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AbstrAct

In the 3 years since residual gadolinium-based contrast agent (GBCA) in the brain was first reported, much has been 
learned about its accumulation, including the pathway of GBCA entry into the brain, the brain distribution of GBCA and 
its excretion. Here we review recent progress in understanding the routes of gadolinium deposition in brain structures.
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introDuction
Gadolinium is a heavy metal and it is toxic to humans. 
Once it has entered the body, most of it is retained. In its 
major use as the contrast agent in MRI procedures, it is 
administered in chelated form. The chelation of gadolinium 
protects the body from the toxicity and allows rapid elim-
ination of the metal. In fact, gadolinium-based contrast 
agents (GBCAs) have been safely used for over 25 years, 
except for rare cases of nephrogenic systemic fibrosis and 
acute allergic reactions.1

However, in 2013, our group reported the detection of 
gadolinium deposition in the brain, which led to a recon-
sideration of the safety of GBCA.2 Following GBCA admin-
istration, the gadolinium component persists in the human 
brain long enough to raise concern about its toxicity. 
Among the many researchers who have further investigated 
this phenomenon are Errante3 and Adin,4 who evaluated 
the association between a history of GBCA administration 
and the high signal intensity of the dentate nucleus on the 
MRI scans of these patients. Their results paralleled our 
own. Finally, gadolinium deposition in the human brain 
was confirmed in autopsy specimens.5–7 In the following, 
we review recent progress in studies of gadolinium deposi-
tion in the brain.

The basic chemistry of GBCAs
Commercially available GBCAs are divided into linear 
chelated and macro-cyclic chelated GBCAs. Linear GBCAs 
are relatively unstable compared with macrocyclic GBCAs. 

Both the thermodynamic and the kinetic stability of GBCAs 
have been evaluated in vitro, but there is no good indicator 
of their in vivo stability.8,9

Our group demonstrated the high signal intensity in 
the dentate nucleus and globus pallidus on T1  weighted 
imaging (T1WI) and its correlation with the number of 
previous linear GBCA administrations. With a history of 
more than five linear GBCA administrations, high signal 
intensity appears in the dentate nucleus and globus pall-
idus.2 To determine whether GBCA stability correlates with 
the high signal intensity of these brain structures, we eval-
uated 127 patients who had undergone contrast-enhanced 
MRI. Nine patients had a hyperintense dentate nucleus. The 
high signal intensity correlated with past administration 
of the gadopentetate dimeglumine (linear GBCA) but not 
with that of the gadoteridol (10     Radbruch et al evaluated 
50 patients (linear group) with a history of at least 6 (mean 
7.06) linear GBCA (gadopentetate dimeglumine) injec-
tions and 50 patients (macrocyclic group) with a history 
of at least 6 (mean 7.32) injections of macrocyclic GBCAs 
(gadoterate meglumine) for contrast-enhanced MRI. The 
signal intensities of the dentate nucleus and globus pall-
idus were significantly increased in the linear but not the 
macrocyclic group.11 These results convinced most radiol-
ogists that repeated linear, but not macrocyclic GBCA 
administration increased the signal intensity in the dentate 
nucleus. In their study of patients with high-dose macro-
cyclic GBCA administration, Radbruch et al evaluated 33 
patients who had received at least 20 macrocyclic GBCA 
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injections and found no change in the signal intensity of the 
dentate nucleus.12 These data suggest that macrocyclic GBCAs, 
even at high doses, are unlikely to result in a high signal intensity 
of the dentate nucleus.

