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SUMMARY

For estimating conditional survival functions, non-parametric estimators can be preferred to parametric
and semi-parametric estimators due to relaxed assumptions that enable robust estimation. Yet, even when
misspecified, parametric and semi-parametric estimators can possess better operating characteristics in
small sample sizes due to smaller variance than non-parametric estimators. Fundamentally, this is a bias—
variance trade-off situation in that the sample size is not large enough to take advantage of the low bias
of non-parametric estimation. Stacked survival models estimate an optimally weighted combination of
models that can span parametric, semi-parametric, and non-parametric models by minimizing prediction
error. An extensive simulation study demonstrates that stacked survival models consistently perform well
across a wide range of scenarios by adaptively balancing the strengths and weaknesses of individual can-
didate survival models. In addition, stacked survival models perform as well as or better than the model
selected through cross-validation. Finally, stacked survival models are applied to a well-known German
breast cancer study.

Keywords: Bias—variance trade-off; Brier score; Cross-validation; Stacked regressions; Survival ensembles;
Survival prediction.

1. INTRODUCTION

Survival function estimation has long been a major component of survival analysis. Yet estimation of
conditional survival functions, i.e., survival functions that depend on covariate values, remains a challeng-
ing problem. A common semi-parametric approach combines the Cox proportional hazard model with
a baseline hazard estimate, e.g., see Kalbfleisch and Prentice (2002). However, if the functional form is
misspecified or the proportional hazards assumption is violated, then this approach may perform poorly.
In terms of the bias—variance trade-off, the Cox model, and other parametric models, achieve low vari-
ance by making distributional and functional form assumptions. If the assumptions are approximately
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correct, then the bias term is small and the parametric and semi-parametric models perform well. On the
other hand, if the assumptions are badly violated, then the bias term can be large and the models perform
poorly.

Many non-parametric methods have been proposed to overcome the bias induced by violated assump-
tions. For example, Kooperberg et al. (1995) propose a flexible spline approach for the log-hazard that
encompasses more than a proportional hazards model. Alternatively, tree-based approaches have been
considered by several authors (Ishwaran et al., 2008; Bou-Hamad ef al., 2011; Zhu and Kosorok, 2012).
Despite possessing low bias in a wide variety of situations, non-parametric estimators suffer from high
variance and can require a large sample size to perform well. This can lead to surprising situations where
misspecified parametric models perform better than non-parametric estimators. Specifically, the effect of
bias of misspecified parametric models is smaller than the effect of variance of non-parametric estimators,
i.e., the bias—variance trade-off.

This article pursues a flexible estimator of a conditional survival function, i.e., an estimator that per-
forms well when parametric assumptions are approximately correct while also maintaining robustness
when parametric assumptions are violated. Traditionally, a single conditional survival function estimator
is chosen from a set of candidate models, e.g., using an information criterion (Kooperberg et al., 1995) or
through cross-validation. Rather than select a single survival model, our goal is to estimate an optimally
weighted combination of several survival models.

A variety of approaches that combine several models, often referred to as ensembles, have been explored
in the uncensored setting. One approach, called “stacking,” determines the optimally weighted aver-
age of several models by minimizing predicted error. Wolpert (1992) introduced stacking in the con-
text of neural networks, while Breiman (1996) extended the idea to uncensored regression models and
showed that stacking could improve prediction error. In particular, Breiman (1996) found that combining
fundamentally different regression models, e.g., ridge regression and subset regression, had the largest
reduction in prediction error. LeBlanc and Tibshirani (1996) found stacking with a constraint of non-
negative weights to be an efficient way to combine models. Van der Laan ef al. (2007) independently
developed uncensored stacking as the ‘Super Learner’ algorithm, and presented results regarding the
stacked estimator’s rate of convergence. More recently, Boonstra ef al. (2013) used stacking to improve
prediction when incorporating different generation sequencing information in high-dimensional genome
analysis.

