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Abstract

Background: Initial Food and Drug Administration-approved artificial pancreas (AP) systems will be hybrid
closed-loop systems that require prandial meal announcements and will not eliminate the burden of premeal
insulin dosing. Multiple model probabilistic predictive control (MMPPC) is a fully closed-loop system that uses
probabilistic estimation of meals to allow for automated meal detection. In this study, we describe the safety
and performance of the MMPPC system with announced and unannounced meals in a supervised hotel setting.
Research Design and Methods: The Android phone-based AP system with remote monitoring was tested for 72 h
in six adults and four adolescents across three clinical sites with daily exercise and meal challenges involving both
three announced (manual bolus by patient) and six unannounced (no bolus by patient) meals. Safety criteria were
predefined. Controller aggressiveness was adapted daily based on prior hypoglycemic events.
Results: Mean 24-h continuous glucose monitor (CGM) was 157.4 – 14.4 mg/dL, with 63.6 – 9.2% of readings
between 70 and 180 mg/dL, 2.9 – 2.3% of readings <70 mg/dL, and 9.0 – 3.9% of readings >250 mg/dL. Moderate
hyperglycemia was relatively common with 24.6 – 6.2% of readings between 180 and 250 mg/dL, primarily
within 3 h after a meal. Overnight mean CGM was 139.6 – 27.6 mg/dL, with 77.9 – 16.4% between 70 and
180 mg/dL, 3.0 – 4.5% <70 mg/dL, 17.1 – 14.9% between 180 and 250 mg/dL, and 2.0 – 4.5%> 250 mg/dL.
Postprandial hyperglycemia was more common for unannounced meals compared with announced meals (4-h
postmeal CGM 197.8 – 44.1 vs. 140.6 – 35.0 mg/dL; P < 0.001). No participants met safety stopping criteria.
Conclusions: MMPPC was safe in a supervised setting despite meal and exercise challenges. Further studies are
needed in a less supervised environment.
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Introduction

Despite rapid advancement in type 1 diabetes (T1D)
therapy and technology, current control of glycemia

remains suboptimal with <25% of children, adolescents, and
young adults meeting American Diabetes Association (ADA)
guidelines for glycated hemoglobin (HbA1c) for their age.1,2

This level of glycemic control has occurred despite increased
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rates of continuous subcutaneous insulin infusion (CSII) pump
use of >50% in the United States and rapidly rising rates of
continuous glucose monitor (CGM) use.1,3,4 Many have ar-
gued that while CSII and CGM have shown benefits in gly-
cemic control in the broader T1D population, optimal benefit
will only be seen with automated insulin delivery systems, also
known as artificial pancreas (AP) systems, for which insulin
delivery is controlled by a dosing algorithm operating in tan-
dem with the CGM and CSII pump.5–7

The Medtronic 670G8 pivotal trial showed overall HbA1c

improvement from 7.4% at baseline to 6.9% along with a
decreased percent in time £70 mg/dL from 6.4% to 3.1% after
3 months of use of the hybrid closed-loop (HCL) system.9,10

Additional work is ongoing for systems being developed
around the world by academic and industry groups using
single- and/or dual-hormone (e.g., insulin and glucagon)
designs.11–22 While improvements seen in glycemic control
with these systems are encouraging, users of HCL systems will
still experience the burden of carbohydrate counting and will
still require premeal insulin bolusing to achieve optimal gly-
cemic control.23 Furthermore, it is unclear what benefit will be
seen from HCL in patients with poorer baseline control who
often miss or are late in giving meal boluses. For these reasons,
development of a fully closed-loop (FCL) AP system, which
requires minimal to no user inputs, has been long considered a
further step in AP development.6

Model predictive control (MPC) algorithms have emerged
as a leading method to achieve FCL AP systems.24,25 A 2017
meta-analysis of published AP studies showed that MPC was
the AP algorithm for all FCL systems tested, with the major-
ity using a dual-hormone design.11,12,18,26,27 Additional FCL
systems have also been reported elsewhere many of which are
dual hormone in design.28–31 Meal detection modules have
also been proposed to help achieve FCL AP function.32–38

Other studies have looked at the impact of reduced or missed
meal boluses on control in their AP systems.39,40

