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SUMMARY

Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of
multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies
such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single
agents or consider simple two-way interaction models, in part because we lack the statistical methodology
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to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine
regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a
flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel
function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to
identify important mixture components and account for the correlated structure of the mixture. Simulation
studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying
the individual components of the mixture responsible for health effects. We demonstrate the features of
the method through epidemiology and toxicology applications.

Keywords: Air pollution; Bayesian variable selection; Environmental health; Gaussian process regression; Metal
mixtures.

1. INTRODUCTION

Recognizing that populations are exposed to a mix of chemicals and other pollutants, the desire to
quantify the health effects of complex multi-pollutant mixtures has grown in recent years. Mixtures
of concern include air pollution (Kioumourtzoglou and others, 2013), mixtures of toxic waste (a focus
of the U.S. Superfund Research Program; Hu and others, 2007), mixtures of persistent organic chemi-
cals (Gennings and others, 2010), and the interplay between environmental exposures and psychosocial
factors (Carlin and others, 2013).

To estimate the health effects of these multi-pollutant mixtures, several challenges must be addressed.
First, the mixture components may have complex non-linear and non-additive relationships with health.
Secondly, allowing for a flexible exposure-response function of multiple components and their interactions
quickly leads to a high-dimensional problem with a large number of parameters relative to the number of
observations, yielding unstable estimates. Thirdly, statistical methods must account for the complex struc-
ture of the mixture, which often consists of multiple highly correlated exposures. Current approaches to
studying mixtures (Billionnet and others, 2012), while addressing some of these complexities, also have
distinct disadvantages. For example, clustering methods result in a loss of information due to categoriz-
ing the continuous exposure concentrations. Statistical learning algorithms like random forests (Breiman,
2001) can provide a measure of variable importance for the mixture components, but this measure does not
succinctly summarize the magnitude or direction of the association. Variable selection techniques within
the regression framework (e.g. lasso methods; Tibshirani, 1994) shrink individual regression coefficients
toward zero, but these are typically based on a relatively simple parametric model of the mixture compo-
nents. Hierarchical model formulations address highly correlated pollutants by shrinking individual effect
estimates toward group means (Thomas and others, 2007), but this approach also typically assumes linear
and additive associations between each component and health.

In this paper, we introduce Bayesian kernel machine regression (BKMR) as a new approach for
estimating the health effects of mixtures. For this approach, we model the health outcome as a smooth
function h, represented using a kernel function, of the exposure variables, adjusted for possible confound-
ing factors. Because the health outcome may depend on only a subset of the mixture components, we
conduct variable selection in order to identify which of these components are responsible for the health
effects of the mixture. Finally, to address collinearity of the mixture components, we develop a hierarchical
variable selection extension to BKMR that can incorporate prior knowledge on the structure of the mixture.

Previous work on kernel machine regression (KMR) has focused on testing, variable selection, and
risk prediction. In statistical genomics, KMR methods have been applied primarily to test for the overall
effect of a genetic pathway (Liu and others, 2007) or for the effect of a gene in the presence of pos-
sible gene–gene or gene–environment interaction (Maity and Lin, 2011; Zou and others, 2010). In the
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context of computer experiments, Linkletter and others (2006) applied Gaussian process models with
variable selection to identify a subset of inputs with the largest impacts on the system being studied.
Savitsky and others (2011) considered a general framework for Gaussian process models with variable
selection and evaluated their performance in terms of their predictive power and ability to correctly select
relevant variables.

This work provides several contributions. First, to our knowledge this is the first time KMR methods
have been considered for estimating the health effects of multi-pollutant mixtures. Previous work focused
mainly on variable selection and prediction, but in this setting estimating the exposure-response function
is the major goal. Secondly, we develop a novel hierarchical variable selection approach within BKMR
(Section 2) that is able to account for the structure of the mixture and systematically handle highly cor-
related exposures. We conduct simulation studies (Section 3) based on real multi-pollutant datasets, in
which we compare our method to a two-stage frequentist KMR approach, which tests each mixture com-
ponent sequentially and then estimates the exposure-response function. Finally, we apply BKMR to two
environmental health datasets: (1) an epidemiology study of metal mixtures and psychomotor develop-
ment (Section 4) highlights the ability of BKMR to estimate complex exposure-response functions in a
setting where both non-linearity and interaction have been reported (Claus Henn and others, 2012), and
(2) a toxicology study of air pollution mixtures and hemodynamics (Section 5) highlights the ability of
hierarchical variable selection to identify important mixture components in a setting with several highly
correlated pollutants.

