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Objective: Hippocampus avoidance in whole brain radi-
otherapy (HA-WBRT) offers the feasibility of less-im-
paired cognitive function than conventional WBRT. The 
study aims to assess the radiological distribution of brain 
metastases  (BMs) with relation to the hippocampus 
and peri-hippocampus region as defined by the RTOG 
0933 for better understanding of margin definition in 
HA-WBRT treatment planning.
Methods: Consecutive patients with diagnosis of BM 
from enhanced MRI between March 2011 and July 2016 
were analysed. The pre-treatment T1  weighted, 
T2 weighted, T2 flair, three-dimensional spoiled gradient 
axial and contrast-enhanced axial cranial MR images 
of 226 patients are examined. The closest distances 
between the edge of hippocampus and the margin of 
tumours on different planes were measured.
Results: A total of 226 patients with 1080 visible 
metastatic sites were reviewed. The origin of the 
primary tumors was in 72.6% lung (n = 164), in 45 
cases (19.9%) breast cancer and in 7.5% other malig-
nancies (n = 17). There were 758 (70.2%) lesions 
situated beyond the tentorium. The median size of 
single lesion was 13.9 ±  14.7 mm. Impossible, it seems 

that more of the patients are with only one lesion, 
to verify. The hippocampus involvement was found 
in 3.1% (n = 7, 95% CI  0.01–0.05) within 5 mm, 5.7% 
(n = 13, 95% CI  0.03–0.09) within  10mm and 8.4%   
(n = 19, 95% CI 0.05–0.12) within 20 mm. In multivar-
iate analysis, the number 6 BM or higher was found 
to be an  independent risk factor  for hippocampal 
involvement (HI) (OR:  5.2, 5.38 and 3.84 in 5,  10 and  
20 mm).
Conclusion: This radiological study found that the inci-
dence of hippocampus involvement is low in patients 
with BM. HA-WBRT can be delivered under the context 
of complete radiological diagnosis after careful deline-
ation, proper margin definition and individual planning  
optimization.
Advances in knowledge: The incidence of HI in patients 
with initial diagnosis of BM from solid tumours impacts 
the radiotherapeutic decision. Our radiological data 
analysed the incidence of HI not only to the conventional 
5 mm margin definition, but also  expanded to wider 
margins as 10  and 20 mm from hippocampus, which will 
help the  treatment planning optimization with different  
technique.

Cite this article as:
Han Y-M, Cai G, Chai W-M, Xu C, Cao L, Ou D,  et al. Radiological distribution of brain metastases and its implication for the hippocampus 
avoidance in whole brain radiotherapy approach. Br J Radiol 2017; 90: 20170099.

https:// doi. org/ 10. 1259/ bjr. 20170099

Full PAPeR

Radiological distribution of brain metastases and its 
implication for the hippocampus avoidance in whole 
brain radiotherapy approach
1Yi-Min HAn, MD, 1GAnG CAi, MD, 2Wei-Min CHAi, MD, 1CHenG Xu, MD, 1lu CAO, MD, 1DAn Ou, 1JiA-Yi CHen, MD and 
3YOuliA M. KiROvA, MD

1Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
2Department of Radiology, RuiJin Hospital, Shanghai Jiao Tong University, Shanghai, China
3Department of Radiation Oncology, Institut Curie, Paris, France

Address correspondence to: Dr Jia-Yi Chen 
E-mail:  chenjiayi0188@ aliyun. com

The authors Jia-Yi Chen and Youlia M. Kirova contributed equally to the work

intRODuCtiOn
It is estimated that 200,000–400,000 patients are 
presented with brain metastases (BM)  from different 
kinds of primary malignant tumours in China every 
year. In  most of these, patients are diagnosed with 
lung or breast cancer.1 Radiotherapy remains as one of 
the treatments of choice for BM, which includes two 
different approaches: whole brain radiotherapy (WBRT) 
and stereotactic radiosurgery (SRS).2  Large prospective 

studies have found that for patients with 1 to 3 metas-
tases, SRS alone had similar effect on overall survival as 
SRS+WBRT.3–5 On the other hand, higher toxicity was 
observed in patients treated with WBRT,6–8 with symp-
toms as neurocognitive decline significantly affecting the 
quality of life. Thus, it is necessary to improve the tech-
nique of WBRT so as to lower the  rate of complication 
and remain the same in  cranial local control. Hippo-
campus avoidance in WBRT  (HA-WBRT) has become 
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Figure 1. Example for the hippocampal contouring of our hospital by DICOM system at the positon of axial. The 3D-T1W1 axial 
sequences was used for better visualization than T1 weighted sequence.

a treatment approach with increasing interest in recent  
years.

