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Abstract

Background

The roles of host and pathogen factors in determining innate immune responses to M. tuber-

culosis are not fully understood. In this study, we examined host macrophage immune

responses of 3 race/ethnic groups to 3 genetically and geographically diverse M. tuberculo-

sis lineages.

Methods

Monocyte-derived macrophages from healthy Filipinos, Chinese and non-Hispanic White

study participants (approximately 45 individuals/group) were challenged with M. tuberculo-

sis whole cell lysates of clinical strains Beijing HN878 (lineage 2), Manila T31 (lineage 1),

CDC1551 (lineage 4), the reference strain H37Rv (lineage 4), as well as with Toll-like recep-

tor 2 agonist lipoteichoic acid (TLR2/LTA) and TLR4 agonist lipopolysaccharide (TLR4/

LPS). Following overnight incubation, multiplex assays for nine cytokines: IL-1β, IL-2, IL-6,

IL-8, IL-10, IL-12p70, IFNγ, TNFα, and GM-CSF, were batch applied to supernatants.

Results

Filipino macrophages produced less IL-1, IL-6, and more IL-8, compared to macrophages

from Chinese and Whites. Race/ethnicity had only subtle effects or no impact on the levels

of IL-10, IL-12p70, TNFα and GM-CSF. In response to the Toll-like receptor 2 agonist lipo-

teichoic acid (TLR2/LTA), Filipino macrophages again had lower IL-1 and IL-6 responses

and a higher IL-8 response, compared to Chinese and Whites. The TLR2/LTA-stimulated

Filipino macrophages also produced lower amounts of IL-10, TNFα and GM-CSF. Race/eth-

nicity had no impact on IL-12p70 levels released in response to TLR2/LTA. The responses

to TLR4 agonist lipopolysaccharide (TLR4/LPS) were similar to the TLR2/LTA responses,
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for IL-1, IL-6, IL-8, and IL-10. However, TLR4/LPS triggered the release of less IL-12p70

from Filipino macrophages, and less TNFα from White macrophages.

Conclusions

Both host race/ethnicity and pathogen strain influence the innate immune response. Such

variation may have implications for the development of new tools across TB therapeutics,

immunodiagnostics and vaccines.

Introduction

Genotyping of Mycobacterium tuberculosis (M. tuberculosis) has shown that lineages of the

organism have predilections for certain geographic distributions and dominate certain geo-

graphic areas [1–4]. Members of the East Asian lineage (that includes the Beijing family) are

predominant in East Asia, members of the Indo-Oceanic lineage are predominant in the Phil-

ippines and around the rim of the Indian Ocean [5], and members of the M. africanum West

Africa I and II are largely restricted to West Africa [1, 6]. This global distribution of strains

may not be random or based solely upon variabilities in virulence, but may be partly deter-

mined by the genetics, epigenetics and other factors of the host and the microbe, both of

which are under natural selection forces.

Successful containment of infection with M. tuberculosis is dependent on innate immune

responses, as these responses play a central role in the acquisition of the adaptive T cell

response, in granuloma formation, and ultimately in the containment of intracellular growth

of M. tuberculosis [7]. The cells responsible for the containment of intracellular infection, den-

dritic cells and alveolar macrophages, are also the preferred intracellular host of M. tuberculo-
sis. Central to the function of these cells is responsiveness to bacterially derived patterns, that

are recognized by Toll-like receptors (TLR). There is evidence that TLRs play an important

role in the host immune response to M. tuberculosis [7]. Alveolar macrophages are the first

responders to inhalation of tubercle bacilli and represent an important component of the

innate response to M. tuberculosis infection. Exposure of macrophages to M. tuberculosis
results in the secretion of cytokines, including TNFα, GM-CSF, IL-1α, IL-1β, IL-6, IL-8, IL-10,

and IL-12p70, that play key roles in granuloma formation [8–10]. Two members of the mam-

malian TLR family, TLR2 and possibly TLR4, have been found to recognize mycobacterial

products and to mediate macrophage activation and the ensuing production of particular cyto-

kines [7, 11]. The discovery of TLR polymorphisms that are associated with race/ethnicity and

response to particular pathogens, raises the distinct possibility that there are ethnicity-specific

differences in TLR2 and/or TLR4, resulting in differential innate responses to M. tuberculosis
strains [12–16]. Such immunologic differences in innate response are of interest given the

molecular epidemiologic studies demonstrating differences in the transmissibility and viru-

lence of M. tuberculosis based on strain [17] [18–20]. Differential activation through TLRs

could have a significant impact on the host response to infection with M. tuberculosis, and ulti-

mately to disease progression.