An exception was reported by Stojanov, et al13 in a study of 
58 patients with 4 to 6 macrocylic GBCA (gadobutrol) admin-
istrations. Increased signal intensities of the dentate nucleus 
and globus pallidus based on region-of-interest analysis were 
detected; however, in our opinion, the areas shown in their 
published figures do not exhibit obvious high intensity. More-
over, gadobutrol is of relatively low thermodynamic stability, but 
of high kinetic stability.1 Thus, doubts arose regarding the result 
of Stojanov et al13 and attempts were made to replicate their 
study.14 Radbruch et al analysed the MRI scans of 30 patients 
administered gadobutrol for a mean 7.3 times and found no 
change in signal intensity even though the amount of GBCA 
administered to the patients in their series was higher than in 
Stojanov’s study.15 Cao et al also assessed 25 patients adminis-
tered gadobutrol for a mean 7.8 times and concluded that the 
repeated administration of gadobutrol does not cause a signal 
intensity change in the dentate nucleus.16 It is therefore now 
widely held that repeated linear, but not but macrocyclic GBCA 
administration causes a signal change in the dentate nucleus on 
MRI. Further support for this finding comes from in studies in 
rats.17,18

In addition, linear GBCAs also differ in their stability. Ramalho 
et al compared the brain MRI scans of 23 patients who previ-
ously received an average of five gadodiamide (linear GBCA) 
administrations and 46 patients who previously received an 
average of 4.6 administrations of gadobenate dimeglumine 
(linear GBCA). High signal intensity in the dentate nucleus 
was observed only in the gadodiamide administration group, 
indicating that it leads to greater gadolinium accumulation in 
the brain than is the case with gadodiamide.19 Weberling, et al 
compared the brain MRI scans of 50 patients with an average of 
7.7 previous gadobenate dimeglumine (linear GBCA) adminis-
trations, 50 patients with an average of 6.3 previous gadopen-
tetate dimeglumine (linear GBCA) administrations and 50 
patients with an average of 6.1 previous gadoterate meglumine 
(macrocyclic GBCAs) administrations. The signal intensity of 
the dentate nucleus in the gadobenate dimeglumine group was 
lower than that in the gadopentetate dimeglumine group, but 
higher than that in the gadoterate meglumine group.20 These 
results indicated that administration of the linear GBCA gado-
benate dimeglumine causes a high signal intensity in the dentate 
nucleus but of a smaller magnitude than associated with other 
linear GBCAs.

Gadoxetic acid is a hepato-specific linear GBCA partially 
excreted by the liver. The amount of gadolinium in a stan-
dard clinical dose of gadoxetic acid is only a quarter of 
that in other GBCAs. However, Kahn, et al reported a high 
signal intensity of the dentate nucleus in patients with  >10   
gadoxetic acid administrations (the dose of gadoxetic acid was 
not reported).21

Brain distribution of gadolinium
In our first report, we evaluated brain gadolinium deposition on 
MRI scans. The results showed a correlation between the signal 
intensity of the dentate nucleus, and, to a lesser extent, that of the 
globus pallidus, and the accumulated GBCA dose. In that study, 
patients had been administered a GBCA 0–30 times.2 McDonald 
et al evaluated the signal intensity change of the pulvinar and 
pons in addition to that of the dentate nucleus and globus pall-
idus in 13 patients with at least 4 GBCA administrations. The 
signal intensity of all brain structures correlated with the amount 
of past GBCA administration. The authors confirmed their find-
ings in autopsy specimens, as the gadolinium concentration in 
the same regions correlated with the dose of past GBCA admin-
istration.5 Our group evaluated five cadavers with previous 
GBCA administration.6 Gadolinium accumulation was detected 
in the dentate nucleus, globus pallidus, cerebellar white matter, 
frontal lobe white matter and frontal lobe cortical matter from 
the autopsy specimens. A higher signal intensity in the dentate 
nucleus and globus pallidus than in the other brain regions that 
were examined was again seen in patients with repeat GBCA 
administrations.

However, in our study,6 gadolinium was also detected in the 
brains of patients with no history of GBCA administration. Since 
gadolinium does not exist in nature, its source is unclear. Thus, 
the signal has been suggested to be an artefact (noise) of induc-
tively coupled plasma mass spectrometry (ICP-MS), to indicate 
an unknown history of GBCA administration, or evidence of 
gadolinium contamination during the experiment. It may also 
be that gadolinium levels are gradually increasing in the envi-
ronment due to the use of GBCAs in MRI and their wastewater 
discharge,22,23 such that the human body accumulates gado-
linium from environmental sources.

