
Genome analysis

BGT: efficient and flexible genotype query

across many samples

Heng Li

Medical Population Genetics Program, Broad Institute, Cambridge, MA 02142, USA

Associate Editor: Alfonso Valencia

Received on June 28, 2015; revised on September 23, 2015; accepted on October 16, 2015

Abstract

Summary: BGT is a compact format, a fast command line tool and a simple web application for effi-

cient and convenient query of whole-genome genotypes and frequencies across tens to hundreds

of thousands of samples. On real data, it encodes the haplotypes of 32 488 samples across 39.2 mil-

lion SNPs into a 7.4 GB database and decodes up to 420 million genotypes per CPU second. The

high performance enables real-time responses to complex queries.

Availability and implementation: https://github.com/lh3/bgt

Contact: hengli@broadinstitute.org

1 Introduction

VCF/BCF (Danecek et al., 2011) is the primary format for storing

and analyzing genotypes of multiple samples. It however has a few

issues. First, VCF is a site-oriented format. Although accessing a site

and all the associated genotypes is efficient with indexing, retrieving

site annotations or the genotypes of a few samples always requires

to decode the genotypes of all samples, which is unnecessarily ex-

pensive. Second, VCF does not take advantage of linkage disequilib-

rium (LD), while using this information can dramatically improve

compression ratio (Durbin, 2014). Third, a VCF record is not clearly

defined. Each record may consist of multiple alleles with each allele

composed of multiple SNPs and INDELs. This ambiguity compli-

cates annotations, query of alleles and integration of multiple

datasets. At last, most existing VCF-based tools do not support ex-

pressive data query. We frequently need to write scripts for

advanced queries, which costs both development and processing

time. GQT (Layer et al., 2015) attempts to solve some of these

issues. Although it is very fast for selecting a subset of samples and

for traversing all sites, it discards phasing, is inefficient for region

query and is not compressed well. The observations of these limita-

tions motivated us to develop BGT.

2 Methods

Unlike VCF which stores sample phenotypes, site annotations and

genotypes all in one file, BGT separates the three types of information

into individual files. BGT keeps diploid genotypes as a 2-bit integer

matrix ðHkiÞ with row indexed by a pair of overlapping reference/

non-reference alleles and column by a sample haplotype (thus for m0

samples, the matrix has 2m0 columns). Hki takes value 0 if the i-th

haplotype has the reference allele in the allele pair at row k, takes 1 if

the haplotype has the non-reference allele, 2 if unknown and 3 if the

haplotype has a different non-reference allele. BGT arbitrarily phases

unphased genotypes and always breaks complex variants in VCF

down to the smallest possible variants. It keeps the allele pairs (i.e.

rows) in a site-only BCF, disallowing multiple alleles per VCF line,

and stores the integer matrix as two positional BWTs (PBWTs), one

for the lower bit and the other for the higher bit.

BGT obtains phenotypes and site annotations from files in the

Flat Metadata Format (FMF). FMF is TAB-delimted with the first

column showing the row name and following columns giving typed

key-value pairs. An example looks like:

sample1 gender:Z:M height:f:1.73 foo:i:10

sample2 gender:Z:F height:f:1.64 bar:i:20

BGT can retrieve rows via an arbitrary expression such as

‘height>1.65’.

The multi-file design makes BGT unfriendly to data streaming

but it enables BGT to use one set of site annotations across multiple

BGT files and allows users to modify phenotypes and annotations

without re-encoding all the genotypes.

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 590

Bioinformatics, 32(4), 2016, 590–592

doi: 10.1093/bioinformatics/btv613

Advance Access Publication Date: 24 October 2015

Applications Note

https://github.com/lh3/bgt
Deleted Text: 
Deleted Text: 
Deleted Text: 
Deleted Text: ly
Deleted Text: While
Deleted Text: ly
Deleted Text: 
Deleted Text: 
Deleted Text: ly
Deleted Text: data sets.
Deleted Text: 
Deleted Text: 
Deleted Text: 
Deleted Text: While
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: ``
Deleted Text:  >
Deleted Text: ''
Deleted Text:  
Deleted Text: ,
Deleted Text:  use
Deleted Text:  
http://www.oxfordjournals.org/


2.1 PBWT overview
PBWT (Durbin, 2014) is a generic way to encode binary matrices.

Let ðAkÞk ¼ ðA0; . . . ;An�1Þ denote a list of m-long binary strings.