2. BAYESIAN KERNEL MACHINE REGRESSION

For each subject i = 1, . . . , n, we assume

Yi = h(zi ) + xT
i β + εi , (2.1)

where Yi is a health endpoint, zi = (zi1, . . . , zi M)T is a vector of M exposure variables (e.g. air pollution

constituents), xi contains a set of potential confounders, and εi
i.i.d.∼ N (0, σ 2). In the context of environmen-

tal mixtures h(·) typically characterizes a high-dimensional exposure-response function that may incorpo-
rate non-linearity and/or interaction among the mixture components. In such a setting, it can be difficult
to specify a set of basis functions to represent h(·) or to fit the resulting model that has a high-dimensional
parameter space; we therefore propose to use a kernel machine representation.

2.1 Overview of KMR

We assume that h: R
M → R resides in a function space HK with a positive semidefinite reproducing kernel

K : R
M × R

M → R. A kernel function K (z, z′) has two arguments: z = (z1, . . . , zM)T, which represents
the vector of environmental exposures, or mixture components (which we will refer to as an exposure
profile) for one subject, and z′ = (z′

1, . . . , z′
M)T, which represents the exposure profile for a second

subject. There are two ways to characterize h. One can use a basis-function representation (also called the
primal form), with h(z) = ∑L

l=1 φl(z)ηl for some set of basis functions {φl}L
l=1 and coefficients {ηl}L

l=1.
Alternatively, one can represent h using a positive-definite kernel function K (·, ·), termed the dual
form, with h(z) = ∑n

i=1 K (zi , z)αi for some set of coefficients {αi }n
i=1. Mercer’s

theorem (Cristianini and Shawe-Taylor, 2000) established that a kernel function K (·, ·) used in the
dual form for h implicitly specifies a unique function spanned by a particular set of orthogonal
basis functions in the primal representation of h. Examples of this correspondence include the linear
kernel K (z, z′) = 1 + z1z′

1 + · · · + zM z′
M , with basis representation {zm}M

m=1; the quadratic kernel
K (z, z′) = (1 + z1z′

1 + · · · + zM z′
M)2, with basis representation {zm, zm zm ′ }M

m,m ′=1; and the Gaussian

kernel K (z, z′) = exp{−∑M
m=1(zm − z′

m)2/ρ} with ρ a tuning parameter, represented by set of radial
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basis functions. Operationally, Liu and others (2007) showed that model (2.1) with h specified in the dual
form can be expressed as the mixed model

yi ∼ N (hi + xT
i β, σ 2) independent; i = 1, . . . , n,

h ≡ (h1, . . . , hn)
T ∼ N (0, τK),

(2.2)

where K, referred to as the kernel matrix, has (i, j)-element K (zi , z j ).

Choice of kernel. We focus on the Gaussian kernel, which flexibly captures a wide range of underlying
functional forms for h(·), although the methods are applicable to a broad choice of kernels. To provide some
intuition for KMR using the Gaussian kernel, consider the effect on health of exposure to the profile zi for
the i th person, given by hi = h(zi ). Under model (2.2), we assume cor(hi , h j ) = exp{−(1/ρ)

∑M
m=1(zim −

z jm)2}, which implies that two subjects with similar exposures (zi “close” to z j ) will have more similar
risks (hi will be close to h j ).

2.2 Component-wise variable selection

To allow for variable selection within a Bayesian paradigm, we define the augmented Gaussian kernel
function as K (z, z′; r) = exp{−∑M

m=1 rm(zm − z′
m)2}, where r = (r1, . . . , rM)T, and we define KZ,r to be

the n × n matrix with (i, j)-element equal to K (zi , z j ; r). We assume a “slab-and-spike” prior on the
auxiliary parameters,

rm | δm ∼ δm f1(rm) + (1 − δm)P0, m = 1, . . . , M,

δm ∼ Bernoulli(π),
(2.3)

where f1(·) is a pdf with support on R
+ and P0 denotes the density with point mass at 0.

This approach is analogous to Bayesian variable selection approaches for multiple regres-
sion problems (George and McCulloch, 1993) and has been applied in Gaussian process mod-
els (Linkletter and others, 2006; Savitsky and others, 2011). The posterior mean of the indicator
δm has the natural interpretation as the posterior probability that component m is an important
component of the mixture, or the posterior “inclusion probability” of component m. Other kernel
functions may be augmented in a similar way. For example, the quadratic kernel may be expanded as
K (z, z′; r) = (1 + r1z1z′

1 + · · · + rm zM z′
M)2.