The high signal intensity associated with repeated GBCA admin-
istration is not limited to the dentate nucleus and globus pallidus 
but may also occur in other parts of the brain. Zhang et al evalu-
ated 13 patients with at least 35 administrations of linear GBCAs. 
They reported T1 shortening in the dentate nucleus (100%), 
globus pallidus (100%), substantia nigra (100%), thalamus 
pulvinar (92%), red nucleus (77%), colliculi (77%), superior 
cerebellar peduncle (54%), caudate nucleus (31%), whole thal-
amus (23%) and putamen (15%).24 Although described in a case 
report, high signal intensity was also recognized in the calcarine 
sulcus, pre-central gyri, and post-central gyri in the brain MRI 
scan of a patient who received GBCA at least 86 times.25 Since 
these tissues accumulate less gadolinium than the cerebellar 
dentate nucleus, a signal difference with the surrounding tissues 
will not be detected unless a large amount of contrast medium is 
administered.

Washout
In our initial report, we postulated that GBCA accumulation, 
while long-lasting, is not permanent, based on a graph of GBCA 
administration frequency  vs signal ratio, which showed that the 
rise in the latter decreases in patients with a larger number of 
contrast administrations.2 In the study that measured the gado-
linium concentration in autopsied brain tissue, there was a trend 
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in which the longer the period from GBCA administration to 
death, the lower the gadolinium concentration in the brain.6,7 
Radbruch et al reported a decrease in the signal ratio following 
the administration of a macrocyclic GBCA to a patient with a 
signal rise due to linear GBCA administration. This finding 
suggested that gadolinium washout from the brain following 
macrocyclic GBCA administration is greater than gadolinium 
accumulation due to linear GBCA administration.26

In a study from the GE Global Research Center, linear GBCA 
was administered to healthy rats 20 times (total: 12 mmol kg−1), 
and the gadolinium remaining in rat brain then measured 1 and 
20 weeks later. The gadolinium concentration in the rat brain at 
20 weeks was 50% less than that at 1 week after GBCA admin-
istration, consistent with a gadolinium washout mechanism.27 
In this study, it was unclear whether the decreased gadolinium 
was of the chelated or de-chelated form. The chemical form of 
residual gadolinium in the rat brain was the focus of another 
study. In another report from Frenzel, of Bayer AG, the gado-
linium concentration in the blood, cerebrospinal fluid  (CSF), 
and brain of rats was evaluated 4.5 and 24 h after intravenous 
GBCA administration. Saline, a linear GBCA, or a macrocyclic 
GBCA was administered 10 times, after which the gadolinium 
concentration in the brain tissue of rats was measured after 
3 days and after 24 days, distinguishing between water-soluble 
and water-insoluble forms. The concentration of water-soluble 
gadolinium in rat brain did not differ with respect to linear  
vs  macrocyclic GBCA administration and was lower after 24 
days than after 3 days, regardless of the type of GBCA. Water- 
insoluble gadolinium is observed in the rat brain only after the 
administration of linear GBCA, and its concentration in brain 
structures does not change between 3 and 24 days.28 These 
results suggest that, after GBCA administration, only the frac-
tion of gadolinium that becomes water-insoluble, due to chelate 
detachment, persists in the brain and is then gradually excreted. 
The fraction of gadolinium excreted from the brain remains to 
be determined.

Glymphatic system
How gadolinium-based contrast agents enter the brain is unclear. 
In the transport of metals that are essential elements required 
for normal function,29 metal transporters are involved, but these 
sometimes malfunction and recognize other metals.30,31 The 
globus pallidus and cerebellar dentate nucleus, that is, the struc-
tures of high signal intensity on T1WI images in patients with 
repeat GBCA administration, are sites where metals such as iron 
are deposited.32,33 Although we initially hypothesized that gado-
linium passes through the blood–brain barrier (BBB) via a metal 
transporter, the mechanism seems to be more complicated.

