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Abstract

Protein–ATP interactions are ubiquitous in a wide variety of biological processes. Correctly 

locating ATP binding sites from protein information is an important but challenging task for 

protein function annotation and drug discovery. However, there is no method that can optimally 

identify ATP binding sites for different proteins. In this study, we report a new composite 

predictor, ATPbind, for ATP binding sites by integrating the outputs of two template-based 

predictors (i.e., S-SITE and TM-SITE) and three discriminative sequence-driven features of 

proteins: position specific scoring matrix, predicted secondary structure, and predicted solvent 

accessibility. In ATPbind, we assembled multiple support vector machines (SVMs) based on a 

random undersampling technique to cope with the serious imbalance phenomenon between the 

numbers of ATP binding sites and of non-ATP binding sites. We also constructed a new gold-

standard benchmark data set consisting of 429 ATP binding proteins from the PDB database to 

evaluate and compare the proposed ATPbind with other existing predictors. Starting from a query 

sequence and predicted I-TASSER models, ATPbind can achieve an average accuracy of 72%, 

covering 62% of all ATP binding sites while achieving a Matthews correlation coefficient value 

that is significantly higher than that of other state-of-the-art predictors.
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INTRODUCTION

Interactions between proteins and ligands are indispensable for biological activities and play 

important roles in a wide variety of biological processes.1–3 Hence, accurately locating the 

protein–ligand binding sites or pockets is of significant importance for both analyzing 

protein function and designing novel drugs.4–7 Tremendous wet-lab efforts have been made 

to uncover the intrinsic mechanisms of protein–ligand interactions, and thousands of 

protein–ligand interaction structure complexes have been deposited into the PDB.8 However, 

identifying protein–ligand binding sites via wet-lab experimental technologies is often cost-

intensive and time-consuming. Due to the importance of protein–ligand interactions and the 

difficulty of experimentally identifying the binding sites, the development of efficient and 

automatic computational methods for the fast prediction of protein–ligand binding sites has 

become an increasingly important problem in bioinformatics, especially when faced with the 

large-scale protein sequences of the postgenomic era.9,10

Many computational methods have emerged for predicting protein–ligand binding sites 

during the past decades.9–12 These methods can be generally grouped into two categories: 

general-purpose methods and ligand-specific methods. In the early stage, general-purpose 

predictors, which predict ligand binding sites (or pockets) regardless of the ligand types, 

dominated the field of protein–ligand binding site prediction, including (to name a few) 

LIGSITE,13 CASTp,14 SURFNET,15 POCKET,16 Fpocket,17 Q-SiteFinder,18 SITEHOUND,
19 and 3DLigandSite.20 Recently, another general-purpose predictor, COACH,9 a meta-

server approach to protein–ligand binding site prediction, was designed. In COACH, two 

template-based predictors, i.e., TM-SITE and S-SITE, were first proposed for 

complementary binding site prediction based on binding-specific substructure comparison 

and sequence profile alignment, respectively; the binding models from TM-SITE and S-

SITE were then combined with results from other general-purpose predictors, such as 

COFACTOR,21 FINDSITE,22 and ConCavity,11 to obtain the final ligand binding site 

prediction.9

Since different ligands tend to bind diverse types of residues with prominent specificities 

due to the specific roles, sizes, and distributions of protein–ligand interactions,23 the second 

type of ligand-specific predictors, which are designed to predict binding sites (or pockets) 

for specific ligand types, have been increasingly of interest. Such predictors include 
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NsitePred,24 TargetS,10 TargetSOS,25 and TargetNUCs26 for nucleotides; FINDSITE-

metal27 and CHED28 for metal; DNABR29 and MetaDBSite30 for DNA; and IonCom31 for 

metal and acid radical ion binding site predictions. These studies demonstrated that ligand-

specific binding site predictors are often superior to general-purpose binding site predictors 

due to the added consideration of the physicochemical features of specific ligand–protein 

interactions.

Among the many ligand-specific binding predictors, adenosine-5′-triphosphate (ATP) is of 

particular interest. ATP is a nucleotide, also called a nucleoside triphosphate, which is a 

small molecule that is used in cells as a coenzyme and plays an essential role in membrane 

transport, cellular motility, muscle contraction, signaling, the transcription and replication of 

DNA, and various metabolic processes.32 It interacts with proteins through protein–ATP 

binding sites and provides chemical energy to proteins via the hydrolysis of ATP.33 The 

proteins can then perform various biological functions using the chemical energy. 

Additionally, ATP binding sites are valuable drug targets for antibacterial and anticancer 

chemotherapy.34 Hence, accurately localizing the protein–ATP binding sites is of significant 

importance for both protein function annotation and drug discovery.