Our study explores the interaction of host and pathogen factors on the innate immune

response. Based on the molecular epidemiology of TB in San Francisco, which includes a siz-

able population of Asian patients [17, 21], we selected 3 race/ethnic groups, Filipinos, Chinese,

and non-Hispanic Whites for inclusion in our study. From these healthy donors, macrophages

were isolated and treated with lysates from 4 M. tuberculosis strains, comprising 3
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predominant lineages identified in San Francisco (East Asian [Beijing HN878], Indo-Oceanic

[Manila T31] and EuroAmerican [CDC1551]), and one laboratory reference strain (H37Rv),

or with agonists of TLR2 (lipoteichoic acid LTA) or TLR4 (lipopolysaccharide LPS). A total of

9 cytokines were measured. This study adds to the growing body of evidence that differential

innate immune responses contribute to ethnicity-associated differences in TB susceptibility.

Methods

Ethics statement

The “Innate Immunity to TB” (IITB) study protocol was reviewed and approved by the com-

mittee on human research at the University of California, San Francisco (CHR# H45279-

29459). Written informed consent was obtained from all study participants.

Study design and participants

Healthy volunteers, aged 18 to 55, self-identifying as Chinese, Filipino, or non-Hispanic White

were invited to participate in the study. Recruitment was through bulletin board postings at

the Schools of Dentistry, Medicine, Nursing, Pharmacy, Physical Therapy of the University of

California, San Francisco, and at the undergraduate and graduate schools of San Francisco

State University. Between 2009 and 2011, all consenting volunteers meeting inclusion and hav-

ing no exclusion criteria were consecutively enrolled into IITB. Recruitment continued until

50 participants per race/ethnic group were enrolled. All volunteers completed a standardized

questionnaire reviewing demographics, health history as well as information on potential risk

factors for TB. All volunteers reported the race/ethnicity of their biological parents and grand-

parents, and only those identifying both generations as Chinese, Filipino or non-Hispanic

White were eligible for participation in the study. Those reporting a history of active TB, evi-

dence of prior TB on chest radiograph, vaccination with Mycobacterium bovis bacillus Calm-

ette-Guérin (BCG) vaccine in the past 15 years, co-morbid conditions including diabetes,

renal disease, cancer, hepatitis, HIV/AIDS, or other moderate or high risk characteristics asso-

ciated with TB, such as homelessness or history of incarceration, significant alcohol use

(greater than 2 drinks per day), tuberculin skin testing within past 6 months, or treatment with

any immunomodulating agents such as corticosteroids, were not eligible to participate. All

participants had IFN-γ release assay testing, specifically Quantiferon-Gold1 (QFT), for latent

TB infection at the time of study enrollment.

Mycobacterial strains, TLR agonists

Whole cell lysates of Beijing HN878, Manila T31, CDC1551, and H37Rv, were obtained from

gamma-irradiated cells as described previously [22]. The total protein content from each

whole cell lysate batch was quantified by bicinchoninic acid assay (ThermoFisher Scientific,

Walthham, MA), and samples were portioned into individual 10 mg vials and stored at -80c

until use. Certificates of Analysis and Product Information Sheets for whole cell lysates are

available through the National Institute of Allergy and Infectious Diseases funded BEI

Resources (http://www.beiresources.org/; catalog numbers: NR-14820, NR-14821, NR-14824,

NR-36496).

Isolation, culture and ex vivo stimulation of Monocyte Derived

Macrophages (MDMs)

For each study participant, phlebotomy was performed to fill four BD Vacutainer1 CPT™ Cell

Preparation Tube with Sodium Citrate (Becton, Dickinson and Company, Franklin Lakes, NJ,
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No. 362761). Whole blood was processed according to manufacturer guidance for the separa-

tion of mononuclear cells. Monocytes were prepared from freshly drawn blood samples

through negative selection using the Miltenyi Biotec Monocyte Isolation Kit II, which provides

an indirect magnetic labeling approach for the isolation of untouched monocytes from human

peripheral blood mononuclear cells (PBMCs). Monocytes were counted and resuspended at