Takeda et al administered a tracer metal (65ZnCl2 or 54MnCl2) 
intravenously to rats and evaluated its pathway in the brain. 
Both 65ZnCl2 and 54MnCl2 first accumulated in the CSF and 
then entered the brain, where they were redistributed.34 Aoki 
et al administered manganese to the rat intravenously and then 
performed brain MRI 2 h, 1, 4 and 14 days later. Manganese was 
detected only in the CSF 2 h after the infusion but then spread 
throughout the brain.35 These results indicated that metals in the 

brain are mainly transported from the CSF rather than entering 
by crossing the blood–brain barrier.

Iliff et al showed that most of the CSF enters the brain intersti-
tium from around the penetrating branch artery and is excreted 
from around the cerebral vein to the lymphatic vessels of the 
neck. They also showed that low-molecular weight molecules 
enter the brain via the CSF flow and are then excreted into the 
lymphatic vessels.36 Commercially available GBCAs injected into 
the intrathecal space of the rat brain are also transported into the 
brain by this pathway.37 In 2015, Louveau et al38 and Aspelund 
et al39 established the presence of lymphatic vessels in the brain. 
They named this CSF flow pathway the glymphatic system.40

GBCA transfer from the CSF to the brain occurs not only in rats 
but also in humans. Eide et al performed brain MRI 1 and 4.5 h 
after the administration of GBCAs into the intrathecal space of 
patients with intracranial hypotension and suspected spontaneous 
CSF leakage. On T1WI MRI, the brain signal after GBCA admin-
istration gradually increased, coinciding with GBCA transfer from 
the CSF to the brain.41 In the study by Öner et al, 6 patients who 
received between 0.5 and 1 ml of linear GBCAs (gadopentetate 
dimeglumin) via injection into the intrathecal space 2–12 years 
earlier were examined by brain MRI. These patients without a 
history of GBCA intravenous administration nonetheless had high 
signal intensity in the dentate nucleus and globus pallidus,42 which 
suggests that the gadolinium contrast agent migrated from the CSF 
into the brain, accumulating in brain structures.

While GBCA in the CSF is transported through the glymphatic 
system into the brain, the mechanism by which GBCA in the 
blood is transported to the CSF is unclear. GBCA adminis-
tered to a patient undergoing dialysis is detected in the CSF 
by MRI performed several days after GBCA administration.43  
Naganawa et al evaluated brain MRI scans performed 4 h after 
intravenous GBCA administration in 27 patients with near 
normal renal function. The signal intensities of the subarachnoid 
and perivascular spaces on the contrast-enhanced FLAIR images 
were significantly higher than those before GBCA administra-
tion, indicating that GBCA is also transferred to the CSF even in 
patients with near normal kidney function.44

In another report from Jost, of Bayer AG, the gadolinium concen-
tration in the blood, CSF, and brain of rats was evaluated 4.5 and 
24 h after intravenous GBCA administration. At 4.5 h, the gado-
linium concentration was higher in the CSF than in the blood. 
At 24 h, the concentration was higher in the brain than in the 
blood and CSF. In the cerebellum and brain stem, however, the 
gadolinium concentration did not change regardless of whether 
linear or macrocyclic GBCA was used.45