ATPint32 is one of the first custom-designed computational predictors for identifying ATP-

specific binding sites, and it was trained with a position specific scoring matrix (PSSM) and 

several other sequential descriptors, using a data set consisting of 168 nonredundant ATP 

interacting proteins. ATPsite35 was later proposed by Kurgan and co-workers; this system 

combined PSSM and an SVM and was trained on a larger data set with 227 nonredundant 

ATP interacting proteins. However, the imbalanced learning problem36 embedded in 

protein–ATP binding site prediction, i.e., that the number of non-ATP binding sites is much 

larger than the number of ATP binding sites, is a problem that could decrease the final 

prediction performance and is ignored by ATPint and ATPsite. To solve the imbalanced 

learning problem and enhance the prediction accuracy, we recently proposed 

TargetATPsite37 by integrating random undersampling (RUS) and AdaBoost36 ensemble 

algorithms. Except for the above three ATP-specific predictors, many nucleotide-specific 

binding site predictors, e.g., NsitePred,24 TargetS,33 and TargetNUCs,26 which also contain 

an ATP binding site prediction model, can be used to predict the ATP binding sites. These 

existing approaches have the advantage of generating predictions from sequence alone, but 

the Matthews correlation coefficient (MCC) of the predictions is low (typically 

approximately 0.580 at 52% sensitivity) because sequence information cannot directly show 

protein function.

Despite the progress made in the ATP binding prediction, most predictors are based on 

protein sequence information, but protein structure information, which has demonstrated a 

significant advantage in other ligand binding studies,9,21 has not been utilized. In this study, 

we aim to systematically examine the impact of the employment of structure-based features 

on ATP binding prediction by developing a new meta ATP binding site predictor called 

ATPbind, which integrates the outputs of two template-based predictors, i.e., S-SITE and 

TM-SITE, with three sequence-based features, i.e., the position specific scoring matrix, the 

predicted secondary structure, and the predicted solvent accessibility. Here, S-SITE is a 

sequence-template-based predictor, and TM-SITE is a structure-template-based predictor. To 
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ensure that the proposed ATPbind is an ATP-specific predictor, we extend S-SITE and TM-

SITE to the ATP-specific predictors and rename them as S-SITEatp and TM-SITEatp, 

respectively. A new gold-standard benchmark data set consisting of 429 nonredundant ATP 

binding proteins was collected from the PDB database and will be used to systematically 

examine the strengths and weaknesses of such a composite combination of sequence and 

structure information for ATP binding predictions. In particular, given the significant 

imbalance feature of the ATP binding data, we introduced a mean-ensemble-based method 

to integrate multiple support vector machines (SVMs) based on the random undersampling 

technique.

MATERIALS AND METHODS

Benchmark Data Sets

We constructed a data set of 2144 ATP binding protein chains, named PATP-2144, which 

had clear target annotations and had been deposited into the Protein Data Bank (PDB)8 

before November 5, 2016. We further removed the redundant sequences using CD-hit 

software38 with sequence identity <40%, yielding a total of 429 nonredundant protein 

sequences. Next, we divided the 429 nonredundant sequences into a training data set 

(PATP-388) and an independent test data set (PATP-TEST). PATP-388 consists of 388 

protein sequences that had all been deposited into the PDB before November 5, 2014, and 

PATP-TEST includes 41 protein chains that were deposited into the PDB after November 5, 

2014. More specifically, PATP-388 consists of 5657 ATP binding residues (i.e., positive 

samples) and 142 086 non-ATP binding residues (i.e., negative samples), and PATP-TEST 

consists of 674 positive and 14 159 negative samples. Table 1 summarizes the detailed 

statistical composition of PATP-388 and PATP-TEST. To illustrate the low homology 

between sequences among training and independent validation data sets, we further list the 

maximum sequence identity of each protein in PATP-TEST against all proteins in PATP-388 

in Table S1. A detailed list of the ATP–protein binding samples is available at http://

zhanglab.ccmb.med.umich.edu/ATPbind/Dataset_list.pdf.

Feature Representation

Protein–ATP binding site prediction is a traditional binary classification problem in the 

machine-learning field. How to encode ATP-specific binding sites with discriminative 

features is one of the most crucial steps in constructing a machine-learning-based prediction 

model. The discriminative features used in this study can be categorized into five groups, 

position specific score matrix (PSSM), predicted secondary structure (PSS), predicted 

solvent accessibility (PSA), the prediction result of S-SITEatp (an ATP-specific S-SITE9), 

and the prediction result of TM-SITEatp (an ATP-specific TM-SITE9). Here, S-SITEatp and 

TM-SITEatp are both template-based methods that can predict the ATP-specific binding 

probability of each query residue.