Stacking models in a censored data setting presents additional challenges. Polley and Van der Laan
(2011) mention stacking within a general censored data framework and provide an example for hazard
function estimation with discrete survival times. This paper differs in two notable ways. First, we focus on
estimating conditional survival functions with continuous survival times rather than a hazard function. This
requires a different loss function that is tailored directly to estimating survival functions. We are particu-
larly interested in the conditional survival function due to its role in many survival analysis methods; see
the last paragraph of Section 7 for several examples. We also pursue the potential advantages of stacking
parametric, semi-parametric, and non-parametric estimators. In particular, we show that stacked survival
models perform well by giving weight to approximately correct parametric models, while shifting weight
to non-parametric estimators when assumptions are violated. This allows stacked survival models to out-
perform the single model selected via cross-validation and, in some situations, outperform every individual
model considered in the stacking procedure. We believe that combining parametric, semi-parametric, and
non-parametric estimators is the biggest advantage of stacked survival models.

The remainder of the manuscript is organized as follows: stacked survival models are proposed in
Section 2. Section 3 investigates the mean-squared error of stacked survival models with some asymptotic
properties presented in Section 4. Section 5 investigates the finite sample performance through an extensive
simulation study. Stacked survival models are then applied to the German breast cancer study data set in
Section 6, with concluding remarks presented in Section 7.
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2. STACKING SURVIVAL MODELS

Throughout the paper, random variables and observed variables are distinguished by capital and lower case
letters, respectively. Our objective is to estimate the survival function of the event time random variable
T that depends on p baseline covariates x, i.e., S, (¢|x) = P(T > t|x). In survival analysis, 7 may be only
partially observed due to a censoring random variable C that may also depend on x. Define the conditional
survival function of the censoring distribution as G(¢|x) = P(C > t|x). We assume throughout that the
event time and censoring random variables are conditionally independent, i.e., 7 L C|x. The observed time
is y; = min(t;, ¢;), and §; = I (t; < ¢;) indicates whether an event was observed. Hence, a sample of right
censored survival data of size n consists of triplets {y;, 6;,x;}, i =1, ..., n. Using the observed triplets,
we can construct, for example, an estimate of the event time survival function from each of m candidate
models with the kth estimate denoted as Sk(t |x).

To combine several predictors, we need a loss function that is tailored to survival functions. Our
approach uses the Brier Score [BS(#)], which measures the squared error of a survival function at a given
time point. In the absence of censoring, BS(#) is defined as

O AR @1

i=1

where Z;(¢) = I(t; > t). Note that ¢ denotes a chosen time point, and ¢ (with the subscript) denotes the
event time for the ith observation and may not be observed due to censoring.

Unfortunately, right-censoring implies that equation (2.1) is only partially observed; that is,
Z;(t) is undefined for censored observations when y; >t¢. To correct this issue, we use inverse
probability-of-censoring weights (IPCW) to account for the probability of an observation being censored
(Lostritto et al., 2012). In particular, the ‘inverse probability-of-censoring-weighted Brier Score’ at time ¢
[TPCW-BS(#)] can be written as

n
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where T; (1) = min{¢;, t}, A; (t) = I (min{;, t} < ¢;), and G (+]x;) are the conditional survival function of the
censoring distribution, which is estimated by a marginal Kaplan—Meier throughout the rest of the paper.
From a technical point of view, the IPCWs ensure that the expectations of equations (2.1) and (2.2) are
the same (assuming that the estimator of the censoring distribution is uniformly consistent). Thus, the true
conditional survival function, S,(¢|x), is the minimizer of E{IPCW-BS(#)} (see supplementary material
available at Biostatistics online).

There are several points that are helpful to note for understanding the calculation of the IPCW-BS(#).
The values of 7;(¢) and A, (¢) depend on ¢ and the censoring status of the ith observation. For each uncen-
sored observation, the value of G(7;(¢)|x;), and therefore the calculation of the weight, depends on whether
the event has occurred by time . For censored observations, there are two possible situations at a given
time point #:

o Ifc;>t,thenT;(t) =tand A;(t) =1(t <c¢;)=1.
e Ifc; <t,then A;(z) =0 (since ¢; < t; for censored observations) and hence A; (¢)/G(T;(¢)|x;) = 0.