The multiple model probabilistic predictive control
(MMPPC) system is an FCL insulin-only MPC AP that does
not require meal announcement and achieves FCL control by
two major features not present in most MPC systems: (1) use of
uncertainty bands around the prediction of future glucose
values that allow insulin-dosing decisions to consider the risk
of glucose going below a predefined threshold, and (2) use of
population-level assumptions about sleep and meal behavior to
enable anticipation and detection of unannounced meals.
These features allow meal prediction while attempting to
minimize the risk for subsequent hypoglycemia. After
demonstrating safety in a hospital and hotel setting using
unannounced meals,41 the current studies were conducted to
assess safety and performance of the same algorithm with
announced and unannounced meals in adults and adoles-
cents in a supervised hotel environment.

Research Design and Methods

Study design

Participants in this hotel study were recruited at three clinical
centers (Barbara Davis Center at the University of Colorado
Denver, Stanford University, and Icahn School of Medicine at
Mount Sinai). The Android phone-based AP system with re-
mote monitoring was tested for 72 h in six adults and four
adolescents. Interested patients were eligible to participate in

the trial if they had a clinical diagnosis of T1D for at least
12 months requiring insulin therapy, were between 15 and
55 years old, had used an insulin pump for at least 3 months,
currently used a Dexcom continuous glucose monitor (G4 or
G5), used a total daily dose (TDD) of at least 0.3 U/(kg$d) of
insulin, and had an HbA1c between 7.0% and 10.0%. In addi-
tion, female participants of childbearing potential needed to use
an adequate method of contraception and have a negative
pregnancy test. Patients were excluded if they had diabetic
ketoacidosis or severe hypoglycemia (including loss of con-
sciousness or seizure) within the previous 6 months, hypogly-
cemia unawareness, were using a long or intermediate acting
insulin or other antidiabetic medications, were participating in
another interventional trial, had heart disease or an abnormal
electrocardiogram, hypertension, liver or kidney disease, or
regularly consumed <100 g of carbohydrates per day.

Two sets of outcomes are presented in this analysis. The first
are the 2016 outcome measures for AP clinical trials consensus
report42 and the consensus CGM metrics presented at the 2017
ADA conference in San Diego, California, which have been
proposed for consistency and comparison between AP trials:
sensor glucose (SG) percent >250 mg/dL, >180 mg/dL, in
target 70–180 mg/dL, <70 mg/dL, <54 mg/dL, mean SG,
standard deviation (SD), and coefficient of variation (CV) of
SG, and estimated HbA1c (eHbA1c). The second are the met-
rics proposed a priori and include percentage of subjects with
mean CGM <169 mg/dL (equivalent to an eA1c of 7.5%), low
blood glucose index,43,44 number of hypoglycemia events for
which self-monitoring of blood glucose (SMBG) was <70 mg/dL,
<60 mg/dL, and <50 mg/dL separated by at least 30 min, total
grams of carbohydrate taken for hypoglycemia, total daily
insulin dose, percent time CGM was used, and percent time
in closed loop (CL).

Predefined safety criteria were as follows: (1) no more
than three SMBG values <50 mg/dL, separated by at least
30 min, for any subject; (2) no more than two episodes with
SMBG values remaining >300 mg/dL for >1 h that are unre-
lated to an infusion set failure; (3) no ketonemia >1.0 mmol/L
while the system is functional unless related to an intercurrent
illness or infusion set failure; and (4) no seizure or loss of
consciousness. The study was approved by the Food and Drug
Administration, the institutional review boards at the three
clinical sites, and is listed on (www.clinicaltrials.gov,
NCT02769884).