Position Specific Scoring Matrix—For each query protein sequence, its PSSM profile 

is generated by using PSI-BLAST39 to search against the Swiss-Prot database40 through 

three iterations, with 0.001 used as the E-value cutoff for multiple sequence alignment. The 
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normalization logistic function is then utilized to rescale the score of each element, denoted 

as x, in a PSSM profile in the interval (0, 1):

f (x) = 1
1 + e−x (1)

To extract the PSSM-view feature of each residue, a sliding window with size W (centered at 

the target residue) is utilized to search the rescaled PSSM.32 Inspired by ATPint,32 we set W 
= 17 in this study. This causes the dimensionality of the PSSM-view feature to be 17 × 20 = 

340.

Predicted Secondary Structure—For a given protein sequence, we obtain its PSS 

information by applying PSIPRED,41 which predicts the probabilities belonging to three 

secondary structure classes (coil (C), helix (H), and strand (E)) of each residue. Thus, for a 

protein with N residues, we obtain an N × 3 probability matrix, which contains the predicted 

secondary structure information on the protein. Again, a sliding window of size 17 is used to 

present the PSS-view feature of each residue and the dimensionality of the extracted feature 

is 17 × 3 = 51.

Predicted Solvent Accessibility—The PSA characteristics of each residue can be 

obtained by feeding the corresponding sequence to the standalone SANN program,42 

downloaded from http://lee.kias.re.kr/~newton/sann/. For each query sequence, SANN 

precisely predicts its PSA profile (in N rows and 3 columns, where N is the length of the 

query sequence), which includes the probabilities of three solvent accessibility classes (i.e., 

buried (B), intermediate (I), and exposed (E)) for each residue. A sliding window with size 

17 is also employed to extract the PSA-based feature of each residue. Accordingly, the 

dimensionality of the PSA-view feature is 17 × 3 = 51.

S-SITEatp-Based Feature—S-SITE is a template-based method with good performance 

that detects protein templates and general-purpose binding sites using sequence profile–

profile comparisons.9 However, S-SITE can be time-consuming for predicting ATP binding 

sites, and its predicted results cannot directly tell us whether the predicted binding sites are 

ATP binding sites. The main reason may be that S-SITE needs to search all protein 

sequences in the BioLip library whether the protein is an ATP binding one.9 In this study, we 

extended S-SITE to an ATP-specific S-SITE (named S-SITEatp). In S-SITEatp, the Swiss-

Prot database40 is used to generate the multiple sequence alignment profile of the query 

protein sequence. PATP-2144 is utilized to replace the BioLip library43 for searching the 

template protein sequences. For a given protein sequence, S-SITEatp predicts the ATP 

binding probability value for each residue in the protein. It is worth noting that all 

homologous templates with a sequence identity >30% to the query sequence are excluded in 

S-SITEatp. Again, a sliding window (W = 17) is used to represent the S-SITEatp-based 

feature of each residue. The S-SITEatp-based feature dimensionality is 17. The comparison 

results between S-SITEatp and S-SITE can be found in Text S1 in the Supporting 

Information (SI).
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TM-SITEatp-Based Feature—TM-SITE is a structure-template-based method that is also 

designed to derive the general-purpose binding sites by structurally comparing the query 

protein with the template proteins.9 Similar to S-SITE, it is time-consuming to use TM-SITE 

to detect the ATP-specific binding sites. In this study, we extended TM-SITE to be ATP-

specific, named it TM-SITEatp, by replacing the BioLip library43 to an ATP-specific 

database (PATP-2144 in this paper). For a given protein with a known structure, TM-

SITEatp can directly predict the ATP binding probability for each target residue. For a given 

protein sequence without a 3D structure, we first construct its modeling structure by I-

TASSER.44 The ATP binding probability of each residue is then detected by TM-SITEatp. 

To avoid homologous contamination, homologous templates with a sequence identity >30% 

to the query have been excluded from both I-TASSER and ATP binding libraries. Finally, the 

TM-SITEatp-based feature (whose dimensionality is 17) is gained based on a sliding 

window with size 17. To show the performance of TM-SITEatp, we compare TM-SITEatp 

and the original TM-SITE in Text S2 in the SI.