2.3 Hierarchical variable selection

In situations where mixture components are highly correlated, the above formulation that treats components
exchangeably may fail because the data may not be able to distinguish among these correlated components.
We therefore propose a hierarchical variable selection approach, which incorporates information on the
structure of the mixture into the model.

Suppose that the mixture components z1, . . . , zM can be partitioned into groups Sg (g = 1, . . . , G)

such that within-group correlation is high while across-group correlation is low. For example, a wealth of
information about air pollution sources is typically known, which could be used to group the pollutants.
We then assume that the indicator variables from the slab-and-spike prior in (2.3) are distributed as

δSg | ωg ∼ Multinomial(ωg,πSg ), g = 1, . . . , G,

ωg ∼ Bernoulli(π),
(2.4)

where δSg = (δm)zm∈Sg is the vector of indicator variables and πSg is the corresponding vector of prior
probabilities for the mixture components zm in group Sg . This approach allows at most a single component
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from a group (of highly correlated components) to enter into the model at a time. Although this assumes
that two components from the same group do not have independent or interactive effects on the health
outcome, in the setting of high within-group correlation, such effects would not be identifiable in a more
general model.

2.4 Prior specification, estimation, and prediction

In Section A of supplementary material available at Biostatistics online, we specify prior distributions for
each of the parameters above; in Section B we provide details on the Markov chain Monte Carlo sampler
used to fit BKMR with component-wise and hierarchical variable selection (B.1), methods for estimating
subject-specific health effects (B.2), and methods for predicting health effects at new exposure profiles
(to estimate the multivariate exposure-response function; B.3).

3. SIMULATION STUDIES

We evaluated the ability of BKMR (and compared its performance to frequentist KMR methods) in flexibly
estimating the exposure-response function and in identifying mixture components responsible for health
effects, under a range of plausible data generating scenarios based on real exposure datasets.

3.1 Setup

Data generation. We generated 300 datasets of 100 observations each, {yi , xi , zi }100
i=1, where zi =

(zi1, . . . , zi M)T represents an exposure profile with M mixture components; xi is a confounder gener-
ated by xi ∼ N (3 cos zi1, 2); and the health outcomes are generated by yi ∼ N (βxi + h(zi1, . . . , zi Q), σ 2),
where we assumed that the health outcome depends on a subset of Q < M of the available exposure vari-
ables. We set σ 2 to correspond to a realistic signal-to-noise ratio based on the Bangladesh application
(Section 4).

We considered two choices for the total number of mixture components (M = 3, 13), and we generated
exposure data based on empirical distributions of real data. For M = 3, each exposure dataset {zi }100

i=1
was obtained by resampling 100 rows of the exposure data from our Bangladesh application (Section 4),
which consists of arsenic (As), manganese (Mn), and lead (Pb) exposures of Bangladeshi children. For
M = 13, we considered an exposure dataset that consisted of daily measures, from 1999 to 2011, of air
pollution constituents monitored at a central site in Boston. We selected 13 constituents that have been
used previously in studies of the health effects of air pollution (listed in Figure 1). The daily component
data were standardized by subtracting the median and dividing by the interquartile range (IQR), and outlier
values (� 5 IQR away from the median) were removed. The correlation matrix for this data is in Figure 1 of
supplementary material available at Biostatistics online. We then generated each exposure dataset {zi }100

i=1
by resampling 100 rows of this Boston air pollution data.