Thus, for a fixed time ¢, censored observations with ¢; > ¢ will contribute to the Brier Score, while censored
observations with ¢; < ¢ will still contribute to the Brier Score but only indirectly through the estimation
of the censoring distribution.
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Since the goal is to estimate the entire conditional survival function, the Brier Score is minimized over
a set of time points, say 7, ..., f. This implies the following weighted least squares problem with the
additional constraints that 22;1 @ = 1, which is required for the theoretical results, and &, > 0 for all
k=1, ..., m, which has been shown to improve performance in the uncensored setting (Breiman, 1996;
LeBlanc and Tibshirani, 1996),

n
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where S,E_i)(t |x;) is the survival estimate from the kth model while leaving the ith observation out during
the fitting process. This ensures that stacking does not reward model complexity (i.e., does not overfit the
data). To reduce computational demands, we use 5-fold cross-validation rather than n-fold cross-validation
to obtain S’k*’)(tlx,-) In particular, the data are randomly split into five roughly equally sized sets and

( D (t|x;) is obtained for observations in a given set by fitting the candidate survival models to the obser-
Vatlons in the other four sets. As such, five survival models, rather than n survival models, are fit for each
of the m candidate survival models.

Finally, the stacked estimate of the conditional survival function with time-independent weights is

St =" aSi(tlx), (2.4)

k=1

where Sk (t|x) is the kth survival model estimated with all the data.

ReEMARK 1 The Brier Score measures agreement at only one particular time. As such, the value(s) of  over
which it is evaluated, i.e., 71, . . ., #;, have implications for performance. In particular, care should be taken
to avoid picking only very small, or very large ¢ values, though one could also consider unequal weighting
or restricting to certain areas of support. We find that nine evenly spaced quantiles of the observed event
distribution works well (see supplementary material available at Biostatistics online).

REMARK 2 Time-dependent stacking, i.e., allowing the weighted combination of models to depend on
time, was also considered (see supplementary material available at Biostatistics online). Though potentially
adding flexibility, a major flaw of time-dependent stacking is that the conditional survival function may,
at times, increase, which violates the non-increasing property of survival functions. As such, this paper
focuses on time-independent stacking.

3. MEAN-SQUARED ERROR DECOMPOSITION

We analyze the mean-squared error of the stacked survival model. We start by defining the mean-squared
error for the stacked estimator as MSE,{S‘(-|x)} =E fot [S‘(t |x) — S,(t|x)]? dt, where the expectation is
over the random variable for the covariate space and the sampling distribution of the stacked estimator.
This definition of mean-squared error is motivated, in part, by the Brier Score. In particular, supplementary
material available at Biostatistics online shows that £ [ IPCW-BS(¢) d = 02 + MSE, { S(-]x)}, where o2
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is irreducible prediction error. Similar to the analysis of Fumera and Roli (2005), we show in supplemen-
tary material available at Biostatistics online that the mean-squared error decomposes into

m

MSE {S(10)} = o MSE(Sc(|0)} + E D> > e / [Bias{S,(¢|x)} x Bias{S;(t|x)}
k=1 0

k=1 Ik

+ Corr{Si(7]x), Si(¢]x)} x Var{Si(¢t|x)}"/* x Var{S(¢x)}"/*]d¢,

where MSE{S; (- |x)}, Bias{ Sy (¢]x)} = E[Si(¢]x) — S, (t]x)], and Var{S;(t|x)} = E{[Si(t|x) — E S, (¢|x)]*}
are, respectively, the mean-squared error, bias at time ¢, and variance at time ¢ for the kth survival model
in the stacking procedure, while Corr{ S (¢ 1x), S (t |x)} is the correlation at time ¢ between the kth and /th
survival model.

The mean-squared error of the stacked estimator decomposes into two parts: a weighted combination of
the mean-squared error of candidate survival models and the interaction between candidate survival models
in terms of bias and correlation. The decomposition makes it easy to show, given a set of candidate survival
models, that there exists a set of stacking weights such that the stacked estimator possess as good, or
better, mean-squared error as the best performing model in the set of candidate survival models. However,
this property is not guaranteed after estimating the stacking weights. Thus, careful selection of candidate
survival models is warranted.

The MSE decomposition provides insight into how features of candidate survival models impact per-
formance of the stacked estimator. As stated in Section 1, the motivation for stacked survival models is to
obtain robustness across a wide variety of scenarios by including models from different classes, i.e., para-
metric, semi-parametric, and non-parametric models, and with different assumptions (e.g., proportional
hazards or accelerated failure time). In this fashion, the stacked estimator may assign more weight to one
model in the stack for one scenario and shift to another model, e.g., one based on different assumptions,
for a different scenario. This motivates including a set of models that “represent” a variety of classes and
types of models, i.e., ensuring a diverse set of candidate survival models (Breiman, 1996). This is also
supported by the MSE decomposition as the correlation between diverse models will tend to be lower due
to different assumptions.