Learning from Imbalanced Data

Protein–ATP binding site prediction is a standard imbalanced learning problem, where the 

number of the majority class (non-ATP binding residues) is larger than that of the minority 

class (ATP binding residues).37 From Table 1, we see that the imbalanced ratio between the 

number of non-ATP binding residues and the number of ATP binding residues is larger than 

21. Compared to the minority class, the majority class contains lots of redundant information 

in the original data set, which can decrease the prediction performance and increase the 

training and testing time. To overcome this hurdle, random under-sampling (RUS)36 and 

mean ensemble schemes (ME) are combined to solve the imbalanced learning problem. RUS 

is used to reduce the number of the majority class in this study. However, RUS comes with 

the disadvantage of potentially losing useful information.36 To overcome this disadvantage 

caused by RUS, we employ ME to enhance the final prediction accuracy.

More specifically, in the training stage, we randomly sample the majority class T times (in 

the present study, T = 10) with RUS and thus obtained T majority training subsets. The T 
majority training subsets each in addition to the minority class (ATP binding sites) training 

set constitute T new training data sets. Then, a kind of machine learning model (SVM in this 

study) is trained on each of the T new training data sets. In the prediction stage, for each 

residue in a given protein sequence, its probability of belonging to the ATP binding site class 

is predicted by each of the T prediction models. Then, the T probabilities of the residue 

belonging to the ATP binding site class are fused by ME. The details of ME is described as 

follows.

Let {pt}t = 1
T  be the T predicted probabilities, where pt means the probability output of the tth 

prediction model. The equation of ME can then be represented as follows.

pME = 1
T ∑

t = 1

T
pt (2)
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where pME is the average probability.

Support Vector Machine

SVM45 is utilized to construct the base classifiers. We use LIBSVM,46 which is freely 

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/, to implement the SVM algorithm. 

Here, a radial basis function is chosen as the kernel function. The kernel width parameter σ 
and the regularization parameter γ, which are the two most important parameters, are 

optimized over a 5-fold cross-validation using a grid search strategy in the LIBSVM tool. 

The details of cross-validation can be found in Text S3 in the SI.

Architecture of ATPbind

Figure 1 illustrates the architecture of the proposed ATPbind for ATP binding site prediction. 

For a given protein, ATPbind can extract the above five different view features for each 

target residue by calling the corresponding programs and applying the sliding window 

technique. In the training phase, after extracting the features of all proteins in PATP-388, we 

can obtain the extremely unbalanced training sample set. We then employ RUS T (T = 10 in 

this study) times to construct a set of multiple training subsets. One prediction model is 

trained for each subset using SVM. The ensemble prediction model is finally created using 

the ME method by integrating the outputs of the different models. In the prediction phase, 

for a protein to be predicted, the ensemble prediction model can be utilized to give the 

probability output for each residue of being an ATP binding residue. We also propose a 

sequence-based ATP binding predictor, named ATPseq, that only utilizes information from 

the protein sequence. The only difference between ATPseq and ATPbind is that ATPseq does 

not use TM-SITEatp-based feature.

Assessing Predictive Ability

Five evaluation indexes that are routinely used in this field, i.e., sensitivity (Sen), specificity 

(Spe), accuracy (Acc), precision (Pre), and the Matthews correlation coefficient (MCC), are 

utilized to evaluate predictive ability, as follows:

Sen = TP
TP+FN (3)

Spe = TN
TN+FP (4)

Acc = TP+TN
TP+FN + TN + FP (5)
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Pre = TP
TP+FP (6)

MCC = TP · TN − FN · FP
(TP + FN) · (TP + FP) · (TN + FN) · (TN + FP) (7)

where TN, TP, FN, and FP are abbreviations for true negatives, true positives, false 

negatives, and false positives, respectively. The MCC (ranging from −1 to 1) evaluates the 

overall predictive quality. A higher MCC value means a better prediction performance. 0 

represents that all residues are predicted as nonbinding (or binding). The reported threshold, 

which can maximize the MCC value, is then chosen to calculate the values of Sen, Spe, Acc, 

Pre, and MCC. Furthermore, the area under the receiver operating characteristic (ROC) 

curve (termed AUC), which increases in direct proportion to the overall prediction 

performance, is employed to assess the overall predictive ability.

RESULTS AND DISCUSSION

Assessment of the Quality of the I-TASSER-Modeled Structures

Since the quality of the modeled structure of the protein has an impact on TM-SITEatp, we 

compare the accuracy of the current predictions using I-TASSER44 with the experimental 

structures on the PATP-TEST data set, where the protein lengths range from 115 to 863, in 

terms of the TM-score and RMSD evaluation indexes.47 For each given protein, the standard 

I-TASSER program, which excludes all homologous template proteins with sequence 

identity >30% to the given sequence, generates its structural model from the query protein 

sequence with iterative fragment assembly simulations. We then calculate TM-score and 

RMSD of the I-TASSER-modeled structures (ITAMSs) for the 41 testing proteins. The 

results are compiled in Figure 2. From Figure 2, it is easily found that the majority of the 

testing proteins (≈87.8%) can be modeled by I-TASSER with a correct fold, i.e., TM-score 

>0.5, and 32 proteins (78.05% in PATP-TEST) have a RMSD below 4 Å. The overall 

average TM-score and RMSD for the testing proteins is 0.721 and 3.502 Å, respectively. 