ðAkÞk can be regarded as an n�m binary matrix with Ak½i� repre-

senting the cell at row k and column i. For simplicity, introduce a

sentinel row A�1 ¼ $0 $1 � � � $m�1 with a lexicographical order

$0 < � � � < $m�1.

Define binary string:

Pki ¼ Ak½i�Ak�1½i� . . . A0½i�A�1½i�

to be the reverse of the column prefix ending at (k, i) and define SkðiÞ
to be the column index of the i-th smallest prefix among set fPkjgj

.

SkðiÞ is a bijection on f0; . . . ;m� 1g and thus invertible. In a special

case, S�1ðiÞ ¼ i because P�1;i ¼ A�1½i� ¼ $i.

The PBWT of ðAkÞk is ðBkÞk, which is calculated by

Bk½i� ¼ Ak½Sk�1ðiÞ�

An important use of ðBkÞk is to compute Sk. Define

/kðiÞ ¼ CkðBk½i�Þ þ rankkðBk½i�; iÞ

where CkðbÞ gives the number of symbols in Bk that are lexicograph-

ically smaller than b and rankkðb; iÞ the number of b symbols in Bk

before position i. The i-th smallest column in row k – 1 is ranked /k

ðiÞ in row k. Thus

Skð/kðiÞÞ ¼ Sk�1ðiÞ

Given Ak and Sk�1, we can compute Sk and Bk in the order of

Bk ! /k ! Sk, starting from k¼0. Conversely, given Bk and Sk�1,

computing /k ! Sk ! Ak derives Ak from Bk.

When there are strong correlations between adjacent rows,

which is true for haplotype data due to LD, 0 s and 1 s tend to form

long runs in Bk. This usually makes Bk much more compressible

than Ak under run-length encoding. For our test dataset, 32 000

genotypes in a row can be compressed to <200 bytes in average.

2.2 Query genotypes and output
A BGT query may consist of three types of conditions: (a) genotype-

independent sample selection, such as a list of sample names or an

arbitrary expression on phenotypes; (b) genotype-independent site

selection, such as a genomic region, a list of alleles or an arbitrary

expression on variant annotations; (c) genotype-dependent site con-

ditions, such as alleles being common among selected samples. We

may select multiple groups of samples with (a)-typed conditions. For

each group, BGT will compute aggregate variables, including the

number of called samples and the allele count, which can be output-

ted or used in (c)-typed conditions.

BGT usually outputs VCF/BCF with aggregate variables written

to the INFO field. It may optionally output a TAB-delimited table

on user selected fields. BGT may also output the samples having a

list of alleles, and the counts of haplotypes across requested alleles

in multiple sample groups.

2.3 BGT server
BGT comes with a standalone web server frontend implemented in

the Go programming language. The server has a similar interface to

the command line tool but with additional consideration of sample

anonymity. With BGT, each sample has an attribute ‘minimal group

size’ or MGS. If a query selects a group containing a sample with a

MGS larger than the requested group size, the server will refuse the

request. In particular, if a sample has MGS larger than one, users

cannot access its sample name and individual genotypes but can re-

trieve allele counts computed together with other samples. This pre-

vents users to access data at the level of a single sample.

3 Results

We generated the BGT database for the first release of Haplotype

Reference Consortium (HRC; http://bit.ly/HRC-org). The input is a

BCF containing 32 488 samples across 39.2 million SNPs on auto-

somes. The BGT file size is 7.4 GB, 11% of the genotype-only BCF

or 8% of GQT. Decoding the genotypes of all samples across 142 k

sites in a 10 Mbp region takes 11 CPU seconds, which amounts to

decoding 420 million genotypes per second. This speed is even faster

than computing allele counts and outputting VCF.

We use the following command line to demonstrate the query

syntax of BGT:

bgt view -G -d var.fmf.gz -a’gene¼¼“BRCA1”’ \
-s ’source¼¼“IBD”’ -s ’source¼¼“1000G”’ \
-f ’AC1/AN1>¼0.001&&AC2/AN2>¼0.001’ \

HRC-r1.bgt

It finds BRCA1 variants annotated in ‘var.fmf.gz’ that have �0.1%

frequency in both the IBD dataset (http://www.ibdresearch.co.uk)

and 1000 Genomes (1000 Genomes Project Consortium, 2012). In

this command line, -G disables the output of genotypes. Option -a

selects variants with the ‘gene’ attribute equal to ‘BRCA1’ according

to the variant database specified with -d. This condition is a (b)-

typed condition independent of sample genotypes. Each option -s

sets an (a)-typed condition, selecting a group of samples based on

phenotypes. For the #-th sample group/ -s, BGT counts the total

number of called alleles and the number of non-reference alleles and

writes them to the AN# and AC# aggregate variables, respectively.