The next consideration is the number of models of a given type to include in the stack, e.g., the number
of Cox proportional hazards models to include. Due to numerous options regarding potential covariates and
the functional form of those covariates, e.g., linear terms versus quadratic terms, there are many different
Cox models that could be included. However, models with the same distributional assumptions and similar
sets of covariates are expected to have similar MSE with a rather high between-model correlation. Since
there is no guarantee that only one model among a set of highly correlated models will receive non-zero
weight, the MSE decomposition suggests that the stack will perform better by excluding models with small
differences in the set of considered covariates. Further discussion, illustrative examples, and simulations
are included in supplementary material available at Biostatistics online.

4. ASYMPTOTIC PROPERTIES

We show model selection and uniform consistency for the stacked estimate of the conditional survival
function. The former refers to the idea that if the set of stacked models contains uniformly consistent
models, then all weight is asymptotically given to those models in the stack. Consistent model selection
implies uniform consistency as long as there is at least one uniformly consistent estimator of the conditional
survival function. Our main assumption is that there exists no weighted average of misspecified models
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that approaches the true survival function for every time point included in equation (2.3). Supplementary
material available at Biostatistics online contains all of the assumptions and proofs.

Let 2 = (0, 7) be the support of interest for estimating the conditional survival function, and consider
m estimators for the stacking procedure. Then

THEOREM 4.1 Let & be estimated by equation (2.3). Assume that models 1, ..., /, where [ < m, are the
only uniformly consistent estimators and conditions (A1)—(A3) in supplementary material available at
Biostatistics online hold, then 22:1 Qr — 1, in probability, as n — oo.

This ensures that uniformly consistent model(s) will asymptotically receive all of the weight for the
stacked conditional survival function estimate in equation (2.4). There can be more than one uniformly
consistent estimator, e.g., a correctly specified Weibull model and Cox model. In the special case, when
only one model is uniformly consistent, we obtain the corollary:

COROLLARY 4.2 If S (t|x) is the only uniformly consistent estimator, then @; — 1, in probability, as
n— o0.

The result of Theorem 4.1 and Corollary 4.2 is required for uniform consistency of the stacked estimator
with time-independent weights.

THEOREM 4.3 Let the stacked estimate of the conditional survival function be defined as S’(t |x) in
equation (2.4). Assume that conditions (A1)—(A3) in supplementary material available at Biostatistics
online hold then, as n — oo,

m
supsup | > & S(1]x) — S, (t]x)| — 0.

1eQ x =1

The rate of convergence of the stacked estimator is not addressed here. However, Van der Laan et al.
(2007) showed that, in the uncensored case, the stacked estimator’s risk converged at either the best
rate of a correctly specified model, or slightly slower than the parametric rate. These results are not
directly applicable since the Brier Score does not measure the risk of the entire conditional survival
function. In addition, distributional results for the conditional survival function are complicated by the
constrained estimation of « (see supplementary material available at Biostatistics online for in-depth
discussion).

5. SIMULATIONS

An extensive simulation study examines the finite sample performance of stacked survival models. In par-
ticular, two settings are investigated: a moderate number of covariates (Section 5.1) and a large number of
covariates (Section 5.2).

The simulations are comprised of combinations of an event distribution (d =1, 2, 3) and linear form
of covariates (¢ =1, 2). The covariate distributions are multivariate normal: x, ~ MVN(0, X), where X
is the correlation matrix and for alli, j =1,..., p, ¥; ; = p"=/ with p = 0.4 (p is the vector dimension).
Section 5.1 has an eight-dimensional covariate space (i.e., p = 8), while Section 5.2 has a p = 80 dimen-
sional covariate space. For Section 5.1, the covariate effects are 8 = (1, 0, —1, 0, 0.5, 0, —0.5, 0), while for
Section 5.2 the first 12 covariate effects are (1,0, —1,0,0.5,0, —0.5, 0, 0.25, 0, —0.25, 0) with the other
68 effects set to zero. Two different linear combinations are considered: y! =x, and y? = ®(4 x x,)
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which imply linear and non-linear covariate effects, respectively. The event distributions are
defined as

1. T\ ~exp {Normal (By?, §)}
2. Tz(q) ~ Weibull(scale = exp{By?}, shape=1.1)
3. T3(q) ~ Gamma(scale = i exp{By?}, shape=15)

Each subsection investigates every combination of the event distribution (d) and linear form (¢), i.e., there
are six scenarios for both Sections 5.1 and 5.2.