These represent that the quality of the ITAMSs is acceptable for ATP binding site prediction.

To further check the ITAMS quality, we compare the quality of the ITAMSs and the 

MODELER-modeled structures (MODMSs), which are modeled by MODELER software,48 

on PATP-TEST. The detailed comparison results can be found in Table S4 and Figure S1. 

The overall average TM-score and RMSD of the ITAMSs are 0.721 and 3.502 Å, 

respectively, which are approximately 0.116 and 0.695 Å better than those of the MODMSs. 

Concretely, there are 26 testing proteins (≈63.41%) for which the ITAMSs have a higher 

TM-score than the MODMSs. Meanwhile, there are 58.54% proteins in PATP-TEST for 

which the ITAMSs have lower RMSD than the MODMSs. These results indicate that the 

quality of the ITAMSs outperforms the quality of the MODMSs for ATP binding site 

prediction.
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Do S-SITEatp-Based and TM-SITEatp-Based Features Help ATP Binding Site Prediction?

In this section, the discriminative performances of the three combination features, i.e., 

PSSM+PSS+PSA (PPP), PSSM+PSS+PSA+S-SITEatp (PPPS), and PSSM+PSS+PSA+S-

SITEatp+TM-SITEatp (PPPST), will be investigated for measuring whether S-SITEatp-

based and TM-SITEatp-based features help ATP binding site prediction. Here, the TM-

SITEatp-based feature is extracted by the ground-truth 3D structure. Each feature is 

evaluated by a 5-fold cross-validation test on the training data set PATP-388 with a single 

SVM classifier. In each training phase of the cross-validation test, we first employ RUS to 

make the sample number of the majority class equal to that of the minority class, and we 

then train a single SVM model. Table 2 summarizes the discriminative performance 

comparison of the three features on PATP-388 over 5-fold cross-validation tests with the 

single SVM classifier.

From Table 2, it is found that the PPPS and PPPST features consistently outperform the PPP 

feature concerning the six evaluation indexes. Comparing PPPS and PPP, the Sen, MCC, and 

AUC of PPPS are 58.05%, 0.547, and 0.919, which are approximately 11.94%, 16.38%, and 

2.68% better than that of PPP, respectively. The Sen, MCC, and AUC of PPPST are superior 

to those of the other two features, i.e., PPP and PPPS, and the improvements of 12.82%, 

11.52%, and 1.74% are achieved, respectively, compared with the second-best feature PPPS. 

The P-values of student’s t-test for the difference in MCC scores between PPPST and the 

other two features are both less than 10−4. Figure S2 illustrates the corresponding ROC 

curves. In Figure S2, we can intuitively discover that PPPST is the best one and that PPPS is 

also better than PPP.

Does the Mean Ensemble Strategy Help ATP Binding Site Prediction?

Table 3 lists the prediction performances of the single SVM classifier and the ensemble 

classifier, whose prediction model is obtained by using the mean ensemble strategy to 

integrate T (T = 10) SVM models, with PPPS and PPPST features on PATP-388 over 5-fold 

cross-validation tests.

From Table 3, we can find that the ensemble classifier consistently outperforms the single 

SVM classifier on both PPPS and PPPST features in the Spe, Acc, Pre, and MCC evaluation 

indexes, although the ensemble classifier has a slightly lower Sen and AUC. Taking results 

with PPPST as an example, the Spe, Acc, Pre, and MCC of the ensemble classifier are 

98.88%, 97.55%, 69.57%, and 0.655, which are approximately 0.6%, 0.6%, 16.5%, and 

7.4% higher than those of the single SVM classifier, respectively. The Sen and AUC 

(64.04% and 0.932) of the ensemble classifier are both slightly lower than that (65.49% and 

0.935) of the single SVM classifier.

In addition to Table 3, we draw Figures S3 and S4 to show the ROC curves and the variation 

curves of MCC versus the false positive rate of the ensemble classifier and the single SVM 

classifier on the PPPS and PPPST features, respectively. Figures S3 and S4 show that the 

ensemble classifier outperforms the single SVM classifier in the low false positive rate (FPR 

= FP/(FP + TN)) regions, where the FPR is less than 11.32% on the PPPS feature and 

14.60% on the PPPST feature, although the overall AUCs of the ensemble classifier are 
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slightly lower than those of the single SVM classifier for both PPPS and PPPST features. 