5x105/ml in 10% vol/vol human serum (HuS), and then plated at 500,000/well in ultralow

adherence plates, without stimulation, and incubated at 37˚C with CO2 for 72 hours to obtain

enrichment of monocyte-derived macrophages (MDMs) through adherence. Upon harvesting

of MDMs, viability was assessed by absence of uptake of trypan blue, and purity (ranging 96–

98% MDMs) was determined by fluorescence cell sorter (FACS). We further assessed viability

on the basis of HLA-DR and CD11c, and T cell contamination on the basis of CD3. MDMs

from each study participant, were incubated at 1x105 for 18 hours with 10 ug / ml whole cell

lysate of M. tuberculosis strains, and to agonists of TLR2 (10 ug / ml Lipoteichoic acid (LTA)

from S. aureus, Sigma, L 2515) and TLR4 (50 ng/ml lipopolysaccharide (LPS) from E. coli

Sigma, L-2880); and culture medium (negative control). Following overnight incubation,

supernatants were collected and frozen at -80˚C and batch tested using MSD Human ProIn-

flammatory 9-Plex Tissue Culture Kit K15007B-1 (measuring GM-CSF, IFN-γ, IL-1β, IL-10,

IL-12p70, IL-2, IL-6, IL-8, TNF-α) run on a Meso Scale Diagnostics MESO QuickPlex SQ 120

instrument.

Statistics and analysis

Categorical demographic factors were analyzed using chi squared tests; age was compared by

race using the Student’s t-test. Geometric mean cytokine responses were compared in response

to 6 stimulants (4 M. tuberculosis strains: H37Rv “reference strain,” CDC1551 “EuroAmeri-

can,” HN878 “East Asian,” and T31 “Indo-Oceanic;” and 2 stimulants on TLR pathways: LTA

and LPS) and by race (White, Chinese, and Filipino). For analyses where stimulant was held

constant and responses were compared by race, linear regression was used, adjusting for inde-

pendent factors age and gender. For analyses where race was held constant and participant

responses to each stimulant were compared, a general estimating equation (GEE) was added

to the linear regression to adjust for responses clustered by participant, in addition to adjusting

for age and gender [23]. Multivariable linear regression models were used to assess interplay

between race and strain as predictors of cytokine response. P values were adjusted for multiple

testing error using the false discovery rate (FDR) method, and significance was defined at the

p< 0.20 level [24].

Cytokines were measured in picograms (pg), logged to approximate a normal distribution

for analysis, and presented as geometric means with 95% confidence intervals. The upper limit

of detection (ULOD) was 10,000 pg for all cytokines; values above the ULOD were set to

10,000 pg. The lower limits of detection (LLOD) were unique for each cytokine; values below

the LLOD were left unchanged. All statistical analyses were performed using SAS version 9.4

(SAS Institute, Cary, NC, USA).

Results

Study population

The study population included 137 healthy donors with mean age 30±8 (range 19–55) years of

age. Most were female (n = 99, 72%), and 39% were foreign-born (n = 54). A positive QFT test

was uncommon (8%) and more likely to occur among the foreign-born (RR 15.4, 95%CI

2–116). Self-identified race was divided approximately evenly: non-Hispanic White (n = 46),
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Chinese (n = 47), or Filipino (n = 44). Filipinos were on average older, and Whites were less

likely to be foreign-born (Table 1).

Cytokine levels

We prepared monocyte-derived macrophages (MDMs) from healthy study participants

(n = 137), and incubated the cells with M. tuberculosis lysates. The concentration of cytokines

released in response to the bacterial lysates were measured using 2 different platforms (Lumi-

nex Assay and Meso Scale Discovery immunoassay (MSD); Meso Scale Discovery, Gaithers-

burg, Maryland) according to manufacturer instructions. Since the cytokine levels and trends

were identical for these 2 platforms, we describe our data generated with the MSD kit. We

measured a total of 9 cytokines: IL-1β, IL-2, IL-6, IL-8, IL-10, IL-12p70, IFNγ, TNFα, and

GM-CSF. As the study was designed to assess macrophage stimulation, the T cell cytokines

IFN-γ and IL-2 were included as controls. IFNγ and IL-2, at the lower limit of detection was

noted, possibly due T cell contamination.