We compare the performance of survival models based on an approximation to the mean squared error
presented in Section 3, which we call integrated squared survival error (ISSE):

1 n 19 .
ISSE ~ — Stj1xi) — S,(t;1x))?,
=D > Sl = 8ot 1x:)

i=1 j=1

where ¢; are a fixed set of 19 equally spaced quantiles of the survival time distribution given that an event
occurs, and S, (-]x;) is the true conditional survival function.

One comparison of interest for the stacked estimator is the model chosen through cross-validation.
We use the integrated Brier Score (IBS) as the measure of the predicted error for selecting the individual
model. In particular, the IBS for the Ath model is defined as IBS; = fot I%k(t) dt, where t is the maximum

observed time and E/ng(t) is the estimated Brier Score at time ¢ for the kth model (with an out-of-bag
estimate of the conditional survival function). The cross-validated estimator is then defined as S;(-Ix),
where / = arg miny I]§Sk.

All simulations were run in R version 3.0.0 (R Development Core Team, 2013). The constrained min-
imization problem was solved using the alabama package (Varadhan, 2012). The stacking weights, i.e.,
equation (2.3), were estimated by minimizing the Brier Score over the 0.1, 0.2, ..., 0.9 quantiles of the
observed event distribution.

5.1 Modest-dimensional covariate space

This setting has relatively few covariates (p = 8) with a modest censoring rate (25%) and sample size
(n =200). This illustrates stacked survival models in a relatively straightforward scenario.

The stacked survival models include a Weibull model and log-Normal model as parametric models, a
Cox proportional hazards model with an Efron estimate of the baseline cumulative hazard function as a
semi-parametric model, and random survival forests (RSFs) as a non-parametric model. The parametric
and semi-parametric models include only first-order main effects and no interactions. All of the parametric
and semi-parametric models are estimated using the survival package in R (Therneau, 2013) and all
of the parametric and semi-parametric models use 5-fold cross-validation to estimate Sk 2 (t|x;). RSF is
estimated with the randomSurvivalForest package in R (Ishwaran and Kogalur, 2013). The RSF
is an ensemble of 250 trees grown using package defaults. For RSE, S‘,ﬁf')(t |x;) is estimated with the out-
of-bag ensemble from the rsf function. The censoring distribution is a uniform distribution for all 7, (q).
Ca 4 ~ Unif(0, c(d, q)), where c(d, gq) is a constant that depends on (d, ¢) and ensures ~25% censoring.

The log-Normal and Weibull scenarios with linear covariate effects illustrate performance when there
is a correctly specified parametric or semi-parametric model in the stack. Stacking is not expected to
perform better than a correctly specified parametric model, but should still perform relatively well in
such situations. The Gamma scenario with linear covariate effects illustrates performance when there are
approximately correct parametric models in the stack (e.g., a correct mean function). The scenarios with
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Table 1. Simulation results for Section 5.1 (n =200, p =8 covariates, and 25% censoring) presented in
ISSE over the observed support

Models Log-Normal Weibull Gamma
Linear effects Single models Log-Normal 0.35 0.82 0.34
Weibull 0.61 0.53 0.41
Cox 0.86 0.68 0.69
RSF 7.26 4.88 7.36
Flexible models Stacking 0.42 0.58 0.37
CvV 0.72 0.70 0.53
Non-linear effects Single models Log-Normal 4.71 2.54 5.03
Weibull 5.17 227 5.30
Cox 5.15 2.33 5.33
RSF 4.29 3.49 4.46
Flexible models Stacking 349 2.08 3.69
CcvV 5.00 2.48 5.18

Each simulation is replicated 2000 times, and the error is multiplied by 10. The two top estimators are bolded for each simulation
scenario. ‘RSFs’ stand for RSFs, ‘Stacking’ is stacked survival models, and ‘CV’ is the estimator selected through cross-validation.
The standard error for the estimate ISSE for each method in each scenario is <0.01.

non-linear covariate effects were designed to have badly misspecified parametric and semi-parametric
models. Due to the lack of a correctly specified parametric model, stacked survival models should perform
relatively well by, in particular, assigning more weight to the non-parametric estimator: RSFs.

