific loci were genome-

wide significant in the PGC2014 study, whereas 2 P-value-specific

loci passed the genome-wide significance level. Among the 6 P-

value-specific loci, the locus on chromosome 3q26 had the strongest

signal in the PGC2014 study (P2014 ¼ 5:35� 10�11). This locus will

be discussed in detail later.

Fig. 3. Local performance in studies of Crohn’s disease. From top to bottom,

the three panels show the P-values from the NIDDK study, the posterior

scores, and the P-values from the IIBDGC meta-analysis, respectively. (A)

Local performance at the risk locus on chromosome 1q23. The top two SNPs

at this locus in the NIDDK study are indistinguishable based on their P-values.

The posterior scores suggest the importance of the SNP on the left, which is

in agreement with the results from the meta-analysis. (B) Local performance

at the risk locus on chromosome 14q35. Signals at this locus are weak in the

NIDDK study, and the signal peak is different from that in the meta-analysis.

The posterior score is able to reduce the noises caused by LD, and reveal real

signals at genes GALC and GPR65. Figures are generated using LocusZoom

(Pruim et al., 2010)

Fig. 4. Global performance in studies of schizophrenia. (A) SNPs needed for

identifying 20 loci. 582 top SNPs are needed when using P-value as the criter-

ion. 548 SNPs are sufficient when using posterior score as the criterion.

(B) Signals at P-value-specific, overlapped, and posterior-specific loci in the

PGC2014 study. The top 20 loci based on P-values in the PGC2011 study are

compared with the top 20 loci based on posterior scores. Each locus is eval-

uated using the maximum regional signal strength in the PGC2014 study.

Darker color indicates stronger signals in the large study. (C) Replication rates

of SNPs before and after prioritization. The top 500 SNPs under posterior

scores have substantially higher replication rates than the top 500 SNPs

under P-values. (D) Enrichment of whole-blood eQTLs in the top SNPs se-

lected based on P-value and posterior score. The vertical axis shows the

transformed P-value of hypergeometric test. (E) Fold enrichment of whole-

blood eQTLs in the top SNPs selected based on P-value and posterior score.

The vertical axis shows the ratio of observed and expected overlaps between

eQTLs and highly ranked SNPs
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Since imputation was done for both PGC2011 and PGC2014

studies, and the total number of SNPs is large, it is possible to com-

pare the SNP-level replication rates when the SNPs were ranked

based on P-values and posterior scores. Among the top 500 SNPs

with the largest posterior scores, 327, 267 and 152 had a P-value

lower than 5� 10�2, 5� 10�8 and 5� 10�15 in the PGC2014

study, respectively. When choosing the top 500 SNPs based on their

P-values, the corresponding numbers were 290, 237 and 120

(Fig. 4C), respectively. A similar pattern can be observed for the top

200 SNPs (Supplementary Fig. S5). We further performed enrich-

ment analysis using GTEx whole-blood eQTLs. The top 1000 SNPs

based on the P-values were significantly enriched for eQTLs

(P-value¼5:58� 10�27, fold enrichment¼4.66), but the enrich-

ment for the top 1000 SNPs based on the posterior scores was even

stronger (P-value¼4:48� 10�32, fold enrichment¼5.12). As the

number of top SNPs increased, the posterior-based top SNPs always

had stronger enrichment of eQTL than the P-value-based list

(Fig 4D, E). Similar results can be observed when using another set

of blood eQTLs (Westra et al., 2013). The enrichment results for a

set of quantitative trait loci in human brain (Gibbs et al., 2010) also

favor posterior scores as the number of top SNPs increase

(Supplementary Fig. S3).

Finally, we compared PGC2011 P-values, PGC2011 posterior

scores, and PGC2014 P-values at two loci to further illustrate the

performance of our method. The first locus is on chromosome 3q26.

It had the strongest signal in PGC2014 among the P-value-specific

top 20 loci (Supplementary Table S6, P2014 ¼ 5:35� 10�11). Based

on the P-values in the PGC2011 study, the strongest signals reside in

the intergenic region upstream of FXR1. But the posterior scores

brought down those intergenic SNPs, and enhanced the signals in

FXR1 instead, which is in agreement with the results from

PGC2014 (Fig. 5A). In fact, from the PGC2014 P-values, we can

clearly see that the strongest signals reside in FXR1 while the signifi-

cant results for the SNPs upstream or downstream of FXR1 are

most likely due to LD. The second example is on chromosome 8q21

(Fig. 5B). In the PGC2011 study, the strongest signal at this locus

resides in the intergenic region between 89.7M and 89.8M.

However, posterior scores removed most of the correlated SNPs at

this locus, leaving three separate peaks as candidate functional

spots. The first peak lies right upstream of MMP16. The second

peak is more upstream (�89.6M), and is suggested to be the stron-

gest signal source. The SNPs with the lowest P-values in PGC2011

remained as a signal peak, but their posterior scores were not as

strong as the peak in the middle. Most interestingly, the results from

the posterior scores perfectly matched the signal patterns in the

PGC2014 study. From the lowest panel in Figure 5B, we can clearly

see two separate peaks at the same locations suggested by the poster-

ior scores, with the one near 89.6M being the strongest signal

source. Also, the SNPs between 89.7M and 89.8M had weaker sig-

nals than the peak in the middle. Notably, this entire risk locus res-

ides in an intergenic region. This example shows that our method

can effectively prioritize SNPs in the non-coding genome.