Cytokine response to M. tuberculosis strain by race/ethnicity

We observed similar patterns across all 4 M. tuberculosis strains for IL-1b, IL-6 and IL-8 (Fig 1

and S1 Table). Filipino MDMs produced less IL-1 and IL-6, but more IL-8, compared to

MDMs from Whites and Chinese. We observed subtle differences across M. tuberculosis
strains for TNFα, and GM-CSF. For TNFα, Filipino and White MDMs released less compared

to Chinese MDMs, in response to CDC1551. Filipino MDMs released less of this cytokine

than Chinese cells, in response to H37Rv, and Filipino MDMs released less TNFα than both

Chinese and White MDMs in response to T31. There was no difference by race/ethnicity in

the amounts of TNFα released in response to HN878. Only strain T31 triggered the release of

different GM-CSF amounts across race/ethnic groups: Filipino MDMs released less of this

cytokine, compared to Chinese MDMs (Fig 1 and S1 Table). There were no race/ethnic differ-

ences in IL-10 and IL-12p70 responses to any of the M. tuberculosis strains (S1 Table).

Cytokine response to TLR agonists by race/ethnicity

MDMs were incubated for 18 hours with the TLR2 agonist LTA or the TLR4 agonist LPS, and

cytokine responses were measured.

In response to TLR2/LTA, Filipino MDMs released lower amounts of IL-1, IL-6, IL-10,

TNFα and GM-CSF, but higher amounts of IL-8, compared to Whites and Chinese (Fig 2 and

S2 Table). There were no differences by race/ethnicity in the IL-12p70 response to TLR2/LTA

(S2 Table).

Table 1. Demographic characteristics of the study population.

p value

White Chinese Filipino White

vs. Chinese

White

vs. Filipino

Chinese

vs.

Filipino

n (%) 46 (34) 47 (34) 44 (32)

Mean age±SD

(Range)

28.3±6.8 (22–53) 28.7±8.3 (19–55) 32.9±7.1 (22–49) 0.815 0.002 0.005

Female, n (%) 30 (65) 34 (73) 35 (80) 0.459 0.132 0.423

Foreign birth, n (%) 5 (11) 22 (47) 27 (61) <0.001 <0.001 0.165

QFT positive, n (%) 1 (2) 4 (9) 6 (14) 0.201 0.071 0.436

https://doi.org/10.1371/journal.pone.0195392.t001
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In response to TLR4/LPS, Filipino MDMs released lower amounts of IL-1, IL-6, IL-10, IL-

12p70 but higher amounts of IL-8, compared to Whites and Chinese, while White MDMs

released lower amounts of TNFα, compared to Chinese (Fig 2 and S2 Table). There were no

differences across race/ethnicity groups in the GM-CSF responses to TLR4/LPS (S2 Table).

Cytokine response by M. tuberculosis strain

We explored the impact of M. tuberculosis strain on cytokine responses within each race/eth-

nicity (S1 Fig and S3 Table). Strain CDC1551 elicited lower levels of IL-1, IL-6, IL-10, TNFα
and GM-CSF, and higher levels of IL-8, compared to all other strains, regardless of race/eth-

nicity. Strain T31 triggered the release of more IL-12p70 compared to the other strains, regard-

less of race/ethnicity. These data indicate that the clinical M. tuberculosis strains CDC1551 and

T31 may have different immunogenic profiles, compared to M. tuberculosis strains H37Rv and

HN878, recognizing that cellular lysates are a crude proxy of infection.

Cytokine response by both race/ethnicity and strain

Using a multivariable linear regression model predicting response of macrophages to M. tuber-
culosis lysates and race/ethnicity, adjusted for age and gender, Filipino ethnicity was an inde-

pendent predictor of lower IL-1 and IL-6 response, and of higher IL-8 response compared to

Whites (Table 2). CDC1551 strain was an independent predictor of lower IL-1, IL-6, IL-10,

TNFα, and GM-CSF response, and of higher IL-8 response compared to the reference strain

H37RV. In addition, T31 (Manila strain) was an independent predictor of lower IL-8 activity,

and higher activity in IL-1, IL-6, IL-10, IL-12p70, TNFα, and GM-CSF compared to H37RV.

HN878 strain was independently predictive of lower IL-8, TNFα, and GM-CSF response com-

pared to H37RV. When multiple testing correction is applied no significant interactions

emerged.