Table 1 presents the results in terms of ISSE. Since the goal is an estimator that performs well in a wide
variety of situations, the top two estimators are bolded for each scenario. The stacked survival model, i.e.,
“Stacking”, is a top two estimator for all six scenarios. For the scenarios with non-linear covariate effects,
the stacked estimator reduces the ISSE by ~8—15% compared with the best single model. In addition, the
stacking procedure outperforms selecting a single model via cross-validation in every situation.

As an illustration, Table 2 presents the average stacking weights for the individual models. For the linear
scenarios, the stacking procedure gives a majority of weight to correctly specified parametric models. The
weights are more interesting for the scenarios with non-linear covariate effects. In particular, the paramet-
ric models always receive over 40% of the weight despite, at times, having 10% higher ISSE than RSF.
This is a good example of stacked survival models combining misspecified parametric models and an
inefficient non-parametric model to obtain an estimator that outperforms every single model considered
in the stacking procedure.

REMARK 3 RSFs possess tuning parameters that influence performance, e.g., the minimum number of
events in a node. While the performance of RSF could be improved by adaptively selecting tuning param-
eters (e.g., by cross-validation), stacked survival models are likely to also inherit any improvement in RSF
since it is included in the stack.

5.2 Large covariate space

This setting has a large number of covariates (p = 80) relative to the sample size (n = 200). The censoring
distributions are the same as Section 5.1. In general, the parametric and semi-parametric models used (and
stacked) in Section 5.1 will not perform well in large covariate spaces without regularization. As such, they
are not included for these scenarios. We instead stack a Cox model with an /; penalty (i.e., lasso), a boosted
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Table 2. Average weights for the individual models included in the stacked sur-
vival model for each of the six scenarios in Section 5.1 (n =200, p =8 covari-
ates, and 25% censoring)

Stacked models Log-Normal Weibull Gamma
Linear effects Log-Normal 0.61 0.19 0.42
Weibull 0.23 0.45 0.37
Cox 0.14 0.31 0.19
RSF 0.02 0.05 0.02
Non-linear effects Log-Normal 0.34 0.12 0.27
Weibull 0.14 0.28 0.18
Cox 0.06 0.21 0.08
RSF 0.46 0.39 0.47

Each simulation is replicated 2000 times. ‘RSFs’ stand for random survival forests.

Table 3. Simulation results for Section 5.2 (n =200, p = 80 covariates, and 25% censoring) presented in
integrated squared survival error (ISSE) over the observed support

Models Log-Normal Weibull Gamma
Linear effects Single models Cox-Lasso 243 1.68 2.50
Cox-boosting 2.60 1.75 2.66
RSF 2.46 1.86 2.50
Flexible models Stacking 243 1.68 2.50
Ccv 2.43 1.69 2.50
Non-linear effects Single models Cox-Lasso 2.02 1.03 2.08
Cox-boosting 2.01 1.01 2.08
RSF 1.89 1.15 1.95
Flexible models Stacking 1.97 1.00 2.04
Ccv 2.01 1.03 2.07

Each simulation is replicated 2000 times, and the error is multiplied by 1. The two top estimators are bolded for each simulation
scenario. ‘RSFs’ stand for random survival forests, ‘Stacking’ is stacked survival models, and ‘CV’ is the estimator selected through
cross-validation. The standard error for the estimate ISSE for each method in each scenario is <0.005.

version of the Cox model, and RSFs. The /; penalized version of the Cox model is fit using the R package
penalized with the penalty parameter chosen via cross-validation (Goeman, 2012). The boosted Cox
model is fit using the package CoxBoost in R with default tuning parameters (Binder, 2013). RSF is fit
in the same manner as Section 5.1.

The stacked survival model is again a top two estimator in every scenario (see Table 3). Relative to
Section 5.1, stacked survival models offer smaller improvements (e.g., ~1-5% lower ISSE compared with
the cross-validated estimator). However, the improvements in ISSE remain consistent across the scenarios.
In addition, the stacking procedure still performs as good, or better, in every scenario as the model selected
via cross-validation.