Participants arrived at the study hotel in the afternoon of
study day 1 and had a new Dexcom G4 CGM placed to begin
the 2-h warm-up with calibration at least 30 min before dinner.
CL was initiated by 6 PM. During the 72-h AP phase, partic-
ipants consumed both announced (premeal bolus administered
by the patient based on their insulin to carbohydrate ratio and
current glucose level) and unannounced (no meal bolus) meals
and exercise (Fig. 1). Meal and exercise times varied by 30–
60 min each day in a flexible hotel-based study environment.
Each meal time (breakfast, lunch, and dinner) had one an-
nounced meal and two unannounced meals. Breakfast con-
sisted of at least 60 g of carbohydrates with low amounts of
protein and fat with about 1/3 of carbohydrates consisting of
simple carbohydrates (e.g., juice) with the same foods con-
sumed on days 2 (unannounced) and 3 (announced). Foods for
lunch and dinner were freely selected by the participants with
the only guideline that participants must consume at least 30 g
of carbohydrates per meal.
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Moderate-intensity exercise of at least 60 min in duration
(e.g., running, bicycling, jogging, or playing laser tag) was
conducted in the evenings on days 2, 3, and 4. Before moderate-
intensity exercise, participants were asked to calibrate the
CGM, activate ‘‘exercise mode,’’ and consume 15–30 g of
unannounced carbohydrates if their meter glucose value was
<140 mg/dL. Light exercise of 30–90-min duration (e.g.,
walking) was conducted in the mornings on days 2, 3, and
4 without activating exercise mode. Exercise took place
daily for all subjects during the specified time windows
with no major differences in exercise protocol adherence.
On days 2 and 3, following exercise but before dinner, the
previous 24-h data were downloaded and reviewed to de-
termine if adjustments should be made to the adaptive lower
bound glucose target as detailed hereunder. At 5 PM on day
4, participants were switched back to their home insulin
pumps and discharged home.

MMPPC AP system

The MMPPC algorithm was running on the University of
Virginia Diabetes Assistant platform using a Roche Accu-Chek
Combo insulin pump and Dexcom G4 Platinum CGM with
remote web-based monitoring.45,46 The MMPPC algorithm is
part of the class of MPC algorithms, which have been previ-
ously described and tested in preliminary safety and feasi-
bility trials in hospital and hotel settings.41,47–49 The theory
behind the MMPPC system has been described in a previous
publication and associated appendix.47 The version of the
MMPPC controller being implemented in this trial is essen-
tially the same version implemented in our previous inpatient
trial.41 Tuning parameters for the MMPPC system are pro-
vided in Supplementary Table S1 (Supplementary Data are
available at http://online.liebertpub.com/suppl/doi/10.1089/
dia.2017.0424).

In brief, the MMPPC algorithm predicts mean glucose 5 h
into the future in a manner similar to other MPC designs and
also includes uncertainty bands in the prediction allowing
insulin-dosing decisions that directly consider the risk of future
hypoglycemia.47–49 The MMPPC algorithm also uses data
from the National Health and Nutrition Examination Survey50

and American Time Use Survey51 to provide population-level
assumptions about meal and sleep behavior allowing antici-
pation of future meals to better detect unannounced meals. The
model used by the MMPPC algorithm is initialized to the
individual patient using the TDD and the basal rate profile. The
basal rates are assumed to be countered by the endogenous
glucose production. The algorithm initializes the insulin sen-
sitivity using the TDD and the 1800-rule.

The lower bound glucose value, defined as the bound to
which the 10% lower bound predictions would be adjusted
through insulin delivery, was used by the predictive portion
of the algorithm and was adjusted in an adaptive manner in
this study. The lower bound value was initially set at 120 mg/
dL. If during the previous 24 h there were no hypoglycemic
events (defined as meter glucose value <70 mg/dL) unrelated
to exercise and the average CGM value was ‡160 mg/dL,
then the daytime lower bound glucose target was lowered by
10–20 mg/dL at the investigator’s discretion. If there were
two hypoglycemic events, then the lower bound target was
increased by 10–20 mg/dL. This adaptive assessment was
performed in the afternoon of days 2 and 3.F
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Statistical analyses

Statistical analyses were performed on all data for the 10
participants analyzed for the CL period (system activation to
deactivation) as if the CL system were active. The calcula-
tions of glycemic metrics are based on the downloaded CGM
values. The overnight period was considered 0:00–06:00, and
the daytime period 06:00–0:00. Data are reported as mean –
SD or as a percentage. Glycemic variability was represented
as intrasubject SD and CV in CGM values. Statistical sig-
nificance between announced and unannounced meals was
calculated using a paired t-test where an a value of 0.05 was
used to determine significance.