Discussion

In this study of the response of macrophages derived from healthy individuals of 3 race/ethnic

groups to M. tuberculosis lysates from 4 phylogeographic strains of the organism, we found

that both host race/ethnicity and pathogen strain influence the innate immune response.

We found that macrophages from Filipinos produced less IL-1, IL-6, and more IL-8, com-

pared to macrophages from Chinese and Whites participants. In response to the Toll-like

receptor 2 agonist LTA, Filipino macrophages again had lower IL-1 and IL-6 responses and a

higher IL-8 response, compared with Chinese and Whites. The TLR2/LTA-stimulated Filipino

macrophages also produced lower amounts of IL-10, TNFα and GM-CSF, and the TLR4/LPS

triggered the release of less IL-12p70 from Filipino macrophages, and less TNFα from White

macrophages. These data would suggest that the induction of, IL-6, TNF-α, GM-CSF could be

associated with TLR2 ligation. Unexpectedly, the induction of IL-8 appeared to be distinct

from that of IL-6. In this regard, induction of both IL-6 and IL-8 via TLR-2 are both MyD88

dependent [25]. The differential response of IL-8 would imply either that other receptors

might play a selective role in IL-8 induction. For example, the mannose receptor has been pre-

viously demonstrated to enable TLR-2 dependent IL-8 production. Similarly, Dectin1 and

Fig 1. Cytokine response of macrophages to M. tuberculosis strains by race/ethnicity. Cytokines released by macrophages derived from healthy

individuals of three ethnicities in response to M. tuberculosis lysates from four strains. Comparisons are adjusted for age and gender. Brackets indicate

FDR-adjusted p< 0.20.

https://doi.org/10.1371/journal.pone.0195392.g001
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CD36 could modulate TLR responsiveness. Interestingly, M. tuberculosis can activate leuko-

cytes via the mannose receptor [26], although this possibility has not been formally tested.

We also examined the effect of pathogen strain using lysates prepared from 4 M. tuberculo-
sis strains: clinical strains Beijing HN878 (lineage 2), Manila T31 (lineage 1) and CDC1551

(lineage 4), and reference strain H37Rv (lineage 4. We found that CDC1551 elicited a

markedly different macrophage response, for most of the cytokines, eliciting less IL-1, IL-6,

IL-10, TNFα, and GM-CSF, and more IL-8, compared with other M. tuberculosis strains.

These data would appear to parallel those seen for specific TLR-2 stimulation. Our data, then,

would suggest that both differential responses to each strain, as well as those seen among the

race/ethnic groups are driven by TLR-2 signalling, and would not support the original hypoth-

esis that each strain would be “tuned” to its concordant, geographically-aligned host.

TB susceptibility and disease outcome vary greatly among individuals, and it is well estab-

lished that at least some of this variability is attributable to host genetics [27–31]. Genetic loci

that may influence clinical TB phenotypes have been identified [31–35]. Most of these genes

encode immune response proteins [31, 36–38]. Here, responsiveness and/or production of

IFN-γ has been frequently observed as strongly associated with vulnerability to mycobacterial

infection. With regard to TLRs it has been argued that TLR signaling specifically has “yet to

provide convincing evidence of a major contribution of common variants of human TLRs, IL-

1Rs, or their adaptors to host defense” [39]. Nonetheless, there a number of examples where

specific TLRs or molecules related to TLR signaling can be associated with vulnerability to

Fig 2. Cytokine response of macrophages to Toll-like receptor agonists by race/ethnicity. Cytokines released by

macrophages derived from healthy individuals of three ethnicities in response to TLR2 agonist lipoteichoic acid (LTA)

and TLR4 agonist lipopolysaccharide (LPS). Comparisons are adjusted for age and gender. Brackets indicate FDR-

adjusted p< 0.20.

https://doi.org/10.1371/journal.pone.0195392.g002

Table 2. Seven multivariable linear regression models predicting response of macrophages to M. tuberculosis lysates and race/ethnicity, adjusted for age and gender.

General estimating equation included to adjust for values clustered by participant. P values adjusted for multiple testing using the false discovery rate (FDR) method.