We considered several exposure-response functions h(·) that varied depending on the number of pollu-
tants included, the degree of correlation of the included pollutants, and the shape of the function. We first
considered three h(·) that depended on just one or two of the pollutants (Figure 1): a non-linear function
of zi1 (h1), a linear function with main effects of zi1 and zi2 and their interaction (h2), and a non-linear
function of both zi1 and zi2 with a synergistic interaction between them (h3). We considered a scenario
where the two included pollutants in h2 and h3 were essentially uncorrelated (Mn, Pb for the Bangladesh
dataset [cor = 0]; Al, Cu for the Boston dataset [cor = 0.17]) as well as a scenario where the two pollu-
tants were more highly correlated (Mn, As for the Banladesh dataset [cor = 0.58]; Al, Ca for the Boston
dataset [cor = 0.68]). Finally, to evaluated BKMR under a more complex setting with a larger number of
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Fig. 1. Median (25%, 75%) of the PIPs from BKMR with component-wise variable selection, across 300 simu-
lated datasets for each of three true h(z) functions. The vector of exposure data z was generated either based on
the Bangladesh data with M = 3 mixture components, where the truly associated components were Pb for h1, and Pb
and Mn for h2 and h3; or based on the Boston air pollution data with M = 13 mixture components, where the truly
associated components were Al for h1, and Al and Cu for h2 and h3. The proportion of simulation iterations for which
each mixture component had p-value <0.05 under the garrote test for KMR is printed below the x-axis. Pb, lead;
Mn, manganese; As, arsenic; Al, aluminum; Si, silicon; Ti, titanium; Ca, calcium; Ni, nickel; V, vanadium; Zn, zinc;
S, sulphur; bc, black carbon; Cu, copper; K, potassium; Cl, chlorine.

mixture components, we considered two functions that included 6 of the 13 components from the Boston
air pollution dataset:

h4(zi ) = h3(Ali , Nii ) + h3(Si , Cui ) + h3(Cli , Mni ), (3.1)

h5(zi ) = h3(Ali , Nii ) + h3(Si , Cui ) + h3(Cli , Sii ). (3.2)

These two functions are the same, except that h4 does not include any very highly correlated pollutants (the
largest correlation is 0.49 between Al and S), whereas h5 includes both Al and Si, which have a correlation
of 0.87. Because these higher-dimensional h require more power to detect, we halved the residual standard
deviation (SD) σ when compared with the simulation studies for h3.
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Models. First, we fit KMR using a frequentist approach (Liu and others, 2007), both without (KMR) and
with (KMR-vs) variable selection. To conduct the variable selection, we applied the garrote KMR test
from Maity and Lin (2011) to each component zm (m = 1, . . . , M) sequentially, and then re-fit the KMR
including only those components with p < 0.05. Secondly, we fit three BKMR models: a model with-
out variable selection (BKMR), a model with component-wise variable selection (BKMR-vs), and for
the M = 13 components exposure dataset, a model with hierarchical variable selection (BKMR-hvs). For
BKMR-hvs, we defined the component groups S1, . . . ,S8 (shown in Figure 2) based on knowledge of
Boston air pollution sources. The within-group correlations ranged from 0.68 to 0.87 in S1 and from 0.45
to 0.8 in S2 (Figure 1 of supplementary material available at Biostatistics online). We ran each MCMC
sampler (described in Section B of supplementary material available at Biostatistics online) for 10 000
iterations and kept the last 5000 samples. Finally, to quantify the optimal performance achievable if the
true pollutants included in the h function were known, we considered an “oracle” model. For h1, we fit a
generalized additive model (GAM) including only zi1, modeled using penalized splines, and a thin-plate
regression basis (Wood, 2006); for h2, we fit a linear model with zi1, zi2, and the interaction term zi1zi2;
for h3 we fit a GAM including a bivariate smooth function of zi1 and zi2; and for h4 and h5 we fit a
GAM including independent bivariate smooth functions of the truly included pollutants in equations (3.1)
and (3.2), respectively.

3.2 Results

Estimating the exposure-response function. We first evaluated the ability of each approach to estimate
the subject-specific mixture effects hi = h(zi ). Here we focus on results for the univariate and bivariate
exposure-response functions under the scenario of uncorrelated exposures (Table 1); the relative perfor-
mance of the methods for the other scenarios was similar. The approaches with variable selection (KMR-vs,
BKMR-vs, and BKMR-hvs) each performed comparably to the oracle model (and outperformed the cor-
responding models without variable selection) in estimating the hi for the Bangladesh (M = 3) exposure
dataset. For the Boston (M = 13) air pollution dataset, the Bayesian variable selection approaches outper-
formed all of the other methods (except the oracle model) for each h(·). Across all scenarios, the Bayesian
approaches were better able to capture the uncertainty in the ĥi when compared with the corresponding
frequentist methods, achieving posterior SD estimates that were close to the empirical standard errors and
interval coverage closest to the nominal (95%) level. KMR-vs had especially poor coverage, particularly
for the M = 13 scenarios, suggesting that the two-stage approach to estimating the exposure-response
function does not fully account for uncertainty due to variable selection.