Results

Subject characteristics

This study consisted of 10 participants with a mean age of
20.5 – 5.4 years, 3 female and 7 male, with a mean T1D
duration of 9.3 – 4.6 years (Table 1). Baseline HbA1c was
8.1 – 0.6% and TDD of insulin was 0.77 – 0.21 U/(kg$d).

Glycemic control during hotel period

The mean CGM was 157.4 – 14.4 mg/dL, and median CGM
was 157.8 mg/dL (interquartile range [IQR] 148.3–162.5 mg/dL)
with 2.9 – 2.3% time <70 mg/dL (Table 2). The mean CGM
value was <169 mg/dL for 80% of the participants (eHbA1c

of <7.5%). Overall participants had 1.0 – 0.83% <60 mg/dL,
0.31 – 0.33% <50 mg/dL, and 43.5 – 9.7% in the narrow target

range of 70–140 mg/dL. CL was active for 97.9 – 1.3% of the
hotel stay and CGM was active 98.8 – 1.3% of the time. Overall
percent time in the target range of 70–180 mg/dL was 63.6 –
9.2%. The overall CV was 38 – 5% and SD was 59.0 – 6.9 mg/dL.
The time <54 mg/dL was 0.5 – 0.4%. The mean TDD in CL
was 0.73 – 0.18 U/(kg$d) and was not significantly different
from the baseline TDD of 0.77 – 0.21 U/(kg$d).

The mean CGM overnight was 139.6 – 27.6 mg/dL with
3.0 – 4.5% of time <70 mg/dL, and 0.6 – 1.4% time <54 mg/dL.
Time in the target range (70–180 mg/dL) was 77.9 – 16.4%.

During the day, the mean CGM was 163.4 – 15.4 mg/dL
with 2.8 – 2.4% of time <70 mg/dL. Time in the target range
(70–180 mg/dL) during the day was 58.8 – 9.2%. Hypogly-
cemia <54 mg/dL was 0.4 – 0.5% for the daytime period.

Hypoglycemia and safety analysis

No participants experienced severe hypoglycemia with
change in mental status or seizure requiring glucagon, intra-
venous dextrose, or outside intervention. No participants met
the study stopping criteria of three SMBG values <50 mg/dL.
Participants took 1.9 – 1.9 (range 0–5.2) carbohydrate treat-
ments of at least 15 g of carbohydrate per day for hypoglyce-
mia (CGM <70 mg/dL) or alerts for predicted hypoglycemia
averaging 33 – 37 g of carbohydrates per day (Table 3).
Overall participants had an average of 1.1 – 1.2 times each day
when their SMBG value was <70 mg/dL, 0.4 – 0.5 events per
day <60 mg/dL, and 0.1 – 0.1 event per day <50 mg/dL. No
participants had more than two episodes of SMBG >300 mg/dL
or ketonemia >1.0 mmol/L unrelated to infusion set failure.

Announced versus unannounced meal analysis

Each participant consumed breakfast, lunch, and dinner
meals with one being preannounced and two being unan-
nounced (Fig. 1). Overall meal sizes did not differ signifi-
cantly between announced and unannounced meals (75 – 18
vs. 91 – 40 g of carbohydrate/meal; P = 0.28). Each meal was
analyzed for the 4 h after the start of the meal with the
postdinner and overnight period providing a longer window
into the fasting postmeal period (Fig. 2). Across all meals, the
CGM average was significantly lower for announced than for
unannounced meals (140.6 – 35.0 vs. 197.8 – 44.1 mg/dL;

Table 1. Subject Demographics

N 10
Age (years) 20.5 – 5.4
Baseline HbA1c (%) 8.1 – 0.6
Gender (% female) 30
Duration of T1D (years) 9.3 – 4.6
Weight (kg) 78.6 – 11.4
Baseline insulin TDD (U/day) 61.2 – 22.0
Baseline insulin TDD (U/(kg$d)) 0.77 – 0.21

HbA1c, glycated hemoglobin; T1D, type 1 diabetes; TDD, total
daily dose.