IL-1 IL-6 IL-8 IL-10 IL-12p70 TNFα GM-CSF

Estimate

(95%CI)

p value Estimate

(95%CI)

p value Estimate

(95%CI)

p value Estimate

(95%CI)

p value Estimate

(95%CI)

p

value

Estimate

(95%CI)

p value Estimate

(95%CI)

p value

Race

White Ref 1.00 Ref 1.00 Ref 1.00 Ref 1.00 Ref 1.00 Ref 1.00 Ref 1.00

Chinese 0.06 (-0.41,

0.53)

.890 -0.05 (-0.67,

0.57)

.929 -0.02 (-0.21,

0.18)

.929 0.02 (-0.43,

0.47)

.949 -0.08 (-0.48,

0.32)

.868 0.19 (-0.05,

0.43)

.224 0.27 (-0.15,

0.70)

.332

Filipino -0.76 (-1.2,

-0.36)

.001 -0.70 (-1.2,

-0.17)

.023 0.22 (0.04,

0.39)

.032 -0.15 (-0.57,

0.27)

.686 -0.20 (-0.66,

0.25)

.577 -0.11 (-0.37,

0.14)

.577 -0.12 (-0.52,

0.27)

.756

Strain

H37RV Ref 1.00 Ref 1.00 Ref 1.00 Ref 1.00 Ref 1.00 Ref 1.00 Ref 1.00

CDC1551 -0.92 (-1.0,

-0.79)

< .001 -1.2 (-1.3,

-1.1)

< .001 0.51 (0.45,

0.57)

< .001 -1.0 (-1.1,

-0.93)

< .001 -0.03 (-0.20,

0.14)

.868 -0.53 (-0.64,

-0.43)

< .001 -1.0 (-1.1,

-0.88)

< .001

HN878 -0.02 (-0.14,

0.10)

.868 -0.03 (-0.15,

0.08)

.787 -0.20 (-0.30,

-0.10)

< .001 0.06 (-0.08,

0.19)

.577 0.18 (-0.05,

0.41)

.224 -0.16 (-0.29,

—0.03)

.035 -0.15 (-.26,

-0.04)

.013

T31 0.20 (0.11,

0.30)

< .001 0.30 (0.21,

0.39)

< .001 -0.20 (-0.24,

-0.15)

< .001 0.15 (0.10,

0.21)

< .001 0.17 (0.10,

0.24)

<

.001

0.13 (0.07,

0.19)

< .001 0.20 (0.14,

0.27)

< .001

Covariates

Age -0.04 (-0.06,

-0.02)

.001 -0.04 (-0.07,

-0.01)

.025 0.02 (0.01,

0.03)

.002 0.00 (-0.02,

0.02)

.988 -0.04 (-0.06,

-0.01)

.010 -0.01 (-0.03,

0.00)

.290 -0.03 (-0.05,

-0.01)

.032

Male 0.07 (-0.36,

0.50)

.868 0.04 (-0.50,

0.58)

.929 -0.03 (-0.21,

0.15)

.868 -0.39 (-0.80,

0.02)

.121 0.32 (-0.04,

0.67)

.151 0.04 (-0.19,

0.27)

.868 0.06 (-0.33,

0.45)

.868

https://doi.org/10.1371/journal.pone.0195392.t002
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infection with Mtb [15, 16], or to altered responsiveness to immunization with BCG [40]. Our

data with regard to TLR2 responsiveness strongly supports genetic variation in TLR2

signaling.

The impact of ethnicity on TB susceptibility was revealed over a quarter century ago [41].

One of the first studies to dissect the relative influence of ethnicity and M. tuberculosis strain

on TB disease phenotype showed that ethnicity is a powerful predictor of disease phenotype,

independently of pathogen strain [42]. However, few studies have addressed the basis of these

ethnic differences at the cellular and molecular levels. At the cellular level, one report has sug-

gested that the ability of M. tuberculosis to grow in macrophages varies according to the ethnic-

ity of the macrophage donor [43]. At the molecular level, a TLR2 polymorphism appears to be

associated with TB susceptibility in Asians, but not in Caucasians [44], and inflammatory

mediator levels are associated with ethnicity in pulmonary TB patients of African and Eurasian

ancestry [45]. These ethnic differences are associated with ethnic variation in host vitamin D

binding protein DBP phenotype, in accord with the demonstrated roles of the DBP protein in

macrophage activation and neutrophil chemotaxis [46, 47]. Here, we show that macrophages

derived from healthy Filipino donors had markedly different innate immune responses to M.

tuberculosis lysate, to TLR2 stimulation with LTA, and to TLR4 stimulation with LPS, as com-

pared with macrophages from non-Hispanic Whites and Chinese. It will be of interest to

expand these studies to other ethnicities, including Africans, African-Americans and

Hispanics.