Identifying important mixture components. We next evaluated the ability of the methods to identify
which mixture component(s) were included in h(·). Figure 1 shows, for the univariate and bivariate
exposure-response functions h1–h3 under the scenario of uncorrelated exposures, the median (IQR) for the
posterior inclusion probabilities (PIPs) under BKMR-vs, as well as the proportion of iterations for which
each component was identified as statistically significant under the garrote KMR test. For the Bangladesh
(M = 3) dataset, the garrote test achieved high power and the nominal type I error rate, and BKMR-vs
was able to distinguish between the important versus unimportant components. For the Boston (M = 13)
dataset, the approaches were able to identify Cu, a component whose correlation with the other pollutants
ranged from 0.13 to 0.29, as important in the scenarios where it was included in h(·). On the other hand,
for Al, a component highly correlated with several others (cor = 0.87 with Si, 0.7 with Ti, and 0.68 with
Ca), the garrote test had lower power and had inflated type I errors with its correlated exposures, espe-
cially Si. For BKMR-vs, while the PIPs remained higher for Al than for its correlated exposures, Si also
had higher PIPs relative to the other, unimportant components. Compared with the uncorrelated scenario,
when the two pollutants included in h2 and h3 were more highly correlated, the PIPs remained similar or
were reduced (cf. Figure 2 of supplementary material available at Biostatistics online to Figure 1). For the
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Fig. 2. Median (25%, 75%) of the PIPs from BKMR with hierarchical variable selection, across 300 simulated datasets
for each of three true h(z) functions. Exposure data z were generated based on the Boston air pollution data with
M = 13 mixture components categorized within eight groups. The truly associated components were Al (one of four
pollutants in group 1) for h1, and Al and Cu (sole pollutant in group 5) for h2 and h3. Plots on left show the PIPs for
each group, and plots on the right show the conditional PIPs for the components in group 1 given that group 1 was
included in the model.
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Table 1. Performance of estimated subject-specific mixture effects, hi = h(zi ), across
300 simulated datasets for each of three true exposure-response functions h(·), and

two exposure generating models (M = 3, 13)

Regression of ĥ on h Uncertainty

Intercept Slope R2 SD(ĥ | h) SE Cvg.

M = 3
h1(z)

Oracle 0.06 0.93 0.93 0.47 0.39 0.90
KMR 0.25 0.74 0.80 0.67 0.50 0.84
KMR-vs (297) 0.09 0.89 0.92 0.48 0.39 0.89
BKMR 0.24 0.76 0.84 0.62 0.49 0.87
BKMR-vs 0.15 0.85 0.92 0.51 0.45 0.90

h2(z)
Oracle 0.00 1.00 0.97 0.14 0.13 0.95
KMR 0.10 0.91 0.95 0.16 0.15 0.93
KMR-vs 0.09 0.92 0.95 0.16 0.13 0.92
BKMR 0.08 0.93 0.95 0.16 0.16 0.95
BKMR-vs 0.07 0.94 0.95 0.16 0.16 0.96

h3(z)
Oracle 0.04 0.91 0.90 0.28 0.27 0.95
KMR 0.08 0.84 0.85 0.33 0.27 0.91
KMR-vs 0.08 0.84 0.84 0.33 0.23 0.87
BKMR 0.08 0.84 0.86 0.32 0.27 0.92
BKMR-vs 0.07 0.87 0.89 0.30 0.25 0.93

M = 13
h1(z)

Oracle 0.11 0.92 0.92 0.50 0.38 0.86
KMR 0.60 0.63 0.72 0.80 0.60 0.82
KMR-vs (273) 0.31 0.81 0.79 0.70 0.38 0.76
BKMR 0.48 0.69 0.73 0.78 0.71 0.91
BKMR-vs 0.25 0.84 0.90 0.56 0.52 0.92
BKMR-hvs 0.26 0.84 0.89 0.56 0.49 0.90

h2(z)
Oracle 0.00 1.00 0.93 0.24 0.21 0.95
KMR 0.42 0.72 0.76 0.36 0.31 0.92
KMR-vs (295) 0.39 0.73 0.69 0.39 0.20 0.75
BKMR 0.30 0.79 0.72 0.38 0.40 0.97
BKMR-vs 0.30 0.79 0.81 0.33 0.32 0.95
BKMR-hvs 0.32 0.78 0.81 0.33 0.31 0.95

h3(z)
Oracle 0.05 0.94 0.90 0.44 0.38 0.91
KMR 0.24 0.74 0.77 0.62 0.51 0.91
KMR-vs (298) 0.21 0.76 0.74 0.65 0.33 0.76

continued.
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Table 1. continued.