Note that the low FPR region is more important than the high FPR region, especially in the 

imbalanced data learning problem. Since the maximum MCC values of the two classifiers all 

lie in the low FPR regions on PPPS and PPPST features, the reported MCCs (0.605 and 

0.655) of the ensemble classifier are 10.6% and 7.4% higher than those of the single SVM 

classifier.

Comparing ATPseq and ATPbind with Existing ATP Binding Site Predictors

In this section, we demonstrate the efficacy of ATPseq and ATPbind by comparing them 

with other existing ATP binding site predictors over 5-fold cross-validation tests on 

PATP-388 and independent validation tests on PATP-TEST.

Performance Comparison over Cross-Validation Tests—Table 4 illustrates the 

performance comparison of ATPbind, ATPseq, TM-SITEatp, and S-SITEatp on PATP-388 

over 5-fold cross-validation tests. By observing Table 4, we can find that the proposed 

ATPbind and ATPseq are both better than TM-SITEatp and S-SITEatp, and ATPbind is 

superior to the other three predictors. Compared to S-SITEatp, the MCC values of ATPseq 

and ATPbind for the ATP binding site prediction increase by 32.97% and 43.96%, 

respectively. Meanwhile, ATPseq and ATPbind achieve improvements of 19.33% and 

29.19%, respectively, in the MCC evaluation index compared with TM-SITEatp. It is noted 

that the results of ATPbind and TM-SITEatp are both obtained by employing the 

experimental 3D structure information.

Performance Comparison over Independent Validation Tests—Table 5 illustrates 

the performance comparison of ATPbind, ATPseq, and other existing protein-ATP binding 

site predictors, including three structure-based predictors (i.e., COACH,9 3DLigandSite,20 

TM-SITEatp) and six sequence-based predictors (i.e., TargetNUCs,26 TargetSOS,25 TargetS,
33 TargetATPsite,37 NsitePred,24 S-SITEatp) on the independent test data set (PATP-TEST). 

Figure 3 shows the ROC curves of ATPbind, ATPseq, and the above-mentioned six 

sequence-based predictors. From Table 5 and Figure 3, it is clear that the proposed ATPbind 

achieves the best performance on PATP-TEST and that the proposed ATPseq outperforms 

the other six sequence-based predictors.

The MCC and AUC values of ATPseq are consistently superior to those of all six other 

sequence-based predictors here considered, and improvements of 1.91% and 2.57%, 

respectively, are achieved compared with the second-best sequence-based performer, 

TargetNUCs.26 It has not escaped our notice that TargetNUCs achieves the highest Pre score, 

0.8681, and with similar Spe and Acc values; however, its Sen value (0.4688) is much lower 

than that of ATPseq (0.5445), indicating that more false negatives are incurred during 

prediction.

The MCC and AUC values of ATPbind are 0.656 and 0.905, respectively, which are 2.66% 

and 3.08% higher (P-value <0.02 in student’s t-test for the difference in MCC score) than 

those of ATPseq, which is the best sequence-based predictor. Compared with the best 

general-purpose ligand binding site predictor, i.e., COACH, ATPbind obtains Sen and MCC 

improvements of 7.14% and 8.61%, respectively. Furthermore, ATPbind achieves Sen and 
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MCC improvements of 27.61% and 23.32%, respectively, compared to 3DLigandSite, which 

is the second-best general-purpose predictor. TM-SITEatp’s Sen (0.6973) is higher than that 

of ATPbind (0.6231), but its Pre (0.459) is significantly lower than that of ATPbind (0.7204), 

resulting in a low MCC value of 0.541. The differences between ATPbind and COACH, 

3DLigandSite, and TM-SITEatp in MCC values are all statistically significant, with P-values 

<0.05, <10−3, and <10−2, respectively, by student’s t-tests.

In Table 5, we list the prediction results of the structure-dependent predictors when the 

experimental 3D structure of the query proteins is used. As expected, the performance of all 

the structure-based methods is enhanced due to the increase of structural accuracy of the 

query proteins. It is also easily found that ATPbind outperforms the other three structure-

based predictors in the MCC evaluation index.