At present, information regarding ethnic differences in TLR SNPs is limited. For example,

one ethnic-specific difference is SNP TLR1 rs5743618 (changes T to G at bp 1805 and changes

I to S at aa 602) [48]. This SNP regulates IL6 response to PAM3 stimulation, presumably via

the ligation of the TLR1/2 heterodimer. The high responding variant is dominant in Asians

(99% T) and Blacks (75%) while the low responding variant dominates in Whites and (75%).

The entire TLR1/2/6 locus is an evolutionary hot spot under positive selection [48].

Many epidemiological and experimental studies have shown that M. tuberculosis strains

produce different disease phenotypes and immune responses [20, 49–51]. This clinical pheno-

type diversity across M. tuberculosis strains is likely attributable to differing gene expression

[51–53], metabolic profiles [54], cell wall lipids [55] and growth rates in macrophages [56]. We

show here that clinical strain CDC1551 (lineage 4 modern) triggers the release of less IL-1, IL-

6, IL-10, TNFα, and GM-CSF, and more IL-8, compared with clinical strains Beijing HN878

(lineage 2 modern), Manila T31 (lineage 1 ancient) and reference strain H37Rv (lineage 4

modern). Our results are in accord with those of Subbian et al, who reported that rabbits

infected with CDC1551 produced less lung TNFα mRNA compared to rabbits infected with

HN878, although, contrary to our data, they found that CDC1551 also triggered the produc-

tion of less IL-8 mRNA [57]. As IL-8 is associated with neutrophilc inflammation, it was postu-

lated that this was one reason that CDC1115 induced less cavitation. Manca et al. compared

the innate immune responses elicited by strains CDC1551, HN878 and H37Rv, with results

that are not congruent with our study. Mice infected with CDC1551 produced more IL-6 and

IL-10 mRNA than HN878 and H37Rv, and more TNFα mRNA than HN878 [58, 59], and

human monocytes infected with CDC1551 produced more IL-10 and TNFα mRNA than cells

infected with HN878 [60]. These discordant results likely reflect different experimental sys-

tems, and it is notable that the earlier studies relied on small sample sizes.

The molecular bases for these innate immune response differences across host ethnicity

and M. tuberculosis pathogen lineages are largely unknown. However, comparative genomics,

and ongoing efforts to understand the unusual biology of these bacteria, including unbiased

systems biology approaches [51, 61], are expected to yield insights. Furthermore, our work

would support a detailed evaluation of TLR-2 dependent signaling across each of these species.
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Our study has limitations, principally that our experimental system did not include a model

in which macrophages were infected with live M. tuberculosis. We recognize that the use of cel-

lular lysates represents a proxy of infection useful for comparisons rather than definitive deter-

mination of immunogenicity of strains. Also, whereas macrophages for all assays were

enumerated at 50,000 cells/well, we did not enumerate circulating monocytes in volunteers

nor evaluate for cell surface expression, which may have affected induced cytokine differences.

Additionally, due to the multiplexed nature of assays and resource limitations, we were unable

to conduct diluted assays, resulting in a censored upper limit of detection. Finally, ethnicity

was determined based on self-report rather than genetic testing. Whereas, it has been shown

that self-definitions of ethnicity are highly accurate reflection of true ethnic identity in Chinese

and Whites, in particular, there is the potential for misclassification of ethnicity [62]. Our

study also has a number of strengths. First, the immunologic responses to M. tuberculosis were

evaluated using cells from healthy individuals and focused on innate immunity, thus reducing

the influence of adaptive immunity, history of TB exposure, as well as environmental and

socioeconomic factors. Second, our controlled experimental design allowed us to examine the

interaction of host and pathogen genetics. Third, our study population of 137 healthy macro-

phage donors lends considerable robustness to our results.

In sum, our data show that that both host race/ethnicity and pathogen factors influence the

innate immune response and such variation has implications for the development of new tools

across TB therapeutics, immunodiagnostics and vaccines [3, 45, 63].
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