Regression of ĥ on h Uncertainty

Intercept Slope R2 SD(ĥ | h) SE Cvg.

BKMR 0.20 0.77 0.77 0.61 0.59 0.95
BKMR-vs 0.14 0.85 0.87 0.50 0.47 0.94
BKMR-hvs 0.14 0.84 0.86 0.50 0.44 0.93

Summary measures were obtained by regressing the estimated ĥi on the true hi and reporting the average
intercept, slope, and R2 across simulation iterations; uncertainty measures were obtained by averaging
over the uncertainty measures for the hi at each iteration and then averaging across all iterations. “SD”
denotes the empirical standard error of the estimated ĥi , “SE” denotes the estimated standard error or
posterior SD of the ĥi , and “Cvg.” denotes the proportion of times that the 95% confidence intervals
or posterior credible intervals covered the true hi . Note that for some iterations no variables satisfied
p < 0.05 under the garrote kernel test and so KMR-vs was not applicable; the number of iterations for
which KMR-vs was fit is given in parentheses beside the method name.

higher-dimensional h4 and h5, BKMR-vs was generally able to distinguish the truly associated pollutants
from the unassociated pollutants (Figure 2 of supplementary material available at Biostatistics online).

Figure 2 shows the PIPs for each group (i.e. the posterior mean of the group indicators ωg), as well
as the conditional PIPs for the components of group S1 = {Al, Si, Ti, Ca} (i.e. the posterior mean of δS1 |
ω1 = 1) for h1–h3 under the scenario of uncorrelated exposures (results for the other scenarios are in
Figure 3 of supplementary material available at Biostatistics online). Across all scenarios, there is a clear
separation between the PIPs for the groups that included one of the components that was truly predictive
of health versus those that did not. In addition, for the truly associated pollutants within a multi-pollutant
group (group S1 under h1–h5, group S2 under h4 and h5), the group-specific PIPs were considerably
larger than the corresponding component-specific PIPs obtained from BKMR-vs. This suggests that by
incorporating the structure of the mixture into the model, BKMR-hvs achieves greater power to detect
important components in the high correlation setting.

Within the multi-pollutant groups, the truly important components had higher conditional PIPs than the
unimportant components. In the scenarios where the exposure-response function did not include correlated
components, BKMR-hvs was better able to distinguish the important from the unimportant components
when compared with BKMR-vs. When two pollutants from the same group were included in the exposure-
response function, there was considerable variability in the conditional PIPs across simulation repetitions
(see h2, h3, and h5 in Figure 3 of supplementary material available at Biostatistics online). In particu-
lar, for each generated dataset, usually one of the two important pollutants within the group had a high
conditional PIP while the other pollutants in the group had much lower PIPs. This occurs because the hier-
archical variable formulation (Section 2.3) assumes that only one pollutant from each group is included
in the exposure-response function. Although this assumption may seem restrictive in that BKMR-hvs is
not able to detect independent (or joint) effects of highly correlated pollutants within a group, such effects
are typically not well-identified from the data in practice. For example, for BKMR-vs under h5, Al was
identified as important using a threshold of 0.75 (i.e. had PIPs exceeding 0.75) in 59% of simulation rep-
etitions, and Si was identified in 30% of repetitions, but both pollutants were simultaneously identified as
important in only 3% of repetitions.

4. APPLICATION TO A STUDY OF METALS MIXTURES AND NEURODEVELOPMENT IN BANGLADESH

Preliminary data from 375 children (ages 1–4 years) were collected as part an ongoing study of metal
exposures and neurodevelopment in Bangladesh (NIEHS grant P42 ES016454). A primary outcome
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(Yi ; i = 1, . . . , 375) is the (z-scored) motor composite score (MCS), a summary measure of psychomotor
development derived as the sum of the fine and gross motor subscales from the Bayley Scales of Infant
and Toddler Development (Bailey, 2005). Prenatal exposures (zi ) to As, Mn, and Pb (log transformed)
were measured in umbilical cord blood. Exposure levels of Pb and Mn were uncorrelated, and As was
inversely correlated with Pb (cor: −0.37) and positively correlated with Mn (cor: 0.58). Covariates (xi )
consisted of gender, age in months at time of neurodevelopmental assessment (modeled using natural cubic
splines with 3 degrees of freedom [df]), mother’s education, mother’s IQ (spline terms with 3 df), an indi-
cator variable for which of two clinics the child visited, and HOME score (a proxy for socioeconomic
status).