Table 2. Closed-Loop Glycemic Control

Full day Overnight (0:00–06:00) Daytime (06:00–0:00)

Mean SG (mg/dL) 157.4 – 14.4 139.6 – 27.6 163.4 – 15.4
eHbA1c (%) 7.1 – 0.5 6.5 – 1.0 7.3 – 0.5
SD (mg/dL) 59.0 – 6.9 35.8 – 11.9 62.1 – 6.6
CV (%) 38 – 5 26 – 6 38 – 5
LBGI risk score 7.9 – 1.7 4.8 – 2.9 8.9 – 1.9
% <54 mg/dL (%) 0.5 – 0.4 0.6 – 1.4 0.4 – 0.5
% <70 mg/dL (%) 2.9 – 2.3 3.0 – 4.5 2.8 – 2.4
% 70–180 mg/dL (%) 63.6 – 9.2 77.9 – 16.4 58.8 – 9.2
% >180 mg/dL (%) 33.6 – 10.1 19.1 – 17.8 38.4 – 10.1
% >250 mg/dL (%) 9.0 – 3.9 2.0 – 4.5 11.4 – 5.0
TDD (U/day) 58.8 – 16.6
TDD [U/(kg$d)] 0.73 – 0.18
% CL active (%) 97.9 – 1.3
% CGM active (%) 98.8 – 1.3
Subjects with CGM mean < 169 mg/dL (%) 80

CL, closed loop; CV, coefficient of variation; CGM, continuous glucose monitor; eHbA1c, estimated HbA1c; LBGI, low blood glucose
index; SG, sensor glucose; SD, standard deviation.
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P < 0.001) (Table 4; Fig. 3). Announced meals also produced
significantly better glycemia based on CGM SD (30.1 – 14.7
vs. 50.8 – 14.2 mg/dL; P < 0.001) and CV (21.3 – 9.3 vs.
26.8 – 9.7; P < 0.001), CGM percent >250 mg/dL (2.2 – 6.1
vs. 22.8 – 24.0%; P < 0.001), CGM percent >180 mg/dL
(20.6 – 25.7 vs. 60.9 – 23.3%; P < 0.001), and maximum CGM
value (194.6 – 46.6 vs. 268.2 – 44.4 mg/dL; P < 0.001).

Insulin delivered per meal between announced and unan-
nounced meals was analyzed as 1 h before the meal to 4 h after
the meal as IOB (insulin on board) before the meal may have
impacted MMPPC unannounced meal performance. Both
announced and unannounced meals required relatively similar
average per meal insulin doses (15.0 – 4.8 vs. 14.5 – 5.8 U/
meal; P = 0.84). During the 4 h after a meal, announced
meals had an average of 1.8% CGM time <70 mg/dL and
unannounced meals had 2.3% CGM time <70 mg/dL (non-
significant difference). Additional analysis was conducted
to look at the frequency at which participants crossed from
>70 mg/dL to <70 mg/dL after a meal. For announced meals,
there were 0.27 downward crossings of 70 mg/dL per meal,
while for unannounced meals there were 0.17 (nonsignificant
difference).

When broken down by individual meals, similar patterns
are seen for CGM average, SD, CV, percent >180 mg/dL, and
CGM maximum value across all meals. Comparison of
breakfast CGM percent >250 mg/dL was not significantly
different between announced and unannounced meals.

Discussion

This outpatient trial of the FCL MMPPC AP system dem-
onstrates the safety of this emerging system based on the
predefined safety criteria. The MMPPC system successfully
maintained glycemic control with an average CGM of
<169 mg/dL for 80% of the participants, an eHbA1c of <7.5%,
which was one of the predefined outcomes of the study. The
overall CGM average was 157.4 – 14.4 mg/dL and only
1.0 – 0.8% of values <60 mg/dL. In a supervised setting, par-
ticipants were able to keep the AP active for 97.9 – 1.3% of the
time. The MMPPC system was safe with no participants ex-
periencing more than one SMBG value <50 mg/dL and no
severe hypoglycemic or ketotic events, which were the pre-
defined safety criteria for this trial. Participants did, however,
require 1.9 – 1.9 carbohydrate interventions per day to prevent
or correct hypoglycemia (33 – 37 g of carbohydrate per day),
which is higher than desired.