REMARK 4 Supplementary material available at Biostatistics online presents numerous extensions to the
simulation study. In particular, we investigate scenarios with a larger sample size, a high censoring rate,
non-monotonic covariate effects, and a misspecified censoring model. In addition, we comment on the
required computational time and the influence of the out-of-bag estimator for RSF.


http://biostatistics.oxfordjournals.org/lookup/suppl/doi:10.1093/biostatistics/kxv001

546 A. WEY AND OTHERS

1.0 1.0+
= < 0.8 -
2 2 .
>
5 05
§ § 0.4
T —— Stacked - Q‘E.‘ T
_g —— Log-Normal . _g
T 0271 o weibun & 024

~~~~~ Cox
OO_ |||| 0-0_IIIIIIIIIIiIHHHHﬁ\H\ I \H\I I‘
0O 20 40 60 80 100 120 0 10 20 30 40 50
Tumor size (mm) Number of nodes

Fig. 1. The association of tumor size (mm) and the number of nodes with 5-year survival for the GBCS data set with
the other covariates to their median value. The tick marks at the bottom of the plots indicate the skewness of both
covariates.

6. GERMAN BREAST CANCER STUDY

Stacked survival models are illustrated on a well-known survival benchmark data set: the German breast
cancer study (GBCS) described by Hosmer ef al. (2008), and accessible at the University of Massachusetts
website for statistical software information. There are eight covariates included in the analysis: age at
diagnosis, tumor size, tumor grade, number of nodes, menopausal status, the number of progesterone
receptors, the number of estrogen receptors, and hormone therapy status. The outcome of interest is the time
till death, and there is complete data on 686 patients with ~75% censoring. The stacking procedure uses
the same models as Section 5.1. That is, the Weibull and log-Normal models are the parametric models, the
Cox proportional hazards model is the semi-parametric model, and an RSF is the non-parametric model.
The minimum number of deaths (for RSF) is set at 12, which was selected by minimizing predicted error
among five potential values: 3, 6, 12, 24, and 48.

We are particularly interested in the association of tumor size and the number of nodes with 5-year
survival. In order to evaluate the association, the stacked survival model and each model included in the
stacking procedure predicts the 5-year survival rate for each patient in the study. After predicting 5-year
survival, a generalized additive model with penalized B-splines for the continuous covariates (i.e., the gam
function from the mgcv package; Wood, 2006) estimates the association of tumor size and the number of
nodes with 5-year survival while adjusting for the other covariates.

Figure 1 presents the estimated 5-year survival as a function of tumor size and the number of nodes at
the median of the other covariates. The parametric/semi-parametric models suggest worse 5-year survival
with increasing tumor size and number of nodes. In contrast, RSF suggests that 5-year survival dips slightly
~40mm for tumor size, while 5-year survival for the number of nodes has a sharp early decrease but
plateaus after ~ 10 nodes. The stacked survival model— which gives weight to the Weibull model (0.06),
the Cox model (0.38), and RSF (0.56)—is a compromise between the parametric/semi-parametric models
and RSE.

The GBCS data set has a marginal 5-year survival rate of 70% due, in part, to a censoring rate of
75%. As such, predicted 5-year survival rates <20% are surprising (i.e., the parametric/semi-parametric
models for the number of nodes). Due to the sparsity of patients with >20 nodes, the low model-based
predicted probabilities are likely due to parametric/semi-parametric models being heavily influenced by a
strong negative association with survival for patients with <20 nodes (98% of patients have <20 nodes)
through the first-order linear effect (note that the patient with over 50 nodes was censored after 2 years).
In contrast, RSF does not require any linearity assumptions and is more influenced by local observations



Stacked survival models 547

in predicting S-year survival (Ishwaran et al., 2008). From this perspective, the stacked survival model is
balancing model-based predictions that require assumptions of linearity with locally based predictions.

REMARK 5 In this example, the model weights provide insight into how candidate survival models were
combined to form the stacked estimate of the conditional survival function. However, we caution against
interpreting model weights as an indication of a “correct model.” As noted by a referee, this is particularly
dangerous when two models possess similar survival functions due to potential instability in the minimiza-
tion procedure.

7. CONCLUSION AND FUTURE DIRECTIONS

We propose stacking survival models to flexibly estimate conditional survival functions. Stacked survival
models can combine several models, spanning the full range of parametric, semi-parametric, and non-
parametric estimators. This allows stacking to exploit the low variance of approximately correct paramet-
ric models, while maintaining the robustness of non-parametric estimators. As illustrated in the simulation