As a preliminary analysis, we fit linear regression models, adjusted for the covariates xi . In single-metal
models that included As, Mn, and Pb one at a time, as well as in a multi-metal model that included linear
main effects of each metal concurrently, none of the metals were significantly associated with MCS (Table 1
of supplementary material available at Biostatistics online). To evaluate potential interaction among the
three metals, we conducted an F test to compare the fit of the multi-metal model including just main effects
of each metal to the larger model that also contained the three pairwise interactions (p = 0.37), and to the
saturated model that additionally contained the three-way interaction term (p = 0.60). Taken together, these
results suggested little evidence of an exposure-response association, in the restrictive setting of linear and
additive associations.

We then applied BKMR with component-wise variable selection to estimate the joint association of
As, Mn, and Pb with MCS in a flexible way, without the need to specify a priori the form of the exposure-
response function. We ran the MCMC sampler (described in Section B of supplementary material available
at Biostatistics online) for 25 000 iterations after a burn in of 25 000 and every fifth sample was kept for
inference. The estimated PIPs were 0.68 for Pb, 0.73 for Mn, and 0.77 for As. Figure 3 shows the estimated
relationship of Mn and As with MCS for Pb fixed at its median value. This plot suggests an inverted u-
shaped relationship for Mn with MCS, but only at middle levels of As exposure. Similar patterns occurred
at other levels of Pb (Figure 4 of supplementary material available at Biostatistics online). To confirm
that our finding of a non-additive and non-linear exposure-response function for Mn and As under BKMR
was real and not an artifact of the method, we subsequently fit a GAM with the same covariates as above,
together with a main effect of Pb and separate smooth functions (thin-plate regression splines; smoothing
parameter estimated using generalized cross validation) of Mn at each tertile of As exposure. We found a
similar inverted u relation between Mn and MCS, and the smooth term was only statistically significant at
the second tertile of As (Figure 5 of supplementary material available at Biostatistics online).

5. APPLICATION TO A TOXICOLOGY STUDY OF AIR POLLUTION MIXTURES AND HEMODYNAMICS

We considered data from a toxicology study, in which 13 dogs were repeatedly exposed for 5 h to either
concentrated ambient particles (CAPs) or filtered air in a cross-over protocol (Bartoli and others, 2009).
Previous analyses found elevated blood pressure associated with CAPs exposure; our goal was to identify
whether particular component(s) of the CAPs are responsible for these observed effects. Let Yit be the
average heart rate for dog i at exposure occasion t , xi t be indicator variables for CAPs versus filtered air
exposure and for the other experimental conditions (whether the exposure occurred post-occlusion or after
prazosin was administered), and zi t be the vector of elemental concentrations for the CAPs components,
where we considered the same pollution constituents as in our simulation study (Section 3). Because in this
small subsample of days K, Cu, and Mn were also highly correlated with Al, Si, Ti, and Ca (all pairwise
correlations among these seven pollutants were >0.76), we included these additional elements in group
S1. After removing several outliers in the elemental concentrations, the dataset consisted of n = 142 dog-
exposures.
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Fig. 3. Relationship of manganese (Mn) and arsenic (As) with the MCS, for lead (Pb) fixed at its median. (A) Posterior
mean of the bivariate exposure-response function ĥ for Mn and As. Horizontal lines correspond to the 10th, 50th, and
90th percentiles of As. (B) Posterior SD of ĥ. Points correspond to the observed data points. (C) Relationship of Mn
with MCS at three levels of As together with pointwise 95% credible intervals.

We began by fitting linear mixed models (LMMs) of the CAPs components with dog-specific ran-
dom intercepts, adjusted for the covariates xi t . In models that included each component separately, all of
the pollutants in S1 (except Cu) had statistically significant associations with elevated heart rate (none
of the other components were associated). However, these associations were no longer significant in the
multi-pollutant LMM that included all of the constituents concurrently, and for three of these components
the direction of the association was reversed (Table 2 of supplementary material available at Biostatistics
online).