A previous inpatient trial of the MMPPC algorithm with
unannounced meals was assessed with four subjects, and the
algorithm was then revised to improve performance, and as-
sessed with six additional subjects. CGM averages were 167
and 140 mg/dL with percent time in target range of 70–
180 mg/dL of 62% and 78%, respectively.48 For the second
group, the 3-h postmeal average CGM was 156 mg/dL. The
number of hypoglycemia treatments was 0.52 per patient-
day. Use of the MMPPC system with unannounced meals was
also tested in a 10-patient inpatient setting and 15-patient hotel
setting and these studies showed average CGM values of 152
and 158 mg/dL with percent time in range of 70–180 mg/dL of
70% and 68%, respectively.41 For the inpatient setting, there
were 1.68 hypoglycemia treatments per patient-day and for the
hotel cohort there were 0.47 treatments per patient-day. In the
hotel cohort of the previous trial, several participants had
missed meals, which did result in hypoglycemia.

The current study tested the safety of the MMPPC con-
troller when meals were both announced and unannounced
with slightly varying times (30–60 min), although with no
missed meals. The results are similar with the previous
studies with an overall CGM average in the 150–160 mg/dL
range, percent <70 mg/dL in the 2% to 3% range, percent
<54 mg/dL of <0.5%, and hypoglycemic interventions per
patient-day of 1.9. In the current trial involving announced
and unannounced meals, the CGM average was similar at
157.4 – 14.4 mg/dL although the number of hypoglycemia
interventions was higher at 1.9 – 1.9 per day (range 0–5.2 treat-
ments per day). The high variability in treatment number between
subjects could suggest differences in model-fit, possibly related
to reliance of this system on the participant’s home settings.

Review of the literature shows several other FCL systems
under different stages of development.11,12,28–31,38,41 The
Doyle/Dassau group at Harvard/Sansum has also tested an
FCL MPC single-hormone design with results reported by
Harvey et al.30 They reported results for 12 subjects during a
24-h admission during which subjects consumed two un-
announced meals of 50 and 40 g of carbohydrates along with
two optional snacks of 16 g of carbohydrates. Average SG
was 153 – 16.4 mg/dL with 80% time 70–180 mg/dL overall
and with 69% and 61% in target after each unannounced
meal. The results for this single-hormone FCL system showed
similar mean SG to MMPPC with better percent time in
target range.

Table 3. Hypoglycemic Events

Events SMBG <50 mg/dL per day 0.1 – 0.1
Events SMBG <60 mg/dL per day 0.4 – 0.5
Events SMBG <70 mg/dL per day 1.1 – 1.2
Hypoglycemic treatments per day 1.9 – 1.9
Carbohydrates for hypoglycemia treatment

per day (g/day)
33 – 37

SMBG, self-monitoring of blood glucose.

FIG. 2. Postdinner and overnight glycemic control. Solid
center line represents the average, and dotted lines represent
the 25th and 75th percentiles. CGM, continuous glucose
monitor; IQR, interquartile range.
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The Damiano/Russell bionic pancreas system was tested in a
randomized crossover trial of 43 adults with optional meal
announcement.12 Participants bolused 5.6 times per day during
the control period and announced meals 2.6 times per day
while on the AP system. In post hoc analysis, they found ‘‘no
correlation between number of meal announcements during the
bionic pancreas period and the treatment effect for either of the
coprimary outcomes [mean CGM and % time <60 mg/dL].’’
They report a mean CGM value of 140 – 11 mg/dL and percent
time <60 mg/dL of 0.6 – 0.6% for the bionic pancreas group
during the trial. These results appear similar to that achieved
with the MMPPC system for announced meals (mean CGM
140.6 – 35 mg/dL) and significantly better than that achieved
for unannounced meals (mean CGM 197.8 – 44.1 mg/dL).