study, stacked survival models give more weight to parametric and semi-parametric models when assump-
tions are approximately correct, but shift weight to non-parametric estimators when assumptions are badly
violated. In this manner, stacked survival models perform well across a wide range of scenarios. In par-
ticular, for a given scenario, stacked survival models were found to perform better than the single model
chosen through cross-validation and, at times, perform better than any single model considered in the
stacking procedure.

In practice, the true underlying data generation process is never known, i.e., one does not choose the true
event distribution or functional form of the covariates. This motivates an adaptive approach that can per-
form well in a wide variety of situations. Cross-validation is currently the most common adaptive approach.
Yet, the set of simulations illustrate that stacked survival models perform as good, or better, than the model
selected through cross-validation, which picks a single model to receive all the weight (i.e., oy =1 for
some k). As such, stacked survival models warrant consideration whenever cross-validated models are
used. Other predictive models could also have been considered, though stacked survival models could
inherit any particular advantages of such models through inclusion in the stack.

As shown in Section 3, the MSE decomposition of the stacked survival model depends on the MSE for
each candidate model, the pairwise correlation between candidate models, and the weight (i.e., o) given
to each model. The correlation term suggests that including an additional model that is very similar, e.g., a
model of the same type as one already in the stack but with small differences in the covariates included, may
not improve and could harm performance (see supplementary material available at Biostatistics online).
While the estimated weights can theoretically be zero, there is no guarantee that this will occur for a highly
correlated model. This could motivate a preliminary screen procedure for candidate survival models that
is based on pairwise correlations. For example, a procedure to determine the covariate combination and
functional form for parametric or semi-parametric models, or determine values of tuning parameters for
non-parametric estimators. However, as noted by an anonymous referee, any screening procedure needs
to be careful to avoid overfitting by using, for example, nested cross-validation or independent, external
data. The advantages of a potential screening procedure deserve further research.

Covariate-dependent stacking (or, allowing the «; to depend upon x) is a potential avenue for improv-
ing stacked survival models. LeBlanc and Tibshirani (1996) mention this approach for uncensored stack-
ing, and a collaborative group using covariate-dependent stacking won the Netflix Prize competition to
improve movie recommendations (Sill ez al., 2009). However, extending the stacking procedure to include
covariate-dependent weights with the constraints introduced here is not straightforward. For example,
Sill e al. (2009) do not constrain their covariate-dependent weights despite prior experiences suggesting
that regularization improves performance (Breiman, 1996; LeBlanc and Tibshirani, 1996). Investigation
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of covariate-dependent stacking and different approaches to constraining the covariate-dependent weights
deserves further investigation.

The Brier Score, used to estimate the weighted combination of survival models, is essentially an inverse
probability-of-censoring-weighted (IPCW) estimate of prediction error. The [IPCW estimate requires esti-
mating the (possibly conditional) censoring distribution. The simulation scenarios introduced in Section 5
use a Kaplan—Meier estimator for the censoring distribution that is correctly specified. In our experience,
the stacking procedure maintains good operating characteristics when the censoring model is misspecified.
However, if there is strong evidence of differential censoring among the covariates, then a conditional esti-
mator may be warranted.

The importance of efficient, yet robust, estimators of conditional survival functions (or, equivalently,
conditional distribution functions) continues to grow. Methods in a wide range of areas require esti-
mating a conditional survival function as a nuisance parameter, for example, censored quantile regres-
sion (Wey et al., 2014), time-dependent ROC curves (Zheng and Heagerty, 2004), inverse probability-of-
censoring-weighted estimators, e.g., Fine and Gray (1999), model-free contrast approaches (Rudser et al.,
2012), and dynamic treatment regime methods (Zhao ef al., 2011). The simulations presented here sug-
gest that stacking parametric, semi-parametric, and non-parametric models for the nuisance parameter will
likely result in better estimation of regression parameters of interest, though these topics warrant further
investigation.
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