Hippocampus dysfunction is associated with memory problems.9 
The neural progenitor cells residing in the subventricular zone 
as well as the hippocampus are very sensitive to radiation. Even 
doses of 2  Gy could be very toxic.10 Considering the damage 
of neurocognitive function and quality of life, hippocampus 
avoidance in case of WBRT offers better tolerance. Results from 
RTOG 0933 study have shown that HA-WBRT could result in 
decreased rate of side effects.11 At the same time, the oncological 
safety is also an important point.

The purpose of this study is to assess the radiological distribution 
of BMs with relation to the hippocampus and peri-hippocampus 
(PH) regions as defined by the RTOG 0933 and to better define 
the hippocampal avoidance zone.

MetHODs
We studied all patients diagnosed with BM using MRI in the 
period between March 2011 and July 2016 in Ruijin Hospital. 
The eligibility of this study included: pre-treatment T1 weighted, 
T2  weighted, T2 flair, three-dimensional spoiled gradient 
(3D-SPGR) axial and contrast-enhanced axial cranial MR 
images, pathological proofs of primary tumours available from 
hospitalization system. The clinical characteristics including 
age at diagnosis of BM, sex, histology of primary tumours, BM 
status (synchronous or metachronous), extracranial metastases, 
number and distribution of BMs were collected. Number of BMs 
was calculated at the time of diagnosis. In total, 437 patients 

were screened and 226 of them were enrolled. The remaing 211 
patients were excluded because of the following reasons: lack of 
histology of the primary disease, skull metastases or meningeal 
metastasis without visible BM, the diagnosis of BM unclear, etc.

For all eligible patients, coronal and sagittal images were recon-
structed. Slice thickness of 1.3 mm was used to contour the 
hippocampus region. A senior resident performed the hippo-
campus contouring according to the contouring atlas of RTOG 
0933, and validated by a senior radiologist,12  focusing on the 
subgranular zone. Hippocampus was delineated on 3D-T1W1 
axial sequences in which BM could be better visualized than 
T1weighted sequence.13 Figures 1 and 2 show the contours made 
by the DICOM (Digital Imaging and Communications in Medi-
cine) system in our centre.

All the metastatic lesions were identified and measured by the 
same senior resident and validated by the senior radiologist. 
The lesions close to the hippocampus was contoured in order 
to precisely measure the closest distance.Tumours larger than 2 
mm on the graph was included. The distance between the edge of 
hippocampus and the lesions (oedema was excluded) on different 
slices were measured on the DICOM server (Figure 3).  In case 
of multiple metastases, the closest distance to hippocampus was 
calculated.

All data collected were analysed using the SPSS statistical 
software package (v. 19.0, IBM,  Armonk,  New York,  United 
States). Synchronous BM were defined as BM diagnosed before 
or no more in 2 months from the diagnosis of the primary 
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Figure 2. Coronal and sagittal reconstructed images are useful 
in localizing the hippocampus.

Figure 3. Example for the measure of the closest distances between the edge of hippocampus and the margin of tumours (oedema 
was excluded) on different plane.

Table 1. Demographic and clinical characteristics in 226 
patients

Parameters Numbers of 
patients Percentage (%)

Sex

  Male 115 50.9

  Female 111 49.1

Age in years  

  <60 116

  ≥60 100

  Median 61

  Range 20–84

Primary tumours  

   Lung cancer 164 72.6

  Breast cancer 45 19.9

  Other primaries 17 7.5

Number of BMs  

  1–3 160 70.8

  3–9 47 20.8

  >9 19 8.4

Extracranial metastases  

  Yes 129 57.1

  No 97 42.9

BM status

  Metachronous 155 68.6

  Synchronous 71 31.4

Extracranial tumour

   Stable 106 46.9

   Active 120 53.1

BM, brain metastase.

malignancy, and a metachronous BM is defined as a BM which 
was diagnosed 2 months or later after the diagnosis of the 
primary malignancy.14 Student's t-test was used to compare 
the latency period between the diagnosis of the primary and 
the diagnosis BMs in patients with lung  and breast cancer. 
Binary logistic regression analysis was used to determine the 
relationship between clinical characteristics and the involve-
ment of PH. Multivariate regression analysis was used to iden-
tify the risk factors of PH involvement and the cut-off value. 
All significant results were tested two-side with a p value of 
<0.05.

Results
A total of 226 patients with 1080 visible metastatic lesions were 
collected and analysed. There were 115 male patients (50.9%). 
The median age at the diagnosis of BM was 61 years (range, 
20–84). The primary tumour site was lung in 164 patients 
(72.6%), followed by breast cancer in 45 patients (19.9%) and 
other malignancies in 17 cases (7.5%). The demographic and 
clinical characteristics of all 226 patients are given in Table 1.