To further compare ATPbind with the existing structure-based ATP binding site predictors, 

we first divide the independent test data set, PATP-TEST, into two parts, denoted PATP-

TEST-easy and PATP-TEST-hard, based on the quality of the I-TASSER-modeled structure 

of each protein. Concretely, PATP-TEST-easy contains 36 proteins with a high quality of the 

modeled structure, in which each TM-score between the I-TASSER-modeled structure and 

the experimental structure is higher than 0.5. PATP-TEST-hard includes 5 proteins with a 

low quality of the I-TASSER-modeled structure, in which each TM-score between the 

modeled and experimental structures is lower than 0.5. Note that the protein structure pairs 

with a TM-score >0.5 are mostly in the same fold;49 the TM-scores of the 41 PATP-TEST 

proteins can be found in Table S4. Overall, the average TM-score for PATP-TEST-easy and 

PATP-TEST-hard is 0.765 and 0.400, respectively. Next, we compared the prediction 

performances of ATPbind, COACH,9 3DLigandSite,20 and TM-SITEatp on the PATP-TEST-

easy and PATP-TEST-hard data sets. Tables 6 and 7 present the comparison results on PATP-

TEST-easy and PATP-TEST-hard, respectively.

From Tables 6 and 7, we can easily find that ATPbind consistently outperforms the other 

three structure-based predictors, i.e., TM-SITEatp, 3DLigandSite, and COACH, on both the 

PATP-TEST-easy and PATP-TEST-hard data sets with regard to the MCC evaluation index. 

The MCCs of ATPbind on PATP-TEST-easy and PATP-TEST-hard are 0.670 and 0.544, 

respectively, which are 8.9% and 4.8% higher than those of COACH, 22.0% and 29.8% 

higher than those of 3DLigandSite and 20.7% and 24.5% higher than those of TM-SITEatp, 

respectively.

Why Does ATPseq Perform Better than COACH and 3DLigandSite?

By revisiting Table 5, we find that the proposed ATPseq, which is a sequence-based 

predictor, outperforms the two general-purpose structure-based methods (i.e., COACH and 

3DLigandSite) when only the I-TASSER-modeled 3D structure information exists, with an 

MCC value 5.79% better than COACH and 20.11% higher than 3DLigandSite. ATPseq can 

also obtain a comparable prediction performance with COACH and 3DLigandSite when the 

ground-truth 3D structure is employed.

There are two potential reasons to explain why the sequence-based predictor ATPseq works 

better than the two general-purpose structure-based predictors under the I-TASSER-modeled 
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structure. The first one is that the I-TASSER algorithm44 may not correctly generate the 

local ATP binding sites (or pockets) structure, even though the accuracy of the modeled 

protein structure is high. Figure 4 shows the comparison between the experimental and I-

TASSER-modeled structures of the 4-Coumarate–COA Ligase 2 protein (PDB ID: 5bsmA). 

As Figure 4 shows, the RMSD and TM-score47 of the I-TASSER-modeled structure are 3.68 

Å and 0.769, respectively, and the PS-score (the pocket similarity score) is 0.53, with a P-

value <10−5 between the experimental and I-TASSER-modeled ATP binding site structures, 

as calculated by the APoc algorithm.50 A PS-score = 0.53 means that the I-TASSER-

modeled binding site structures contain both useful information and useless noise. Over-

reliance on the modeled protein structure must lead to a decline in prediction accuracy. That 

is why the MCC value (0.604) of COACH,9 which combines the sequence and modeled 

structural information, is better than that (0.532) of 3DLigandSite, which only employs the 

modeled structural information. However, COACH also employs many structure-based 

predictors, i.e., TM-SITE, COFACTOR,21 FINDSITE,22 and ConCavity,11 to extract more 

information from the modeled structure such that the noise information in the modeled 

structure is magnified and the predicted performance is decreased.

The second reason is that different ligands tend to bind diverse types of residues with 

prominent specificities, and protein–ligand binding sites (or pockets) vary significantly in 

their role, size, and distribution for different types of protein–ligand interactions.23,51 

Ligand-specific predictors are often superior to general-purpose predictors for a specific 

ligand type (e.g., ATP) binding site prediction, which is the main reason to explain why the 

performance of ATPbind is higher than that of other existing general-purpose predictors such 

as TM-SITEatp, 3DLigandSite, and COACH on the experimental structures. Figure 5 

illustrates the prediction results of 3DLigandSite, COACH, ATPseq, and ATPbind on the 

protein 5bsmA (containing 530 residues), which has 21 ATP binding residues, including 

S182, S183, G184, T185, T186, K190, H230, A302, A303, P304, Q324, G325, Y326, G327, 

M328, T329, C353, D413, I425, R428, and K519. From Figure 5, it is easy to find that 

ATPseq outperforms 3DLigandSite and COACH on 5bsmA using the I-TASSER-modeled 

structure. ATPseq, which is an ATP-specific predictor, correctly predicted 20 true positives 

and only 1 false negative. However, 3DLigandSite used 1 COA, 4 Mg2+, 12 AMP, and 1 