The PCDIAB consortium in the Netherlands is developing
a bihormonal FCL system. An initial feasibility study on this
system reported results for 11 patients in a monitored home
setting comparing 2 days of CL control (without meal or ex-
ercise announcement) with 2 days of open-loop control.29 The
authors report CL median (IQR) of 133 (40) mg/dL for day 1
and 139 (41) mg/dL for day 2. Time in the target range
of 70–180 mg/dL was 79.2 (16.9)% for day 1 and 76.5 (23.9)%
for day 2 with time <70 mg/dL as 2.1 (7.61)% for day 1 and
2.8 (9.8)% for day 2. Despite administration of glucagon, oral
carbohydrates were required on average 1.4 times per day per
patient and no differences were seen in oral carbohydrate

administration between the two study arms. A follow-up
study for this group looked at 10 patients using the bi-
hormonal system at home for 3 days.28 This study showed
median (IQR) glucose control of 131 (126–137) mg/dL with
84.7 (82.2–87.8)% time in the target range of 70–180 mg/dL
and 1.3 (0.2–3.2)% <70 mg/dL. The overall results for this
bihormonal system show average glycemic control and per-
cent time in target range, somewhat better than for our system
with similar rates of hypoglycemia. It should be noted that
this improvement in control of about 18–26 mg/dL comes
with added cost, complexity, and inconvenience of using a
second infusion set site with the addition of glucagon.

Comparison of announced versus unannounced meals in
this study shows that overall, announced meals performed
better than unannounced meals by 40.5–72.0 mg/dL for the
average CGM value in the 4 h after the meal. This finding
supports the long-held doctrine that bolusing before eating is
superior to bolusing after eating as the MMPPC AP system
delivers insulin in response to the meal glycemic rise. The
previous iteration of the MMPPC system did not allow for
premeal bolusing and this feature was added as an optional
module in response to feedback from the patients participating
in the earlier trials. While outpatient glycemic control for
unannounced meals may be somewhat suboptimal given the
current limits on insulin pharmacodynamics, CGM accuracy,
and insulin delivery speed, these findings need to be taken in

Table 4. Announced Versus Unannounced Meal Analysis

Announced Unannounced Difference P

All meals
CGM average (mg/dL) 140.6 – 35.0 197.8 – 44.1 57.2 – 16.0 <0.001
CGM SD (mg/dL) 30.1 – 14.7 50.8 – 14.2 20.7 – 5.6 <0.001
CGM CV (%) 21.3 – 9.3 26.8 – 9.7 5.5 – 3.7 <0.001
% >250 mg/dL (%) 2.2 – 6.1 22.8 – 24.0 20.6 – 7.7 <0.001
% >180 mg/dL (%) 20.6 – 25.7 60.9 – 23.3 40.3 – 9.3 <0.001
CGM maximum (mg/dL) 194.6 – 46.6 268.2 – 44.4 73.7 – 17.5 <0.001
Meal size (carbohydrate g) 75 – 18 91 – 40 16 – 13.3 0.28
Manual meal bolus (U) 9.6 – 3.7 0 – 0 9.6 – 0.8 <0.001
Total insulin -1 to +4 h from meal (U) 15.0 – 4.8 14.5 – 5.8 0.5 – 2.1 0.84

Breakfast
CGM average (mg/dL) 133.9 – 27.5 174.4 – 38.1 40.5 – 13.5 0.0088
CGM SD (mg/dL) 28.3 – 12.5 52.0 – 11.6 23.7 – 4.6 <0.001
CGM CV (%) 20.5 – 6.4 31.5 – 11.1 11.0 – 3.8 <0.001
% >250 mg/dL (%) 2.3 – 7.2 11.7 – 15.2 9.5 – 5.1 0.1794
% >180 mg/dL (%) 10.6 – 16.2 49.6 – 24.5 39.0 – 8.5 <0.001
CGM maximum (mg/dL) 185.9 – 39.4 256.9 – 37.3 71.0 – 14.7 <0.001

Lunch
CGM average (mg/dL) 140.3 – 37.3 199.4 – 50.7 59.1 – 18.1 0.003
CGM SD (mg/dL) 33.2 – 14.1 49.1 – 15.3 15.9 – 5.8 0.021
CGM CV (%) 24.4 – 11.8 25.5 – 8.9 1.1 – 3.9 <0.001
% >250 mg/dL (%) 1.6 – 3.8 22.2 – 26.3 20.6 – 8.4 0.046
% >180 mg/dL (%) 22.6 – 28.3 61.6 – 23.3 39.0 – 9.7 0.009
CGM maximum (mg/dL) 201.5 – 48.0 262.6 – 52.5 61.1 – 19.8 0.046