There were  71 patients diagnosed with synchronous BMs, and 
64 of them presented primary lung cancer. In 155 patients, we 
observed metachronous BMs, with mean latency time of 27.5 ± 
40.9 months, of them 14.2 ± 13.9 months in patients with lung 
cancer (n = 100) and 59.0 ± 61.4 months in patients with breast 
cancer (n = 42), respectively (p < 0.01).

The mean lesion size was 13.9 ± 14.7 mm (95% CI 11.9–15.8). 
The distribution of BMs in different intracranial substructure is 
shown in Table 2.

70% of the lesions (n = 758) were situated beyond the tentorium.

After measuring the distance of the closest margin from BMs 
to the hippocampus border in each patient, the frequency of 
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Table 2. The distribution of metastatic lesions by intracranial 
location (n = 1080)

Intracranial 
location Number of lesions Percentage (%)

Cerebellum lobe 322 29.8

Frontal lobe 268 24.8

Temporal lobe 168 15.6

Parietal lobe 128 11.9

Occipital lobe 131 12.1

Thalamus 45 4.2

Brainstems 18 1.6

Total 1080 100

Table 3. The incidence of hippocampal involvement with different peri-hippocampal margin definition

≤5 mm ≤10 mm (%) ≤20 mm (%)

No (%) Yes (%) No (%) Yes (%) No (%) Yes (%)
Histology of primary tumour 

  Lung

    Non-small cell lung cancer 141 (96.6) 5 (3.4) 139 (95.2) 7 (4.8) 134 (91.8) 12 (9.2)

    Small cell lung cancer 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

  Breast

    Luminal 16 (94.1) 1 (5.9) 15 (88.2) 2 (11.8) 15 (88.2) 2 (11.8)

    HER 2 over-expressed 12 (92.3) 1 (7.7) 11 (84.6) 2 (15.4) 11 (84.6) 2 (15.4)

    Triple-negative 13(100) 0 (0) 12 (92.3) 1 (7.7) 11 (84.6) 2 (15.4)

    Unknown

Other 17(100) 0 (0) 16 (94.1) 1 (5.9) 16 (94.1) 1 (5.9)

hippocampal involvement (HI) was classifed into three catego-
ries: 3.1% (7/226, 95% CI 0.01–0.05) within 5 mm, 5.7% (13/226, 
95% CI 0.03–0.09) within  10  mm and 8.4% (19/226, 95% CI 
0.05–0.12) within 20 mm. The details of incidence of PH involve-
ment  are described in Table 3.

Univarite analyses was performed to identify the risk factors 
affecting HI with three different margin categories. The following 
variables were evaluated: age, sex, extracranial metastases, BM 
status and number of BM. Number of BM was calculated both 
as continuous variable and categorical variable. The risk of HI 
was significantly increased with the increased number of BM. As 
categorical variable, the risk of HI is significantly increased in 
patients with 5 or more BMs. The details of univariated analysis 
are presented in Table 4. In multivariate analysis, 5 or more BMs 
are  independent risk factors for HI except for margin category 
of 5 mm, and 6 or more BMs are independent risk factors for HI 
with all the margin categories (Table 5).

45 of 226 patients who received WBRT after the BM diagnosis 
had complete radiological follow-up available. 18 of them were 
found intracranial progress of BM. At a median follow-up of 11 

months, there was only one new lesion in area of hippocampus 
(<5 mm).

DisCussiOn
In our radiological study, we tried to report the incidence of HI 
not only limited to 5 mm, but also extends to wider margins, 
which would be more practical in radiotherapeutic strategy. 
Our results showed that in patients with initial diagnosis of 
BM from solid tumour, mainly with lung cancer and breast 
cancer, the frequency of HI was 3.1, 5.7 and 8.4%, respectively, 
using border from hippocampus extending 5, 10 and 20 mm 
to the peripheral intracranial structure. The frequency of HI 
increases with the number of BM, which increases significantly 
in patients with 5 or more BMs (OR: 3.84 and 3.60 in 10 and 
20 mm), more significantly with 6 or more BMs (OR: 5.20, 5.38 
and 3.84 in 5,10 and 20 mm). These data might be helpful in 
better defining the oncological feasibility and technical refer-
ence in applying HA-WBRT technique. In patients with 1 to 
4 BMs, the HA zones could be reached in 10 mm from hippo-
campus. While in those with more than 5 BMs, the HA-WBRT 
should be more cautious.