3.3 Several remarks on gene centricity
We annotated all the SNPs in the NIDDK GWAS for Crohn’s dis-

ease using the RefGene database. Among the 298 321 SNPs in this

dataset, 158 028 (53.0%) are intergenic. Among the top 1000 and

the top 2000 SNPs with small P-values, the proportion of intergenic

SNPs is relatively stable (549 out of 1000, 54.9%; and 1064 out of

2000, 53.2%). However, the proportion of intergenic SNPs substan-

tially decreased among the top SNPs with higher posterior scores

(403 out of top 1000, 40.3%; and 769 out of top 2000, 38.5%). We

repeated the analysis on PGC2011 schizophrenia GWAS. A similar

pattern could be observed (Supplementary Fig. S6). These results

show that GenoWAP does favor protein-coding regions. However, a

large proportion of non-coding signals still remain after prioritiza-

tion, indicating the necessity of considering non-coding and even

intergenic regions.

4 Discussion

In this study, we developed and applied GenoWAP to two sets of

GWAS data to illustrate its performance in GWAS signal prioritiza-

tion. Compared to P-values, GenoWAP posterior scores can better

prioritize SNPs in many different ways. At the locus level, posterior

score is more efficient in the sense that fewer SNPs are needed to

identify the same number of top loci. Moreover, noises due to

chance are effectively reduced, and the highly ranked loci using pos-

terior scores may be more likely to contain functional elements than

the top loci selected purely based on P-values. At the SNP level,

markers with high posterior scores have both better replication rates

Fig. 5. Local performance in studies of schizophrenia. From top to bottom, the

three panels show the P-values from the PGC2011 study, the posterior scores,

and the P-values from the PGC2014 study, respectively. (A) Local perform-

ance at the risk locus on chromosome 3q26. The top signals at this locus in

the PGC2011 study reside upstream of gene FXR1, while the posterior scores

pull down those signals and suggest the importance of SNPs in FXR1. This

agrees with the signal pattern in the PGC2014 study. (B) Local performance at

the risk locus on chromosome 8q21. Posterior scores diminish most of the

correlated SNPs at this locus, leaving three separate signal peaks. The peak

near 89.6M is suggested to be the strongest signal source, which cannot be

seen using P-values from the PGC2011 study. The signal peaks suggested by

posterior scores perfectly match the strongest signals in the PGC2014 study.

Figures are generated using LocusZoom (Pruim et al., 2010)
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and consistently stronger enrichment of eQTLs than the top SNPs

based on P-values. More importantly, within each risk locus identi-

fied in GWAS, posterior scores can effectively suggest potential

functional sites among a large number of correlated SNPs.

The performance of GenoWAP depends on the accuracy of func-

tional annotation. Due to our limited understanding of non-coding

genome, it is challenging to provide accurate genomic functional an-

notation. GenoCanyon is a convenient tool that provides functional

prediction at the nucleotide level, yet its predictive ability can still be

improved. Large consortia such as ENCODE (Bernstein et al., 2012)

and Roadmap project (Kundaje et al., 2015) are continuously gener-

ating diverse types of epigenetic annotation data from a variety of

cell types. The performance of GenoWAP may be further enhanced

when these data become available in the future. In our implemented

software, we allow users to use their own annotation file.

GenoWAP also depends on the quality of GWAS data. If no infor-

mation is contained in the GWAS dataset, then GenoWAP can only

provide limited insight. Finally, we emphasize that GenoWAP’s abil-

ity to identify precise functional factors is limited. GenoWAP is a re-

gion-based tool, and is powerful in identifying regions that are more

likely to have a functional impact within LD blocks. However, de-

finitive proof for functionality of any given SNP still requires thor-

ough allele-specific experimentation.

More than 2000 GWASs have been published in the past dec-

ade, and the number continues to grow. It is well known that our

ability to identify new risk loci for complex diseases has surpassed

our ability to interpret the results. However, although we are

overwhelmed by the large amount of information detected in

GWASs, evidence such as missing heritability still suggests that

many risk loci remain to be discovered. Therefore, there is press-

ing need for GWAS signal prioritization tools, and our method

has great potential for future application. Since GenoWAP uses

only P-values as the input, it is convenient to apply our method

on published results, which may help reveal potential functional

sites within large haplotype blocks, and ultimately help under-

stand disease etiology. Moreover, for multi-stage GWASs,

GenoWAP can be used to better prioritize SNPs from the discov-

ery stage to the validation planning and increase the replication

rates. Finally, next-generation sequencing is widely recognized as

the future of genomic epidemiology. However, the high cost of

sequencing usually leads to insufficient sample sizes and many

other challenging issues (Sboner et al., 2011). The combination of

GenoWAP and the rich collection of publicly available GWAS

data has the potential to provide functional candidates and guide

sequencing analysis in the future.
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