ATP binding proteins as templates to predict the ATP binding sites of 5bsmA, and the 

predicted results are 14 true positives, 5 false positives, and 7 false negatives. COACH 

mainly used numerous SLU and BEZ binding proteins as templates to identify the ATP 

binding sites of 5bsmA, resulting in 13 true positives, 10 false positives, and 8 false 

negatives. Interestingly, although the overall prediction performance (MCC = 0.656 and 

AUC = 0.905) of ATPbind is higher than that of ATPseq (MCC = 0.639 and AUC = 0.878), 

the performance of ATPseq (20 true positives, 0 false positive, and 1 false negative) is 

slightly higher than that of ATPbind (19 true positives, 1 false positive, and 2 false negatives) 

in this example. This result could be explained by the first reason described in the last 

paragraph; i.e., the local ATP binding sites (or pockets) structure is difficult to model with I-

TASSER. Similar to the existing structure-based predictor, the prediction performance of 

ATPbind is affected by the quality of the I-TASSER-modeled pocket structure.
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CONCLUSIONS

In this study, we have designed and implemented a new predictor of ATP-specific binding 

sites named ATPbind based on the sequential and 3D structural information on proteins. 

Experimental results with a training data set and an independent test data set have 

demonstrated that the proposed ATPbind outperforms not only general-purpose predictors 

but also other existing ATP-specific binding site predictors. The superior performance of 

ATPbind mainly stems from the use of novel custom-designed discriminative features that 

are based on sequential and 3D structural information, i.e., the position specific scoring 

matrix profiles, the predicted secondary structure, the predicted solvent accessibility, the S-

SITEatp-predicted probability, and the TM-SITEatp-predicted probability. Furthermore, we 

employ random undersampling and the mean ensemble method to solve the imbalanced 

learning problem and thereby enhance the prediction performance. ATPbind has already 

been implemented as a web server that is now available at http://

zhanglab.ccmb.med.umich.edu/ATPbind/.

It is noted that ATPbind takes a relatively long computation time to predict the ATP binding 

sites of each query protein with structural information (approximately 45 m for a protein of 

300 residues). The long computational time stems from the fact that ATPbind must perform 

PSI–PRED, PSIPRED, SANN, S-SITEatp, TM-SITEatp, and LIBSVM to gain 

discriminative features and predict ATP binding sites. Nevertheless, given the importance of 

ATP binding site prediction and the overall acceptable CPU range, the strong performance 

advance is probably sufficient to demonstrate the worthiness of investing the time in running 

this method. While this method still has room for optimization (e.g., by integrating more 

programs when available), it represents one of the most accurate tools for ATP binding site 

prediction using cutting-edge structure modeling and machine-learning training techniques.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Architecture of ATPbind.
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Figure 2. 
TM-score and RMSD distributions of the I-TASSER-modeled structures on PATP-TEST.
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Figure 3. 
ROC curves of ATPbind (ITA and EXP), ATPseq, TargetNUCs, TargetSOS, TargetS, 

TargetATPsite, and NsitePred on the independent test data set (PATP-TEST). “ITA” and 

“EXP” indicate the I-TASSER-modeled and experimental structures, respectively.
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Figure 4. 
Comparison between the experimental structure (gray cartoon) and I-TASSER-modeled 

structure (blue cartoon) of the 4-Coumarate–COA Ligase 2 protein (PDB ID: 5bsmA). The 

RMSD and TM-score are 3.68 Å and 0.769, respectively, which are calculated by the TM-

score algorithm. The PS-score between the experimental binding site (red sticks) and the I-

TASSER-modeled binding site (magenta sticks) structures is 0.53 with P-value = 6.4 × 10−6, 

as calculated with the APoc algorithm.
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Figure 5. 
Visualization of prediction results for 5bsmA. (A) 3DLigandSite predicted results based on 

the I-TASSER-modeled structure of 5bsmA. (B) COACH predicted results based on the I-

TASSER-modeled structure of 5bsmA. (C) ATPseq predicted results based on the sequence 

of 5bsmA. (D) ATPbind predicted results based on the I-TASSER-modeled structure of 

5bsmA. The following color scheme is used: ATP in yellow, true positives in red, false 

positives in magenta, false negatives in cyan. The cartoon protein in the picture is the 

experimental structure of 5bsmA.

Hu et al. Page 21

J Chem Inf Model. Author manuscript; available in PMC 2018 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hu et al. Page 22

Table 1

Statistical Composition of the Training and Independent Validation Data Sets

data set no. of sequences numPa numNb ratioc

PATP-388 388 5,657 142,086 25.12

PATP-TEST 41 674 14,159 21.01

a
numP represents the number of positive samples.

b
numN represents the number of negative samples.

c
ratio = numN/numP.
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