In the published data, the frequency of HI in patients with initial 
diagnosis of BM is low, which provides the scientific hypothesis of 
HA-WBRT. In Gondi’s study,15 the incidence of PH involvement 
(hippocampus plus 5 mm margin) was 8.6% per patient, with 
3.0% of direct involvement. Similar results were reported in Ghia’s 
study.16  In their study, the incidence of HI is higher than in our 
study. Possible explanation is the difference between the studied 
populations, e.g. the percentage of primary small cell lung cancer in 
our study. In Gondi’s study, patients with primary small cell lung 
cancer and melanoma had higher incidence of melanoma patients. 
Similar to our results were reported by Guo’s and coll14. Wan’s 
study17 found that the rate of metastases was 3.4 and 4.3% in hippo-
campus and subventricular zone.Wu’s study18 found that 4.1% of 
patients had direct HI and 5.5% had PH involvement. Although the 
overall incidence of HI is low, there still exists some discrepancy 
from different series indicating different clinical and histological 
factors might influence the risk of HI.
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Table 4. Univariate analysis of the risk factors of HI with different margin definition

The expanded margin of peri-hippocampus

5 mm 10 mm 20 mm

OR (95% CI) p OR (95% CI) p OR (95% CI) p
Age      

  ≥60 vs <60 0.99 (0.93–1.06) 0.83 0.99 (0.95–1.04) 0.78 0.99 (0.95–1.03) 0.73

Sex

   Male  vs female 0.71 (0.16–3.27) 0.67 0.41 (0.12–1.367) 0.14 0.68 (0.2633–1.76) 0.42

Extracranial tumour      

   Active  vs stable 3.75 (0.27–51.37) 0.32 0.4 (0.03–6.18) 0.51 0.54 (0.96–2.99) 0.48

Extracranial metastases

  No  vs yes 1.95 (0.36–10.89) 0.43 0.87 (0.28–2.68) 0.81 0.65 (0.25–1.67) 0.37

BM status      

Synchronous  
vs metachronous

0.35 (0..04–2.98) 0.34 0.38 (0.81–1.75) 0.21 0.76 (0.26–2.19) 0.61

Number of BM   

  Continuous variable 1.08 (1.03–1.12) 0.002 1.08 (1.03–1.13) 0.001 1.08 (1.03–1.12) 0.001

  >3 vs 1–3 3.38 (0.73–15.52) 0.12 4.28 (1.34–13.60) 0.14 3.00 (1.16–7.76) 0.24

  >4 vs 1–4 2.90 (0.63–13.43) 0.29 3.49 (1.11–10.93) 0.15 3.04 (1.15–8.04) 0.10

  >5 vs 1–5 3.81 (0.82–17.77) 0.09 4.68 (1.48–14.79) 0.01 4.13 (1.54–11.08) 0.01

  >6 vs 1–6 4.91 (1.05–23.01) 0.04 4.31 (1.31–14.13) 0.02 3.21 (1.12–9.19) 0.03

Primary tumour 0.83 (0.22–3.51) 0.78 0.88 (0.34–2.31) 0.80 0.61 (0.23–1.59) 0.31

BM, brain metastase.

Table 5. Multivariate analysis of the risk factors of HI with different margin definition

Variables
The expanded margin of peri-hippocampus

5 mm 10 mm 20 mm

OR (95% CI) p OR (95% CI) p OR (95% CI) p
Age      

  ≥60 vs <60 0.71 (0.14–3.48) 0.67 0.98 (0.30–3.21) 0.97 1.04 (0.39–2.80) 0.94

BM status      

  Synchronous  vs 
metachronous

0.33 (0.04–2.97) 0.32 0.30 (0.06–1.46) 0.53 (0.20–1.45) 0.22

Number of BM     

  >5 vs 1-5 2.55 (0.52–12.40) 0.25 3.84 (1.15–12.76) 0.03 3.60 (1.29–10.05) 0.01

  >6 vs 1–6 5.20 (1.048–25.75) 0.04 5.38 (1.54–18.86) 0.01 3.84 (1.28–11.50) 0.02

BM, brain metastase.

With available risk factors, we found that the risk of HI increases 
significantly and continuously with number of BMs. Patients with 
5 or more BMs had higher risk of HI, more significantly when 
number increases to 6 or more, which is consistent with Guo’s 
study.14 Sun et al also reported that the HI was significantly more 
frequent in patients with BMs ≥10 than those with 1–3 (OR 9.919, 
95% CI 2.388–41.179, p = 0.002).19 Age and BM status (synchro-
nous or metachronous) were also reported to influence the risk 

of HI in other studies, although they were negative in our series. 
Therefore, we suggest that HA-WBRT should be cautious in 
patients with number of BM of 5 or above.

After brain irradiation from the described, brain necrosis 
can conduct to dementia or decline of memory.20 Study from 
Chang E et al21 showed that patients with WBRT could present 
early neuro-cognitive defect within the first 4 months after 
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