Option -f then use these aggregate variables to filter output. This is

a (c)-typed condition.

The command line earlier takes 12 CPU seconds with most of

time spent on reading through the variant annotation file to find

matching alleles. The BGT server reads the entire file into memory

to alleviate the overhead but a better solution would be to use a

proper database for variant annotations.

To demonstrate the server frontend, we have also set up a public

BGT server at http://bgtdemo.herokuapp.com. It hosts 1000

Genomes haplotypes for chromosome 11 and 20.

4 Discussion

Given a multi-sample VCF, most BGT functionalities can be

achieved with small scripts, but as a command line tool, BGT has a

few advantages. First, it saves development time. Extracting infor-

mation from multiple files can be done with a command line instead

of a script. Second, BGT saves processing time. With high-perform-

ance C code at the core, BGT is much faster than processing VCF in

a scripting language such as Perl or Python. For example, deriving

allele counts in a 10 Mbp region for the HRC data takes 30 s with

BGT, but doing the same with a Perl script takes 40 min, a 80-fold

difference. Third, the design of one non-reference allele per record

simplifies BGT merge and makes it twice as fast as bcftools merge

on two genotype-only input files.

BGT: efficient genotype query 591

Deleted Text: 
Deleted Text: 
Deleted Text:  &times; 
Deleted Text: . 
Deleted Text:  
Deleted Text: . 
Deleted Text: . 
Deleted Text: ,
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text:  &equals; 
Deleted Text: ,
Deleted Text:  
Deleted Text: 0s
Deleted Text: 1s
Deleted Text: data set
Deleted Text: thousand
Deleted Text:  less than 
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: ,
Deleted Text: ,
Deleted Text:  
http://bit.ly/HRC-org
Deleted Text: ,
Deleted Text: 4GB
Deleted Text: ,
Deleted Text: 142k
Deleted Text: 10Mbp
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text:  
Deleted Text: data set
http://www.ibdresearch.co.uk
Deleted Text: 
Deleted Text: 
Deleted Text:  
Deleted Text: above
Deleted Text: ,
Deleted Text:  
http://bgtdemo.herokuapp.com
Deleted Text:  
Deleted Text: ly
Deleted Text: ly
Deleted Text: 10Mbp
Deleted Text:  seconds
Deleted Text:  minutes
Deleted Text: ly
Deleted Text:  


The BGT server tries to solve a bigger problem: data sharing.

Instead of always delivering full data in VCF, projects could have a

new option to serve data publicly with the BGT server, letting users

select the summary statistics of interest on the fly while keeping sam-

ples unidentifiable. This is an improvement to Stade et al. (2014)

which only provide precomputed summary.

We acknowledge that our MGS-based data sharing policy might

have oversimplified real scenarios, but we believe this direction,

with proper improvements and more importantly the approval of

ethical review boards, will be more open, convenient, efficient and

secure than our current share-everything-with-trust model.

Acknowledgements

The authors are grateful to HRC for granting the permission to use the data

for evaluating the performance of BGT and thank the Global Alliance Data

Working Group for the helpful suggestions.

Funding

NHGRI [U54HG003037]; NIH [GM100233].

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium. (2012) An integrated map of genetic vari-

ation from 1 092 human genomes. Nature, 491, 56–65.

Danecek,P. et al. (2011) The variant call format and VCFtools.

Bioinformatics, 27, 2156–2158.

Durbin,R. (2014) Efficient haplotype matching and storage using the positional

Burrows-Wheeler transform (PBWT). Bioinformatics, 30, 1266–1272.

Layer,R.M. et al. (2015) Efficient compression and analysis of large genetic

variation datasets. bioRxiv, dx.doi.org/10.1101/018259.

Stade,B. et al. (2014) GrabBlur–a framework to facilitate the secure exchange

of whole-exome and -genome SNV data using VCF files. BMC Genomics,

15 (Suppl. 4), S8.

592 H.Li

Deleted Text: 
Deleted Text: 
Deleted Text:  