Because of the longitudinal cross-over design of the study, we extended the BKMR models described
in Section 2 to include random (dog-specific) intercepts. We fit BKMR models including all of the 13
pollutants with both component-wise and hierarchical variable selection. We ran the MCMC samplers
(described in Section B of supplementary material available at Biostatistics online) for 25 000 iterations
after a burn in of 25 000 and every fifth sample was kept for inference. We did not find evidence of non-
linearity or interaction, so here we focus on the variable selection results. Analogous to the null results
from the multi-pollutant LMM, under the component-wise BKMR model we found that each component
had a PIP of < 0.4; in contrast, under the hierarchical selection approach group S1 had a PIP of 0.79
(Figure 4). Given the strong correlations among components in this group, the data did not strongly favor
one constituent over the others as driving the observed association between heart rate and this group of
elements (the conditional inclusion probabilities ranged from 0.04 for Cu to 0.36 for Si). In this case, our
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Fig. 4. PIPs for the toxicology application estimated from BKMR with component-wise variable selection (A) and
hierarchical variable selection (B). Left panel shows group-specific PIPs and right panel shows conditional inclusion
probabilities for the components in group 1.

strong preference is the hierarchical variable selection approach, as it accurately conveys that there is a
group of elements that are associated with the outcome but that the data cannot definitively identify a
constituent driving this association.

6. DISCUSSION

We have proposed BKMR as a new approach to estimate the health effects of multi-pollutant mixtures.
Our simulation studies highlighted two main advantages of BKMR over existing frequentist approaches.
First, by conducting variable selection and health effect estimation simultaneously the Bayesian approach
was able to more fully capture the uncertainty in the exposure-response function due to selecting which
mixture components to include in the model. Secondly, the garrote KMR test (Maity and Lin, 2011) had
low power to detect important mixture components in the setting of multiple highly correlated exposures.
Because this procedure tests for the effect of a variable Z1 by conducting a score-based test of the null
hypothesis H0 : h(z1, z2, . . . , zM) = h(z2, . . . , zM), if the null model already includes a variable that is
highly correlated with a truly important variable, then there may not be enough information remaining in
the data to detect the true association. Our hierarchical variable selection approach addresses this issue by
allowing one component from a group of highly correlated components to enter into the model at a time.
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We focused on the Gaussian kernel, although other kernels could be considered. In simulation studies of
KMR with h(·) having a complicated functional form, Liu and others (2007) found the Gaussian kernel to
outperform both the quadratic and ridge regression kernels. Our simulation studies demonstrated that the
Gaussian kernel performed well across a range of plausible exposure-response functions for environmental
health applications. In future work, Bayesian model selection could be applied to formally evaluate the
choice of kernel.

The larger set of 13 predictors in our simulation studies is not particularly large relative to many
high-dimensional application areas, such as statistical genomics and other ’omics settings. A few envi-
ronmental health studies have considered exposures in the hundreds, but these have typically been con-
ducted with the goal of screening for the most important exposures (Patel and others, 2010) or classes of
exposures (Kioumourtzoglou and others, 2013), rather than fully characterizing the form of the exposure-
response surface. Thirteen pollutants represents a typical number considered in PM elemental composition
studies focusing on the exposure-response relationship. Computationally, the dimension of the exposure
vector is not a limiting factor in these models, as the dimension of the exposures gets reduced into the
pairwise distance measures contained in the kernel matrix.

It is well known that Bayesian variable selection methods can be highly sensitive to the specification of
the mixture prior. In our applications, we found that changing the distribution of the slab part of the prior
( f1(·) in equation (2.3)) led to changes in the values of the PIPs; however, their relative ordering was pre-
served across prior specifications. This issue is analogous to the variable importance measures produced by
a random forests analysis, whose absolute magnitude can be sensitive to tuning parameters, but that the rank
ordering of these importance scores across the multiple pollutants are relatively stable (Liaw and Wiener,
2002).

To our knowledge, this work represents the first instance of incorporating structure among pol-
lutants within the kernel machine framework. By grouping highly correlated pollutants together, our
approach had greater power to detect associations between these pollutants and health. In some situa-
tions, such groups may represent pollution sources, but not in the (relatively) small toxicology appli-
cation we considered. In future work, we will consider more complex structures, such as overlapping
groups, that likely occur in air pollution source apportionment settings. Another useful extension of the
model would be to account for exposure measurement error, which may arise from known error in the
measured concentrations, or from uncertainty in estimated source contributions from a source apportion-
ment model (Kioumourtzoglou and others, 2014) or in predicted exposures obtained from a spatial model
addressing misalignment of the pollutant and outcome data (Gryparis and others, 2009; Szpiro and others,
2011; Szpiro and Paciorek, 2013).

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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