Dinner
CGM average (mg/dL) 147.5 – 41.1 219.5 – 30.6 72.0 – 13.3 <0.001
CGM SD (mg/dL) 28.7 – 17.9 51.3 – 16.1 22.5 – 6.5 <0.001
CGM CV (%) 19.0 – 9.1 23.3 – 7.1 4.3 – 3.0 <0.001
% >250 mg/dL (%) 2.7 – 7.3 34.5 – 24.6 31.7 – 7.9 <0.001
% >180 mg/dL (%) 28.7 – 29.5 71.5 – 17.0 42.8 – 8.5 <0.001
CGM maximum (mg/dL) 196.4 – 54.9 285.2 – 38.7 88.9 – 17.3 <0.001

Analyzed as the time from the start of the meal until 4 h after unless otherwise noted.
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the context of current diabetes burden and average glycemic
control. The frequency and impact of missed meal boluses
have also been studied, with a series of studies by Olinder et al.
showing that almost 40% of adolescents on CSII had missed
>15% of their meal doses and that elevated HbA1c values
could be explained by the frequency of missed meal boluses.52

In addition, they found that adolescents frequently ‘‘lose fo-
cus’’ around meal times and simply forget to bolus resulting in
significantly worsened glycemic outcomes.53 Implementation
of an FCL system in adolescents and similar populations holds
the potential to reduce average CGM value, decrease hypo-
glycemic exposure, and decrease the burden of carbohydrate
counting and meal announcement concurrently.

In the afternoons of days 2 and 3, the MMPPC algorithm
was adapted by adjusting the lower bound for the hypoglyce-
mia threshold. The MMPPC algorithm tries to inject insulin so
that the future glucose level will fall below a threshold
(threshold) a set percentage of the time (lower bound). For
the initial six participants, we adapted the threshold. For the
last four participants, we adapted the lower bound percent-
age. Participant adjustments are outlined in Supplementary
Table S2. The threshold led to more hyperglycemia than was
desirable. Adaption of the algorithm was an exploratory aim
to provide information for further algorithm refinement in
this project. There was thus insignificant power to more ro-
bustly explore the impact of algorithm adaption on glycemic
control.

This study has several notable limitations. The design was
based on safety and feasibility assessment and as such there

was no control group against which to assess efficacy. The
study period of 72 h was brief in comparison to recent HCL
trials, although similar to other FCL trials. Participants were
in a hotel setting and were closely monitored by research
staff. The comparison of announced versus unannounced
meals is limited by the fact that bolus status was not ran-
domized either between or within patients. Participants also
required more carbohydrate treatments per day to prevent
hypoglycemia than would be desired for a commercial sys-
tem. A strength of this study is that announced and unan-
nounced meals were both performed in the same environment
during the same study with patients serving as their own
relative controls. The study was conducted in an outpatient
environment providing more generalizability than would be
provided by a hospital-based trial. This trial included both
adults and adolescents enabling safety justification in multi-
ple age cohorts. Use of an FCL AP is novel and highly desired
by patients and providers alike.

Overall, this MMPPC FCL AP system was shown to be
safe in a monitored hotel setting in adults and adolescents.
Both announced and unannounced meals were safely per-
formed with the same base algorithm with the announced
meals showing superior glycemic control to unannounced
meals. Further work on this project includes incorporation of
additional accelerometry detection elements as well as con-
tinued refinement of the CL algorithm. Future studies should
also test emerging ultrarapid insulin, which, along with im-
proved sensor accuracy, may help to enable more general-
izable outpatient studies.

FIG. 3. Comparison of postprandial CGM response for 30 announced and 60 unannounced meals. Unannounced meals <35 g
CHO were omitted from this analysis. Dark gray represents announced meals, and light gray represents unannounced meals. Solid
line is median, and dashed lines are the 25th and 75th percentiles. Triangles represent hypoglycemia treatments, with the dark
fill color occurring with announced meals and the light gray fill color corresponding to unannounced meals.
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