Since long-term gadolinium deposition in the brain is greater 
with linear than with macrocyclic GBCAs, the deposits are prob-
ably made up mostly of the de-chelated form. The chelated form 
of gadolinium is transported in the brain via the glymphatic 
system; some of it is then released from the chelate and remains 
in the brain. In the study of GE Global Research Center, the gado-
linium concentration in rats after linear GBCA administration 
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MRI sequences
Most of the studies that examined the high signal intensity in the 
dentate nucleus on MRI were retrospective, based on spin echo 
T1WI,2,5,11 T1FLAIR,4 or magnetization prepared rapid acquisi-
tion of gradient echo sequence (MPRAGE)46 images. However, 
gadolinium depositions in the dentate nucleus and globus pall-
idus are very small,5–7 such that the detection limit must be taken 
into account in MRI evaluations. We reported that spin echo 
T1WI has a higher sensitivity than T1FLAIR images in the detec-
tion of the hyperintense signal of the dentate nucleus.47 Ramalho 
et al evaluated the spin echo T1WI and MPRAGE images of 18 
patients who underwent at least three linear GBCA administra-
tions. Rather than comparing the detectability of the high signal 
intensity in the dentate nucleus by these two imaging methods, 
they examined the agreement between the visual and quantita-
tive evaluations and reported that better results were obtained 
with the MPRAGE sequences.46

Recent studies have been aimed at the more accurate evaluation 
of gadolinium deposits in the brain using MRI. Tedeschi et al 
measured the R1 (1/T1) and R2* (1/T2*) of the dentate nucleus 
in the scans of 74 multiple sclerosis patients with an average of 
6 GBCA administrations. The R1 correlated with the number 
of previous GBCA administrations, but the R2* correlated only 
with patient age.48 This result indicated that the high signal inten-
sity of the cerebellar dentate nucleus reflects gadolinium rather 
than iron deposition, as the latter changes R2*. Hinoda et al used 
quantitative susceptibility mapping to evaluate 48 patients with 
an average of 9.5 GBCA administrations (contrast group) and 
48 patients never administered GBCA (non-contrast group). 
Significantly higher magnetic susceptibility was determined in 
the contrast group than in the non-contrast group, and signal 
intensity was also significantly higher on the T1WI images of 
the former.49 Kuno et al measured the T1 and T2 of the whole 
brain in 9 patients with between 1 and 8 previous GBCA admin-
istrations (contrast group) and 26 patients who never had been 
administered GBCA (non-contrast group). The T1 value of the 

gray matter was significantly lower in the contrast group than 
in the non-contrast group, but the difference in the white matter 
of the 2 groups was not significant. The T2 value of the whole 
brain did not differ between these groups, but it did correlate 
with the number of previous GBCA administrations. Although 
their study showed that gadolinium deposition occurs in the 
whole brain, many of their results were not statistically signifi-
cant because of the small number of patients and limited number 
of previous GBCA administrations.50 Further studies are needed 
to determine whether T1 and T2 maps are useful in the quantifi-
cation of gadolinium deposition.

Safety
Gadolinium deposition in the brain was first reported roughly 
3 years ago. Initially, concern was raised regarding gadolinium 
toxicity in humans,1 but thus far only a skin rash is evidence of 
past GBCA administration51,52 as there have been no reports 
clearly demonstrating brain toxicity. McDonald et al evaluated 
the brain tissue collected during the autopsy of patients each 
administered a total of 420 ml of gadodiamide (linear GBCA) 
over his or her lifetime but did not find pathological degenera-
tion of brain tissue related to gadolinium deposition. Welk et al 
evaluated nearly 100,000 patients administered GBCA but found 
no association with Parkinson's symptoms.53 Thus, the develop-
ment of severe symptoms due to gadolinium deposition in the 
brain subsequent to GBCA administration seems to be low.

In March 2017, the  European Medicines Agency’s Pharma-
covigilance and Risk Assessment Committee54 proposed to 
discontinue the marketing of linear GBCAs, except for liver-spe-
cific GBCAs. In Europe, the use of linear GBCAs will probably 
decline. However, in April, the American College of Radiology55 
and the U.S. Food and Drug Administration56 announced that 
there is no evidence to date that gadolinium accumulation in 
the brain is harmful to the human body, and there is no need to 
restrict its usage.

conclusion
Much has been learned in the past 3 years about the mecha-
nism of gadolinium accumulation in the brain following GBCA 
administration. Gadolinium retention in the brain is greater with 
linear than with macrocyclic GBCA. Gadolinium accumulation 
in the brain seems to involve the glymphatic system, the focus of 
continuing research.
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